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Abstract. In this paper, we explored different ways to write the algebraic version of
betweenness centrality algorithm. Particularly, we focused on Brandes’ algorithm [8].
We aimed for algebraic betweenness centrality that can be parallelized easily. We
proposed 3-tuple geodetic semiring as an extension to the usual geodetic semiring with
2-tuples [6]. Using the 3-tuple geodetic semiring, Dijkstra’s and Brandes’ algorithm,
we wrote more concise and general algebraic betweenness centrality (ABC) algorithm
which is valid for weighted and directed graphs. We also proposed an alternative
version of ABC using the usual geodetic semiring with 2-tuple where we used a simple
way to construct shortest path tree after computing shortest path distances in the
usual geodetic semiring. This allows us to avoid computational complexity of ABC
implementation using 3-tuple geodetic semiring. We used numba [18] to optimize and
parallelize ABC. We evaluated the performance of ABC using 2-tuple geodetic semiring
as compared to NetworkX [16], a common python package for graph algorithms. We
did scalability experiments on parallel ABC and showed its total speedup. We also
showed that with small modification, ABC can be adapted to algebraicly compute
other centrality measures such as percolation centrality.

1 Introduction

Algorithms for computing centrality measures on graphs have received a great deal of attention
in recent decades due to problems of interest across fields in which data has a graph structure.
Centrality measures often help answer domain-specific questions about the importance or relevance
of individual vertices in a graph. The use of parallel computing is of interest for calculating
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graph features when the problem size exceeds the capabilities of classical sequential or small-scale
multicore CPUs. One mechanism for implementing such algorithms on parallel computers is to
express them in the form of linear algebra operations that naturally map onto a data-parallel
programming model. The GraphBLAS [1] and Graph500 [2] are recent notable efforts that adopt
this model of graph algorithms via linear algebra for parallel computation. This is particularly
relevant with the recent trend towards data parallel accelerators like graphics processing units.

In this paper we introduce and analyze algebraic algorithms for computing betweenness cen-
trality measures using the tools of linear algebra. We demonstrate how this can be applied to other
centrality measures that are based on betweenness centrality by defining an algebraic implemen-
tation of the percolation centrality algorithm [20].

1.1 Contribution

Our work contributes the following results to the existing field of graph algorithms in the language
of linear algebra:

• Our algorithm for algebraic betweenness centrality (ABC) is valid for weighted and/or di-
rected graphs,

• ABC is fully algebraic via a geodetic semiring, avoiding non-algebraic auxiliary functions,

• ABC forms the basis of other centrality measures expressed in terms of linear algebra, such
as percolation centrality.

• We propose a 3-tuple geodetic semiring, extending a more commonly used geodetic semiring
by adding parent information.

Betweenness centrality is a commonly studied graph algorithm and has been approached with
the tools of linear algebra in the past. Early work focused on the unweighted case: [21] first for-
mulated algebraic algorithm for betweenness centrality on unweighted graphs using linear algebra
primitives and [9] implemented it as the distributed-memory betweenness centrality algorithm. As
[9] noted their implementation can scale beyond thousands of processors, but only addresses the
unweighted case. Shortly afterwards, [12] proposed a new parallelizable algorithm for the general
case with low spatial complexity scaling to 64 processors on both weighted and unweighted graphs,
but it wasn’t algebraic.

The closest work to ours appears in [23], which describes the Maximal Frontier Between-
ness Centrality (MFBC) method based on sparse matrix multiplication for both unweighted and
weighted graphs using a parallel (distributed-memory) numerical library for multidimensional ar-
rays called Cyclops [24]. MFBC is based on Bellman-Ford and Brandes’ algorithms [8] and its over-
all logic is similar to the algorithm ABC-DB that we propose. Unlike MFBC, ABC-DB is based on
Dijkstra’s and Brandes’ algorithms, and fully formulated based on linear algebra primitives. For
example, MFBC uses a combination of different algebraic monoids and auxiliary functions to define
matrix-vector and matrix-matrix multiplication. ABC-DB works with matrices and vectors from
a single domain, referred to as the 3-tuple geodetic semiring. The semiring operations are used to
implement the necessary logic of the algorithm which results a simple algebraic implementation of
Brandes’ algorithm for weighted and unwieghted graphs. MFBC uses matrix-vector multiplication
with a monoid and an auxiliary function to find frontiers for back-propagation and centrality accu-
mulation because it is based on Bellman-Ford. Tracking frontiers is not necessary with ABC-DB
due to the order of traversal from Dijkstra’s algorithm and parent information in the shortest path
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tree from the geodetic semiring. This allows us to back-propagate centrality scores simply. Thus,
ABC-DB only uses vector operations to back-propagate and accumulate centralities.

1.2 Graph notation and background

Let G = (V,E), E ⊆ V × V be a graph with the set of nodes and the set of edges denoted as
V and E respectively where each edge has a weight w : E → R = R ∪ (∞). We denote |V | = n
and |E| = m. The following concepts on a graph such as a path, shortest path and shortest path
distance are briefly defined as follows. These will be used later in this paper to understand the
graph centrality algorithms.

Definition 1.1 (Path) A path p from v0 to vk, denoted as v0
p
 vk is a sequence of vertices

p = (v0, v1, . . . , vk) such that (vi−1, vi) ∈ E and the weight of a path is defined as

w(p) =

k∑
i=1

w(vi−1, vi),

the sum of the weights of the edges which constitutes the path.

Definition 1.2 (Shortest path distance) The shortest path distance from vertex s to t is

d(s, t) =

{
min{w(p) | s p

 t} if there exists a path from s to t

∞ otherwise
(1)

Definition 1.3 (Shortest path) A path, p from s to t, is a shortest path from s to t if w(p) =
d(s, t).

1.3 Betweenness Centrality

In complex networks, we need some measure to tell which nodes play more important roles. One
such measure is betweenness centrality. The betweenness centrality of a vertex represents what
portion of all shortest paths in the graph go through the vertex. Let σst be the number of shortest
paths between vertices s and t and σst(v) be the number of shortest paths between s and t that
includes the vertex v. Then betweenness centrality is defined as

CB(v) =
∑
s6=v 6=t

σst(v)

σst
(2)

Intuitively, betweenness centrality of a vertex represents the change of the number of shortest
paths in the network if we remove a vertex from the graph. The larger betweenness centrality
of a vertex, the bigger change in total shortest paths. Another interpretation of betweenness
centrality of a vertex is the probability that communication between any two vertices in a network
goes through v, assuming all communications in the network happen through shortest paths. This
assumption could become disadvantageous depending on a context. There are several terms related
to betweenness centrality including Bellman criterion, pair dependency and dependency of a vertex
which are defined as follows [8].

Lemma 1 (Bellman criterion) A vertex v ∈ V lies on a shortest path between vertices s, t ∈ V ,
if and only if d(s, t) = d(s, v) + d(v, t).
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By the Bellman criterion the shortest path counts between s, t ∈ V passing through v ∈ V is

σst(v) =

{
0 if d(s, t) < d(s, v) + d(v, t)

σsv · σvt otherwise
(3)

which can be used to find the pair dependency of s, t on v, δst(v).

Definition 1.4 (pair dependency) The pair dependency of s, t ∈ V on an intermediary vertex,
v ∈ V is the portion of shortest paths between s and t that pass through v, defined as:

δst(v) =
σst(v)

σst
(4)

If we sum all pair dependencies on v, we get the betweenness centrality of v:

CB(v) =
∑
s6=v 6=t

δst(v) (5)

Definition 1.5 (dependency) The dependency of a vertex s ∈ V on a single vertex v ∈ V is the
portion of shortest paths starting from s and going through v, that is defined as follows.

δs•(v) =
∑
t∈V

δst(v) (6)

If we sum dependencies of all s on v, we get betweenness centrality of v as follows.

CB(v) =
∑
s 6=v

δs•(v) (7)

Brandes proved that the dependency of s on v follows a recursive relation.

Theorem 1 (Recursive relation of dependency [8]) The dependency of s ∈ V on any v ∈ V
obeys

δs•(v) =
∑

w:v∈Ps(w)

σsv
σsw
· (1 + δs•(w)) (8)

where Ps(w) is the set of parents of a vertex w on shortest paths from s to w.

1.4 Semiring

A semiring (S,⊕,⊗, 0, 1) is a set S with two binary operations ⊕ and ⊗ defined on S such that
the following properties are satisfied

1. ⊕ is associative and commutative,

2. ⊗ is associative,

3. ⊗ distributes over ⊕,

4. 0 is an absorbing element (annihilator) under ⊗ such that a⊗ 0 = 0⊗ a = 0.

A semiring (S,⊕,⊗, 0, 1) is complete if it satisfies the following two conditions [4]:
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• If a1, a2, a3, . . . is a countable sequence of elements in S, then a1 ⊕ a2 ⊕ a3 ⊕ . . . exists and
is unique.

• The commutativity, associativity and distributivity holds for countable cases as well.

A semiring (S,⊕,⊗, 0, 1) is closed iff a? = 1 + a⊗ a? = 1 + a?⊗ a where ? is said to be the closure
operation. A complete semiring is closed for the transitive closure defined as

a? =

∞∑
k=0

ak. (9)

A matrix semiring over a complete semiring is also complete and closed for

A∗ =

∞∑
k=0

Ak. (10)

Therefore, we can compute the transitive closure of the adjacency matrix A of a graph over a
given complete semiring (S,⊕,⊗, 0, 1) via Equation 10. If we say transitive closure of a graph, it
means the transitive closure of the adjacency matrix of a graph. There are well-known works [4,
14, 17, 6, 10] on semirings and [4, 14] present theorems for path problems in graphs including the
transitive closure of a graph.

1.5 Related works

Computing betweenness centrality has two parts, to compute All Pairs Shortest Paths (APSP) and
to sum all pair-dependencies. The second part has Θ(n3) time complexity and takes up a significant
amount of computation time and storage space. In 2001, Brandes [8] introduced a faster algorithm
which uses Single Source Shortest Paths (SSSP) and the recursive relation in dependency of a vertex
to update centrality scores. By doing so, it eliminates computing APSP and calculates centrality
scores without storing all shortest paths. As a result, Brandes’ algorithm has time complexity of
O(m+n log n), O(nm+n2 log n) for unweighted and weighted graphs respectively. Since Brandes’
algorithm is based on a priority queue data structure, its space complexity is O(m) and O(nm)
for unweighted and weighted graphs respectively. The use of a priority queue limits parallelization
and vectorization opportunities, especially those based on formulating the algorithm algebraically.

Many different semirings have been defined in the past for expressing graph algorithms in
algebraic form, such as the tropical semiring for shortest path problems [17]. In 1974, Aho and
Hopcroft [4] first proposed using semirings for path finding algorithms such as computation of
costs between vertices, the transitive closure of a graph and shortest paths. These use different
semirings or ways to define the adjacency matrix of the graph, but the algorithms themselves were
not written in algebraic form. While [4] defined a closed semiring with a idempotent property,
in 1980 [13] redefined a closed semiring without the idempotent property and proposed a general
algorithm for computing costs between vertices. In 1994, Batagelj [6] introduced the geodetic
semiring, a nonidempotent closed semiring and computed the transitive closure of a graph using
Fletcher’s algorithm [13]. Computing the transitive closure of a graph in the geodetic semiring
produces the shortest distance and number of shortest paths between each pair of vertices. All
these algorithms take O(n3) time and they are not written in algebraic form, but they are implicitly
algebraic. Given that a matrix formulation is possible for them, one can always write an algebraic
version of the algorithms. These foundational algorithms are related to the work presented here
because shortest path identification is core to betweenness centrality algorithms.
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In the last two decades work on graph algorithms expressed in terms of linear algebra has
been an active research area, especially with the rise of data parallel compute accelerators. In
2008, Robinson [21] formulated betweenness centrality based on matrix operations for unweighted
graphs. Their work is based on the breadth first search (BFS) linear algebra primitive and in-
cluded in Kepner’s text that summarizes early work in the field [17]. Robinson’s algorithm has
time complexity of O(n2 + nm) and space complexity of O(n). Robinson’s algorithm implements
Brandes’ algorithm for unweighted graph and uses algebraic BFS (matrix-vector products) for
SSSP and keep track of the level of the node in the tree with the source node as a root. To
update centrality scores, the tree is traversed up from leaf nodes or from the bottom level and
the parents of a node in the shortest path tree is determined from the adjacency matrix when
back track. The CombBLAS [9] is an extensible distributed-memory parallel graph library that
implements Robinson’s algorithm. Most parallelizations of betweenness centralty is based on the
BFS primitive [5, 19, 26, 25, 15]. Most recently, Solomonik [23] proposed an algebraic betweenness
centrality algorithm called Maximal Frontier Betweenness Centrality (MFBC) for both unweighted
and weighted graphs. MFBC is the closest to our work as discussed earlier.

Many algebraic graph algorithms are presented in [17] written in terms of matrix-vector prod-
ucts. Among them, a 3-tuple shortest path semiring is defined and used to express an algebraic
Bellman-Ford algorithm. This 3-tuple consists of a path weight, path size and the penultimate
vertex. The 3-tuple geodetic semiring that we defined for our work is similar to this semiring.

2 3-tuple Geodetic Semiring

Given u, v ∈ V , we want to represent the shortest path distance, number of shortest paths and a
set of penultimate vertices (parents of end nodes of the shortest paths) as a tuple of a form (d, σ, π).
Let S = R+ × N× P(V ) ∪ {(∞, 0, ∅), (0, 1, NIL)} be a set where R+ = R+ ∪ {∞}, N = N ∪ {∞}
and (∞, 0, ∅), (0, 1, NIL) correspond to nonexistence of shortest paths (no path) and a path from
a vertex to itself (self loop) respectively. We want to define addition ⊕ = min and multiplication
� = +rhs operations in S as follows.

min{(d1, σ1, π1), (d2, σ2, π2)} =


(d1, σ1, π1) if d1 < d2

(d1, σ1 + σ2, π1 ∪ π2) if d1 = d2

(d2, σ2, π2) otherwise

(11)

(d1, σ1, π1) +rhs (d2, σ2, π2) =

{
(d1 + d2, σ1 ∗ σ2, π2) if π1 6= ∅ and π2 6= NIL

(d1 + d2, σ1 ∗ σ2, π1) otherwise
(12)

Intiutively, +rhs concatenates paths represented by 3-tuples and min picks the shortest paths
from given paths. If we concatenate no path with any path, the result is no path. If we concatenate
a self loop with a valid path ( not a self loop or no path), the result is the valid path itself. If we
concatenate two valid paths, their weights will be combined and the parent information from the
rightmost path will be that of the resulting path(s) (tuple). Since 3-tuple represents number of
shortest paths from one vertex to another through σ, the resulting σ will be the multiplication of
sigmas of the two paths concatenated.

Lemma 2 (3-tuple Geodetic Semiring) The set S = R+×N×P(V )∪{(∞, 0, ∅), (0, 1, NIL)}
under the operations ⊕ = min and � = +rhs is a semiring with 0 = (∞, 0, ∅) and 1 = (0, 1, NIL)
such that



JGAA, 25(1) 241–261 (2021) 247

1. min is commutative and associative

2. +rhs is associative

3. +rhs is distributive over min

4. 0 is an absorbing element under +rhs such that every a ∈ S

a+rhs 0 = 0 +rhs a = 0

5. Absorbtion property: for every positive a = (d, σ, π) s.t d > 0 ∈ S,

min{1, a} = 1

Proof: The first part is a similar to the proof of Lemma 5.2 from [17]

1. min operation is clearly associative and commutative.

2. Consider
(d1, σ1, π1) +rhs (d2, σ2, π2) +rhs (d3, σ3, π3)

and do the operation in any order. The result is

(d1 + d2 + d3, σ1 · σ2 · σ3, π′).

Since +rhs defined Equation 12 is a path concatenation operation,

• if any πi = ∅, then π′ = ∅.
• if all πi 6= ∅. Then π′ = πi, where i is the largest value that πi 6= NIL.

3. Let p = (d, σ, π), p1 = (d1, σ1, π1) and p2 = (d2, σ2, π2). Then we want to show that

p� (p1 ⊕ p2) = (p� p1)⊕ (p� p2).

WLOG, by the commutativity of min, suppose min{p1, p2} = p1 where d1 < d2

(a) Suppose p = (∞, 0, ∅) = 0. Then

0� (p1 ⊕ p2) = 0� p1 = 0 = (0� p1)⊕ (0� p2).

(b) Suppose p = (0, 1, NIL) = 1. Then

1� (p1 ⊕ p2) = 1� p1 = p1 = p1 ⊕ p2 = (1� p1)⊕ (1� p2).

(c) Suppose p2 = (∞, 0, ∅) = 0. Then

p� (p1 ⊕ 0) = p� p1 = (p� p1)⊕ 0 = (p� p1)⊕ (p� 0).

(d) Suppose p1 = (0, 1, NIL) = 1 and p, p2 ∈ R+
0 × N × P(V ). Since min{p1, p2} = p1,

d2 > 0. Hence,
p� (1⊕ p2) = p� 1 = (p� 1)⊕ (p� p2)

because d+ d2 > d.
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(e) Suppose p, p1, p2 ∈ R+
0 × N× P(V ). Then

p� (p1 ⊕ p2) = p� p1 = (p� p1)⊕ (p� p2).

Similarly for right distributivity.

Now we need to check the case when d1 = d2 such that

min{p1, p2} = (d1, σ1 + σ2, π1 ∪ π2) = p′

(i) Suppose p = (∞, 0, ∅) = 0. Then

0� (p1 ⊕ p2) = 0� p′ = 0 = (0� p1)⊕ (0� p2).

(ii) Suppose p = (0, 1, NIL) = 1. Then

1� (p1 ⊕ p2) = 1� p′ = p′ = p1 ⊕ p2 = (1� p1)⊕ (1� p2).

(iii) Suppose p1 = p2 = (∞, 0, ∅) = 0. Then

p� (0⊕ 0) = p� 0 = (p� 0)⊕ (p� 0).

(iv) Suppose p1 = p2 = (0, 1, NIL) = 1. Then

p� (1⊕ 1) = p� (0, 2, NIL) = (d, 2σ, π) = p⊕ p = (p� 1)⊕ (p� 1).

(v) Suppose p, p1, p2 ∈ R+
0 × N× P(V ). Then

p� (p1 ⊕ p2) = p� p′ = (d+ d1, σ · (σ1 + σ2), π1 ∪ π2)

= (d+ d1, σ · σ1, π1)⊕ (d+ d2, σ · σ2, π2)

= [(d, σ, π)� (d1, σ1, π1)]⊕ [(d, σ, π)� (d2, σ2, π2)]

= (p� p1)⊕ (p� p2).

Similarly for right distributivity.

�

The semiring S = R+×N×P(V )∪{(∞, 0, ∅), (0, 1, NIL)} is complete and closed with a closure

(d, σ, π)∗ =

{
(0,∞, π) if d = 0, σ 6= 0

(0, 1, NIL) otherwise
(13)

We can verify this as follows.

(d, σ, π)∗ = (0, 1, NIL)⊕ (d, σ, π)� (d, σ, π)∗

= (0, 1, NIL)⊕ (d+ d∗, σ · σ∗, π)

= (0, 1, NIL)⊕

{
(0,∞, π) if d+ d∗ = 0, σ 6= 0

(d+ d∗, σ · σ∗, π) if d+ d∗ > 0

=

{
(0,∞, π) if d = 0, σ 6= 0

(0, 1, NIL) otherwise
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We eliminated the case, (d+ d∗ = 0, σ = 0) since the only element with σ = 0 is the non existing
path, (∞, 0, ∅).

Now we present algebraic versions of shortest path algorithms including Dijkstra, Bellman-Ford
in the 3-tuple geodetic semiring. Let us denote this semiring as GS3 in short. Let G = (V,E) be
a weighted, directed graph with edge weights w : E → R. We define an n× n adjacency matrix A
of a graph as

A(u, v) =

{
(∞, 0, ∅) if (u, v) 6∈ E
(w(u, v), 1, {u}) if u 6= v, (u, v) ∈ E.

(14)

So that, elements of the adjacency matrix are from 3-tuple geodetic semiring. If the graph have
self-loops, the self-loops are eliminated in the process of constructing the adjacency matrix.

Algorithm 1 Algebraic Dijkstra

Input: A (n × n adjacency matrix),
s (source node)

Output: d (Shortest path distance)
1: Q← zero vector, Q[s] =∞
2: d = A[s, :]
3: while Q 6=∞ do
4: u = argmin{dd +Q}, Q[u] =∞
5: d′ = d[u].+A[u, :]
6: d = d.min d′

7: end while
8: d[s] = (0, 1, NIL)
9: return d

Algorithm 2 Algebraic Bellman-Ford

Input: A (n × n adjacency matrix),
s (source node)

Output: d (Shortest path distance)
1: d = A[s, :]
2: dk = A[s, :]
3: for k = 1 to n− 1 do
4: dk = dk min .+A
5: d = d.min dk
6: end for
7: d[s] = (0, 1, NIL)
8: return d
9: // blank line for spacing

In Algorithm 1, the inputs are an n × n adjacency matrix A in 3-tuple geodetic semiring as
defined in 14 and a source node s. Q is a n-dimensional vector used to indicate which vertices
have been traversed so far. For example, if a vertex v is traversed, then Q[v] = ∞. Otherwise,
Q[v] = 0. In Line 1, Q is initialized with 0 and Q[s] = ∞ which indicates that the source node
is already traversed. In Line 2, d is the shortest path distance vector and we initialize it with sth

row of A since A[s, :] contains shortest path distances from s to all other vertices after the level 1
traversal. The while loop between Line 3 - 7 iterates until all the vertices are traversed. In Line 4,
dd means the first (distance) component of 3-tuple shortest path distance vector and u is the next
node closest to s in the shortest path tree where + operation is the usual plus operation. In Line 4,
we also indicate that u is traversed. In Line 5, we get the new distance vector d′ when we explore
the resulting paths to the next level through the vertex u. In Line 6, we take element-wise min
between d′ and d and assign its result as the shortest path distance vector. + and min operations
in Line 5 and 6 are 3-tuple geodetic semiring operations. At the end of the while loop, d contains
the shortest path distance vector in the 3-tuple geodetic semiring, but d[s] will be incorrect. So
we need to assign d[s] = (0, 1, NIL) in Line 8.

In Algortihm 2, the inputs are the same as the inputs to the Algebraic Dijkstra’s algorithm 1.
But as compared to Algebraic Dijkstra’s algorithm 1, Algebraic Bellman-Ford algorithm 2 is much
concise and straight-forward. In Line 1, the shortest path distance vector, d is initialized as sth

row of A since A[s, :] contains shortest path distances from s to all other vertices after the level
1 traversal. In Line 2, we declared another temporary vector, dk which is used to keep track of
the paths with k-hops in the kth level. In the for loop between Line 3 - 6, Line 4 further explores
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k-hop paths and Line 5 takes the element-wise minimum between the shortest path distance vector
d and k-hop path distance vector dk. As a result, after n − 1 iterations d contains the shortest
path distances where n− 1 iteration is enough because any shortest path in a graph has maximum
n− 1 length (hops).

3 Algebraic Algorithms for Betweenness Centrality

Algorithm 3 Brandes’s Algorithm in unweighted graphs [8]

1: CB [v] = 0, v ∈ V
2: for s ∈ V do
3: S ← empty stack
4: P [w]← empty list, w ∈ V
5: σ[t] = 0, t ∈ V ; σ[s] = 1
6: d[t] = −1, t ∈ V ; d[s] = 0
7: Q← empty queue
8: enqueue s→ Q
9: while Q not empty do

10: dequeue u← Q
11: push u→ S
12: for each neighbor w of u do
13: if d[w] < 0 then
14: enqueue w → Q
15: d[w] = d[u] + 1
16: end if
17: // shortest path to w via u
18: if d[w] = d[u] + 1 then
19: σ[w] = σ[w] + σ[u]

20: append u→ P [w]
21: end if
22: end for
23: end while
24: δ[v] = 0, v ∈ V
25: // S returns vertices in order of non-

increasing distance from s
26: while S not empty do
27: pop w ← S
28: for v ∈ P [w] do

29: δ[v] = δ[v] +
σ[v]

σ[w]
(1 + δ[w])

30: end for
31: if w 6= s then
32: CB [w] = CB [w] + δ[w]
33: end if
34: end while
35: end for

In Section 1, we briefly discussed different methods to compute betweenness centrality and there
are mainly two ways. One is the traditional method to compute betweenness centrality based
on APSP and the another is Brandes’ algorithm based on SSSP. Since computing betweenness
centrality based on APSP is very straight forward, the discussion in Section 1 is sufficient. Brandes’
algorithm is more interesting because it enables computational efficiency. We will include Brandes’
algorithm below to refer to when explaining its algebraic version.

Let G = (V,E) be a weighted, directed graph with edge weights w : E → R and let A be
the adjacency matrix of G in 3-tuple geodetic semiring defined the same as Equation 14. We
want to write algebraic betweenness centrality algorithms based on some of the shortest path
algorithms in 3-tuple geodetic semiring presented in Section 2. We are going to present two
algebraic betweenness centrality algorithms named Algebraic BC - Dijkstra-Brandes (ABC-DB)
and Algebraic BC - Bellman-Ford (ABC-BF). To compute betweenness centrality using Brandes
algorithm, we need to choose a SSSP algorithm. Even though other semirings such as the tropical
semiring for shortest paths can be used with Bellman-Ford algorithm to compute the shortest
path distances, they don’t count the number of shortest paths that we need in order to update
BC scores. But shortest path algorithms (Dijkstra’s 1 or Bellman-Ford 2) in 3-tuple geodetic
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semiring can count shortest path distances, number of shortest paths and penultimate vertices.
Since Dijksra’s algorithm can give the order of traversal, we used Dijkstra’s algorithm in Brandes’s
algorithm with 3-tuple geodetic semiring as follows.

3.1 Algebraic BC - Dijkstra-Brandes (ABC-DB)

Algorithm 4 ABC-DB GS3

Input: A (n× n adjacency matrix)
Output: CB (Betweenness Centrality)
1: CB [v] = 0, v ∈ V
2: for s ∈ V do
3: Q← zero vector
4: S ← zero vector
5: Q[s] =∞
6: d = A[s, :]
7: i = 1
8: while Q 6=∞ do
9: u = argmin{dd +Q}

10: S[i] = u
11: i = i+ 1
12: Q[u] =∞
13: d′ = d[u].+A[u, :]
14: d = d.min d′

15: end while
16: d[s] = (0, 1, NIL)
17: δ[v] = 0, v ∈ V
18: for i = n− 1 to 1 do
19: w = S[i]

20: α =
1

dσ[w]
(1 + δ[w])

21: δ = δ + αdπ[w]. ∗ dσ
22: CB [w] = CB [w] + δ[w]
23: end for
24: end for
25: // blank line for spacing

Algorithm 5 ABC-DB GS2

Input: A (n× n adjacency matrix)
Output: CB (Betweenness Centrality)
1: CB [v] = 0, v ∈ V
2: for s ∈ V do
3: Q← zero vector
4: S ← zero vector
5: Q[s] =∞
6: d = A[s, :]
7: i = 1
8: while Q 6=∞ do
9: u = argmin{dd +Q}

10: S[i] = u
11: i = i+ 1
12: Q[u] =∞
13: d′ = d[u].+A[u, :]
14: d = d.min d′

15: end while
16: d[s] = (0, 1)
17: δ[v] = 0, v ∈ V
18: π = d argmin .+A
19: for i = n− 1 to 1 do
20: w = S[i]

21: α =
1

dσ[w]
(1 + δ[w])

22: δ = δ + απ[w]. ∗ dσ
23: CB [w] = CB [w] + δ[w]
24: end for
25: end for

In Algorithm 4, Algebraic BC - Dijkstra-Brandes with GS3, in Line 1, we first initialize be-
tweenness centrality for all vertices with 0. Then in the for loop between Line 2 and 23, we iterate
over each vertices. Firstly, we find the shortest path tree rooted at the corresponding vertex s
using Dijkstra’s algorithm 1 where S is an array with length n− 1 for saving vertices in the order
of traversal and i is a counter variable to indicate the order of traversal. Secondly, we updated
betweenness centrality score using the shortest path tree rooted at s. Line 17, initializes the de-
pendency of s ∈ V on every other vertex as 0. Dependency of a vertex is defined in Definition 1.5.
In the for loop at Line 18, we iterate S in reverse direction, from back to front. As a result, we will
update betweenness centrality scores starting from the bottom of the shortest path tree rooted at
s. In Line 20 and 21, the dependency of s on the parents of a vertex w on shortest paths from
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s is accumulated using Theorem 1. Line 21 updates betweenness centrality of w by adding the
dependency of s on w to betweenness centrality of w. These two parts are repeated for each all
different source vertex s and the dependency of s for any v ∈ V is accumulated for each iteration of
loop between Line 2 and 24 and corresponding updates for betweenness centrality are done. At the
end of algorithm, all betweenness centrality scores are correctly calculated. It is clear to compare
this algorithm with Brandes’ algorithm 3. So we exclude the first part for computing SSSP in both
algorithms and explain the second part for accumulating betweenness centrality scores. The while
loop between Line 26-34 in Brandes’ algorithm and the for loop between Line 18-23 in ABC-DB
are both for traversing the vertices in non-increasing order of their distance from s [8]. Line 19
of this algorithm corresponds to Line 27 in Brandes’ algorithm. Line 20-21 corresponds to Line
28-30 in Brandes algorithm. In Line 20, α is a constant number for the dependency of s ∈ V on
any v ∈ V in Theorem 1 and dσ[w] is the σ component of the shortest path distance vector from
s to w (wth entry of shortest path distance vector d). Line 21 accumulates dependency of s where
dπ[w] is a set of penultimate vertices, but we vectorized it into a n-dimensional vector whose entry
is 1 for the penultimate vertices(parents) of a vertex w on shortest paths from s to w and 0 for all
other vertices. dσ is a n-dimensional vector containing the σ component of d. Then dπ[w] and dσ
are multiplied element-wise. So that, for each parents of w on shortest paths, dependency of s is
accumulated without for loop in Brandes’ algorithm. Then the result is multiplied by α constant
and added to δ. With these operations, dependency of s is accumulated as described in Theorem 1.
Lastly, Line 22 corresponds with Line 31-33 of Brandes’ algorithm. w in Line 19 is never going to
be the same as s. Hence we don’t need to check the condition in Line 31 in Brandes’ algorithm.

Alternatively, we can use the usual geodetic semiring with 2-tuples [6] for writing Algebraic
BC - Dijkstra-Brandes algorithm. Let us denote it as ABC-DB GS2. We can find the penultimate
vertices set, π, the third component of 3-tuple geodetic semiring based on shortest path distances
resulted by Dijkstra’s algorithm using the usual geodetic semiring. Finding π is the same as
computing the shortest path tree since shortest paths are usually represented by parent information
in the shortest path tree. Algebraic BC algorithms works with graphs without self-loops or 0-
weight cycles. In this case, computing the shortest path tree is simple. Let d be the shortest
path distance vector from source node s and u, v ∈ V such that u 6= v. By Bellman criterion,
Lemma 1, if d(u) + w(u, v) = d(v), then u ∈ π, that is, u is the penultimate vertex on a shortest
path from s to v. Similarly, we can find all penultimate vertices for v. For all u ∈ V , π(v) =
argminu6=v{d(u) + w(u, v)}. This can be expressed algebraicly as

π = d argmin .+A (15)

which means, add d elementwise to every column of A and take argmin for each column [17].
ABC-DB GS2 is given in Algorithm 5.

3.2 Algebraic BC - Bellman-Ford (ABC-BF)

We want to write algebraic betweenness centrality algorithm based on algebraic Bellman-Ford
shortest path algorithm (Algorithm 2) in geodetic semiring. Then we need to back propagate
centrality scores. But it is not possible to know the order of node traversal when using algebraic
Bellman-Ford. Hence, we need to back propagate betweenness centrality scores differently than
the method used in Brandes’s algorithm. Methods such as keeping track of the levels of shortest
path tree, similar to the betweenness centrality matrix formulation in [17] don’t work on weighted
graphs. We used the method from [23] that is based on partial centrality factors from [22].
Basically we are reproducing their work, but our algorithm details differ from theirs in terms of
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algorithm details. For example, we used the usual geodetic semiring for Bellman-Ford instead of
a monoid, employed mask to distinguish current frontiers. Partial centrality factors is defined as
follows.

ps•(v) =
δs•(v)

σsv
=

∑
w:v∈Ps(w)

1

σsw
+ ps•(w) (16)

Then, we can rewrite betweenness centrality in terms of parial centrality factors as below.

BC(v) =
∑
s 6=v

ps•(v) · σsv (17)

Equation 16 is a restructure of the recursive relation of dependency of the source node, s. When
back propagating betweenness centrality, we need to make sure that only finalized partial centrality
factors can be back propagated and repeat the process till partial centrality factors are finalized
for all vertices. Once partial centrality factors of the source node, s is computed, we accumulate
betweenness centrality as in Equation 17. This process doesn’t use the parent information from 3-
tuple geodetic semiring. So we write the algorithm using usual geodetic semiring with 2-tuples [6].
Let (d, p, c) be a 3-tuple representing shortest path distance, partial centrality factor and number
of children on the shortest path tree. [23] defined addition and multiplication operations on such
3-tuples and used it for back propagating centrality scores.

(d1, p1, c1)⊕ (d2, p2, c2) =


(d1, p1, c1) if d1 > d2

(d2, p2, c2) if d2 > d1

(d2, p1 + p2, c1 + c2) otherwise

(18)

(d1, p1, c1)⊗ (d2, p2, c2) = (d2 − d1, p2, c2) (19)

where ⊗ is not associative. Hence, it is not a semiring.

4 Algebraic Algorithm for Percolation Centrality

[20] proposed a new centrality measure called percolation centrality which is more useful in network
percolation scenarios such as disease transmission in a network of cities, spreading of infection or
a virus over a social network of individuals. Percolation centrality is defined based on shortest
paths counts, similar to betweenness centrality, but it accounts for the changing percolation states
of vertices. Hence, our ABC-DB algorithm 4 can be easily extended to compute percolation
centrality. Time slices of a static network with a varying node property, called percolation state
is used in percolation centrality and as defined in [20], xti is the precolation state of a node i
at time t where xti ∈ [0, 1] and its value indicates different percolation states. If xti = 0, it is a
non-percolation state at time t. If xti = 1, it is a fully percolated state at time t. If 0 < xti < 1,
it is a partially percolated state. Then based on percolation status of nodes, a concept called a
percolated path is introduced. A path starting from a percolated node and ending at a percolated or
non-percolated, or partially percolated node is called a percolated path. The percolation centrality
of a node v at a given time t is defined as the proportion of percolated paths passing through that
vertex and it is formally defined as

CtP (v) =
1

n− 2

∑
s 6=v 6=r

σsr(v)

σsr

xts
[
∑
xti]− xtv

(20)
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Algorithm 6 Algebraic BC - Bellman-Ford (ABC-BF)

Input: A (n× n adjacency matrix)
Output: CB (Betweenness Centrality)
1: CB [v] = 0, v ∈ V
2: for s ∈ V do
3: d = A[s, :], dk = A[s, :]
4: for k = 1 to n− 1 do
5: dk = dk min .+A
6: d = d.min dk
7: end for
8: d[s] = (0, 1, NIL)
9: A[i, j] = (w(i, j), 0, 0) eij ∈ E

10: A[i, j] = (∞, 0, 0) eij 6∈ E
11: A[i, i] = (0, 0, 0)
12: Z ′[v] = (d[v], 0,−1) v ∈ V
13: Z[v] = (d[v], 0, 1) v ∈ V
14: Z = Z ⊕ (A · Z ′)
15: flag = false, mask[v] = 1 ∀v ∈ V
16: ∀v ∈ V :
17: if Z[v].c = 0 then
18: Z ′[v] = (dd[v], 1

dσ[v]
,−1)

19: mask[v] = 0, flag = true
20: else
21: Z ′[v] = (−∞, 0, 0)
22: end if

23: while flag is true do
24: Z ′ = A · Z ′
25: ∀v ∈ V
26: if Z[v].c = 0 then
27: Z[v].c = −1
28: else
29: if Z[v].c < 0 then
30: Z[v].c = −Z[v].c
31: end if
32: end if
33: Z[mask] = Z[mask]⊕ Z ′[mask]
34: flag = false
35: ∀v ∈ V :
36: if Z[v].c = 0 then
37: Z ′[v] = (dd[v], Z[v].p+ 1

dσ[v]
,−1)

38: mask[v] = 0
39: flag = true
40: else
41: Z ′[v] = (−∞, 0, 0)
42: end if
43: end while
44: CB = CB + Zp . ∗ dσ
45: end for

where σsr is the number of shortest paths between s, r ∈ V , σsr(v) is the number of shortest paths
between s, r ∈ V that go through v and the fraction

ctsv =
xts

[
∑
xti]− xtv

(21)

is called the relative contribution of a percolated path starting from s to the percolation centrality
(it is denoted as wtsv in [20]). The sum [

∑
xti] is the total percolation in the network and the

percolation state of v at time t, is subtracted from the sum for normalization purpose.
Now we want to modify dependency of a vertex, Definition 1.5 and define percolation depen-

dency of a vertex.

Definition 4.1 (percolation dependency) The percolation dependency of a vertex s ∈ V on a
single vertex v ∈ V at time t is

δts•(v) =
∑
r∈V

σsr(v)

σsr

xts
[
∑
xti]− xtv

= ctsv
∑
r∈V

σsr(v)

σsr
= ctsv · δs•(v) (22)

because ctsv =
xts

[
∑
xti]− xtv

is independent of r. i.e the portion of percolated shortest paths starting
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from s and going through v such that

CtP (v) =
1

n− 2

∑
s 6=v

δts•(v) =
1

n− 2

∑
s 6=v

ctsv · δs•(v) (23)

Then by Theorem 1

δts•(v) = ctsv
∑

w:v∈Ps(w)

σsv
σsw
· (1 + δs•(w)) (24)

where Ps(w) is the set of parents of a vertex w on shortest paths from s to w. Hence, the percolation
dependency of a vertex also follows a recursive relation and we can compute percolation centrality
at a given time using Brandes’ algorithm.

Algebraic Percolation Centrality (APC) algorithm is presented below and the blue lines are the
extension parts that differs from or added to ABC-DB, Algorithm 4.

Algorithm 7 Algebraic Percolation Cenrality (APC)

Input: A (n× n adjacency matrix);
x1, x2, . . . , xλ (Percolation states of nodes at
each time step)

Output: CP (Percolation Centrality, an n × λ
matrix)

1: CP = 0
2: for s ∈ V do
3: for t = 1 to λ do
4: cts = (xt[s] ∗ 1).÷ (sum(xt) ∗ 1− xt)
5: Q← zero vector
6: S ← empty vector
7: Q[s] =∞
8: d = A[s, :]
9: i = 1

10: while Q 6=∞ do
11: u = argmin{dd +Q}
12: S[i] = u

13: i = i+ 1
14: Q[u] =∞
15: d′ = d[u].+A[u, :]
16: d = d.min d′

17: end while
18: d[s] = (0, 1, NIL)
19: δ[v] = 0, v ∈ V
20: for i = n− 1 to 1 do
21: w = S[i]

22: α =
1

dσ[w]
(1 + δ[w])

23: δ = δ + αdπ[w]. ∗ dσ
24: CtP [w] = CtP [w] + cts[w] ∗ δ[w]
25: end for
26: end for
27: end for

28: CP =
1

n− 2
CP

In Algorithm 7, we compute percolation centrality of each node at each time slice. Since the
network is static but percolation states vary over time, a single adjacency matrix A and percolation
states if each nodes at different time steps (can be inputed as a n × λ matrix) are given where
λ is the number of time slices. In Line 1, CP is a n × λ matrix for storing percolation states
and its jth column corresponds to percolation centralities of all n nodes at time jth time. For
each source vertex s and for each time step, we compute the shortest path tree rooted at s at
time t and we start from leaf nodes of the tree and back track vertices in the reverse order of
traversal. During this process, we accumulate percolation dependency of s (modified with the
relative contribution) on all relevant nodes and update the corresponding percolation centrality of
the current node at the corresponding time. Most part of the algorithm is the same as ABC-DB 4,
we focus on explaining the extension parts in blue. Line 4 computes the relative contribution of
a percolated path starting at s as described in Equation 21 where xt is the percolation states of
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nodes at time t and cts is a n-dimensional vector whose vth entry is ctsv, the relative contribution
of a percolated path starting at s and going through v, to the percolation centrality of v at time
t. Line 24 accumulates percolation centrality according to Equation 23.

5 Implementation

The algebraic algorithms introduced in this paper all have time complexity bounded by that of
matrix products. In many cases there exist algorithms that perform better on serial computers that
are not expressed algebraically. These algorithms often exploit the sparsity of the graph adjacency
matrix and avoid the cubic complexity of direct operations expressed in terms of products of the
dense adjacency matrix. On the other hand, these serial algorithms often are difficult to parallelize
due to data structures or algorithmic choices that induce operational dependencies that reduce
opportunities for concurrent execution. The use of priority queues are a common example of
this. Algebraic graph algorithms are based on matrix-matrix or matrix-vector multiply and can
leverage known methods for implementing these algebraic primitives in parallel (and potentially
using sparse data structures where appropriate). In this paper we implemented the algorithms that
we define to study their correctness, performance, and scalability on small-scale shared memory
parallel systems.

The starting point of the implementation is the fundamental algebraic structure, the 3-tuple
semiring. Early experiments in implementation used the relatively new Julia language [7] because
it allows us to define a user-defined type for the semiring and overload the usual +, ∗ operations
to use our custom semiring operations ⊕,⊗ respectively. This has the appealing property that the
implementation of the algorithms will be concise and will closely resemble the pseudo-code used to
define the algorithm in the paper. Unfortunately, we encountered a number of issues in achieving
high performance in Julia that often required the addition of explict types, manually specialized
functions, and other change that ultimately lowered the abstraction level of the code. We found
that implementing the algorithms in Python with Numpy for arrays and Numba for just-in-time
compilation to parallel code was preferable.

One example of an efficiency issue that we encountered was mapping the 3-tuple geodetic
semiring to a specific data structure. In particular the third component, π of 3-tuple geodetic
semiring is a set structure which requires set union operation. We need to have highly optimized,
set-like operation to get good performance. The overhead of a tree-based set data structure proved
to be a major performance bottleneck. We implemented Algebraic BC - Dijkstra-Brandes (ABC-
DB GS3), Algorithm 4 using dense arrays. For example, adjacency matrix of a graph in the 3-tuple
geodetic semiring is split into three separate dense arrays where Ad is the usual adjacency matrix
of edge weights, Aσ is a boolean matrix representing the number of shortest paths between edges,
Aπ is also a boolean matrix such that nonzero entries of i-th row vector represents the penultimate
vertices. This representation trades space for efficiency in performing the set operations for the π
component.

For a shortest path distance vertor d in 3-tuple geodetic semiring, it is represented by 2 separate
vectors and a boolean matrix where d is the shortest distance vector from s to other vertices, σ is a
vector of the number of shortest paths from s to other vertices and π is a boolean matrix in which
nonzero entries of i-th row vector represents the penultimate vertices of the shortest paths from
s to the vertex i. We defined functions corresponding to operations in 3-tuple geodetic semiring
such as elementwise min (⊕ = min) and elementwise add (� = +rhs) required in ABC-DB.

Similarly, we also implemented ABC-DB GS2, Algorithm 5 using dense arrays. It differs from
ABC-DB GS3 by working with 2-tuple geodetic semiring and finding penultimate vertices after
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finding shortest path distances in geodetic semiring.

6 Experiment

We choose Algebraic BC - Dijkstra-Brandes algorithm for our experiment since it is relatively
simpler than Algebraic BC - Bellman-Ford that we don’t need to do extra computation for find-
ing the frontiers when back propagating centraliy scores. Particularly, we choose ABC-DB GS2,
Algorithm 5 for our experiment. This eliminates the need to implement set operations required
by GS3, thus simplifying the storage and time requirements of the algorithm. Our experiments
showed that the GS3-based algorithms performed very poorly compared to those using GS2, and
profiling results pointed at the set data structures and corresponding operations as a cause.

Table 1: ABC-DB performance in seconds.

ABC-DB
n

100 200 300 400 500

GS 3 0.094 0.867 3.551 9.986 24.713
GS 2 0.042 0.271 0.819 1.843 3.461

We implemented ABC-DB in Python and optimized it with Numba, an open source JIT com-
piler that translates a subset of Python and NumPy code into fast code via the LLVM compiler [18].
Numba can produce optimized serial code, multicore parallel code, as well as kernels for execution
on GPU accelerators. We run serially ABC-DB with Numba’s nopython option and we also par-
allelized it with Numba’s parallel option with 20 cores. We used the Washington State University
Kamiak HPC cluster provided by Center for Institutional Research Computing (CIRC) [3]. We
experimented on a single node which has 256 GB memory and two 10-core Intel Xeon CPUs (In-
tel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz) running the CentOS Linux 7 operating system. We
compare the performace of ABC-DB GS2 with NetworkX [16], a commonly used python package
for network algorithms. We used Erdös-Rényi graph randomly generated by NetworkX with 0.5
probablity of edge creation. Both serial and parallel ABC-DB GS2 is faster than NetworkX for
Erdös-Rényi graphs refer to Figure 1. However, when we experiment with GRENOBLE set of
sparse unsymmetric graphs from SuiteSparse Matrix Collection [11], serial ABC-DB GS2 is slower
than NetworkX and NetworkX performs almost as good as parallel ABC-DB GS2 shown in Fig-
ure 2. ABC-DB GS2 scales well in Figure 3 and its scability is stable as graph size increases in
Figure 4. The performance of NetworkX versus our Numba accelerated algorithms shows what we
expect:

• For very sparse graphs, the Python code with better asymptotic complexity outperforms the
linear algebraic algorithms even when they are compiled. This is due to the use of dense
matrices in the NumPy/Numba implementation.

• For less sparse graphs, the optimized linear algebra based methods scale better as the graph
size grows. This likely is due to the overhead of the interpreted Python code in NetworkX
and less wasted work in the dense matrix methods used by our code.

• The benefits of parallel execution of the algebraic methods is a function of the graph size. For
small graphs the benefit of parallelism is exhausted with small core counts, but as the graphs
grow we see speedups that benefit from ever larger core counts. As showin in Figure 4, for
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small graphs the scaling stops at 4 cores, but continues up to and beyond the maximum core
count of our testbed for larger graph sizes.
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Figure 1: ABC-DB GS2 vs NetworkX for
Erdös-Rényi graphs.
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Figure 2: ABC-DB GS2 vs NetworkX for
GRENOBLE set of sparse graphs.
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Figure 3: Speedup of parallelized ABC-DB
GS2 for a Erdös-Rényi graph, 500 vertices.
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Figure 4: Speedup of parallelized ABC-DB
GS2 for Erdös-Rényi graphs.

These basic experiments show that our methods implementing algebraic BC show the same
benefits as other graph algorithms expressed via linear algebra: they map easily onto parallel
architectures using known parallelization methods, and thus can exploit parallel architectures for
processing large graphs that are beyond the capability of single processor systems. We expect
that implementing them using existing parallel sparse linear algebra libraries will allow our BC
algorithms to scale further for large sparse graphs.

7 Conclusion

We presented a 3-tuple geodetic semiring (GS3) and used it to write algebraic betweenness algo-
rithms (ABC). Among different variants, we find ABC based on Dijkstra’s and Brandes’ algorithm
(ABC-DB) is better choice than the other options such as ABC based on Bellman-Ford and back
tracking frontiers. We revealed the problem of implementing ABC based on GS3 due to the set
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nature of parent information in GS3. Hence, we proposed an alternative version of ABC-DB algo-
rithm using GS2. We implemented it using dense arrays to use numba’s nopython option and auto
parallelization. Our experiment result shows that ABC-GS2 is suitable for medium size denser
graphs and it scales well as we increase the number of cores. The future work is to implement
ABC based on sparse matrices. Furthermore, designing a specific data structure to efficiently
handle complex structures such as GS3 is an open problem. Since we can use GS2 and compute
parent information at the end in ABC-DB, GS3 may not be the first choice for implementing ABC,
but there could be different graph algorithms which utilizes GS3 better using parent information
carried by GS3 in every iterations or one could propose a new graph algorithm based on GS3.
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and Heterogeneous Architectures. In Proceedings of the 6th Workshop on General Purpose
Processor Using Graphics Processing Units, GPGPU-6, page 76–85, New York, NY, USA,
2013. Association for Computing Machinery. doi:10.1145/2458523.2458531.

[23] E. Solomonik, M. Besta, F. Vella, and T. Hoefler. Scaling Betweenness Centrality Using
Communication-Efficient Sparse Matrix Multiplication. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, SC ’17,
New York, NY, USA, 2017. Association for Computing Machinery. doi:10.1145/3126908.

3126971.

[24] E. Solomonik and T. Hoefler. Sparse Tensor Algebra as a Parallel Programming Model. CoRR,
abs/1512.00066, 2015. arXiv:1512.00066.

[25] G. Tan, V. Sreedhar, and G. Gao. Analysis and performance results of computing betweenness
centrality on IBM Cyclops64. The Journal of Supercomputing, 56:1–24, 04 2011. doi:10.

1007/s11227-009-0339-9.

[26] G. Tan, D. Tu, and N. Sun. A Parallel Algorithm for Computing Betweenness Centrality. In
2009 International Conference on Parallel Processing, pages 340–347, 2009. doi:10.1109/

ICPP.2009.53.

https://doi.org/10.1007/978-0-387-75450-5
https://doi.org/10.1016/j.procs.2013.05.203
https://doi.org/10.1137/1.9780898719918
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1109/IPDPS.2009.5161100
https://doi.org/10.1371/journal.pone.0053095
https://doi.org/10.1145/2458523.2458531
https://doi.org/10.1145/3126908.3126971
https://doi.org/10.1145/3126908.3126971
http://arxiv.org/abs/1512.00066
https://doi.org/10.1007/s11227-009-0339-9
https://doi.org/10.1007/s11227-009-0339-9
https://doi.org/10.1109/ICPP.2009.53
https://doi.org/10.1109/ICPP.2009.53

	Introduction
	Contribution
	Graph notation and background
	Betweenness Centrality
	Semiring
	Related works

	3-tuple Geodetic Semiring
	Algebraic Algorithms for Betweenness Centrality
	Algebraic BC - Dijkstra-Brandes (ABC-DB)
	Algebraic BC - Bellman-Ford (ABC-BF)

	Algebraic Algorithm for Percolation Centrality
	Implementation
	Experiment
	Conclusion

