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Abstract. The wirelength is one of the key parameters of the quality of embedding
graphs into host graphs. To our knowledge, no results for computing the wirelength
of embedding irregular graphs into irregular graphs are known in the literature. We
develop an algorithm that determines the wirelength of embedding of the Turán graph
T (ℓ, 2p), where 2n−1 ≤ ℓ < 2n and 1 ≤ p ≤ ⌈log2 ℓ⌉ ≤ n, into the incomplete hypercube
Iℓn. Incomplete hypercubes form an important generalization of hypercubes because
they eliminate the restriction on the number of nodes in a system.

1 Introduction

To establish parallel systems, various interconnected schemes have been proposed. It is much
desirable that such a scheme admits construction in any size and offers incremental flexibility to
maximum level. One of the most popular interconnected schemes is the binary hypercube and many
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machines based on this topology are available. The hypercube topology, however, interconnects
precisely 2n nodes for some positive integer n, thus severely limiting permissible system sizes.

In order to eliminate the restriction on the size of the network, that is, to be able to construct
machines of arbitrary sizes, incomplete hypercubes were proposed [19]. The intrinsic structure of
the incomplete hypercubes involves a copy of a large hypercube as well as hierarchically smaller
hypercubes, and is thus eligible to simultaneously execute multiple jobs of different sizes [35, 37].
Katseff developed algorithms for routing and broadcasting messages in incomplete hypercubes [19],
while some structural properties of incomplete hypercubes have been studied in [37].

A connected graph can be used to frame the topological structure of an interconnection network,
but there are various incompatible conditions such as small diameter, symmetry properties, high
connectivity, high recursive constructability, strong scalability, maximum fault tolerance, efficient
routing, and broadcasting, that need to be considered when designing it. It is not possible to
design an optimum network to fulfill all the above criteria. A key problem in the design and
assessment of an interconnection network is the study of existing networks to be embedded into
this network and vice versa [28]. The embedding of the interconnection networks is intended to
analyze the interrelationship between the graphs in order to determine whether a particular guest
graph is included in or interrelated with the host graph. Mapping a logical graph into a host graph
via graph embeddings is a major technique. If a guest graph can be efficiently embedded into the
host graph with less cost, then the method developed in the interconnection network with a guest
graph can be used in the interconnection network with the host graph at less cost. This technique
in particular allows numerous applications [9, 21, 22, 25, 31, 39], let us emphasize architecture
simulations as well as processor allocations.

There are certain cost criteria to measure the quality of an embedding. Among the most
important criteria are the congestion and the wirelength [28]. The former one is defined as the
cardinality of a largest set of edges from the guest graph that are mapped on paths that contain
a specific edge of the host graph. The key point here is that when we are faced with a large
congestion, a variety of problems may occur. These include, among other issues, circuit switching,
long communication delay, as well as the existence of uncontrolled noise. In data networking,
typical effects include packet loss or blocking of new connections. Therefore, a minimum congestion
is utmost desirable in network embeddings [29]. The other measure, that is, the wirelength, is the
sum of the congestions over the edges of the host graph. Sources for its interest include VLSI design,
data structures, and more [29]. Recently, graph embeddings have been thoroughly investigated for
a variety of networks, such as locally twisted cubes into paths [1], hypercubes into grids [10], 3-ary
n-cubes into grids [11], rooted hypertrees into hypercubes and vice-versa [30], locally twisted cubes
into 2-dimensional grids [33], circulant networks into rooted binary trees, m-rooted sibling trees,
r-dimensional hypertrees [32], enchanced hypercubes into windmills and necklace graphs [23], in
particular, binary trees into incomplete hypercubes [36], incomplete binary trees and meshes into
incomplete hypercubes [13], incomplete binary trees into incomplete hypercubes [17], and cycles
into incomplete hypercubes [18]. For additional aspects of network embeddings see [15].

For example, the edge congestion and the wirelength of the embedding f : G → H, where G
is the Cartesian product C3 × C3 and H is the path P9 (refer to Fig. 1) are ECf (G,H) = 8 and
WLf (G,H) = 48. The embedding f(x) = x which minimize the congestion, need not to minimize
the wirelength and vice-versa. On the other hand, for any embedding g with g(x) = x, the sum of
the edge congestions (called the edge congestion sum) and the wirelength are by definition equal,
that is, ∑

e=xy∈E(H)

ECg(e) = WLg(G,H) .
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Figure 1: An embedding f from torus G into a path H with ECf (G,H) = 8 and WLf (G,H) = 48

Fully connected networks correspond to complete graphs. These graphs naturally generalize
to complete p-partite graphs, in which the node/vertex set can be partitioned into p independent
sets and all possible edges between vertices from different independent sets exist [12]. Embedding
parameters were analyzed for complete multipartite graph in [2, 29, 31, 34]. If the parts are of
cardinality ni, i ∈ [p], then the complete multipartite graph is denoted by Kn1,...,np

. Among these
graphs, Turán graphs play a prominent role. If n and p are positive integers, then the Turán graph
T (n, p) is the chromatically unique p-multipartite graph of order n such that the cardinalities of its
parts are as equal as possible (that is, every two cardinalities are either equal or differ by exactly
one). The original source for Turán graphs lies in extremal graph theory, but they are important
also in a variety of different contexts, cf. [7, 27].

The distance d(u, v) = dG(u, v) between vertices u and v of a graph G = (V (G), E(G)) is the
length of a shortest u, v-path. The interval I(u, v) between u and v consists of all vertices on
shortest u, v-paths, that is, of all vertices (metrically) between u and v:

IG(u, v) = {x ∈ V (G) : d(u, x) + d(x, v) = d(u, v)} .

An induced subgraph H of G is called convex if IG(x, y) lies completely in H for every x, y ∈
V (H) [3].

If n ≥ 1, then the n-dimensional hypercube Qn (n-cube for short) has the vertex set {0, 1}n,
vertices being adjacent if they differ in exactly one position/bit. We can also identify the vertices of
Qn with the integers 0, 1, . . . , 2n−1 using the natural mapping that assigns to x1x2 · · ·xn ∈ V (Qn)
the integer

∑n
i=1 xi2

n−i. This representation of V (Qn) is called the lexicographic labeling of V (Qn).
Note that in the lexicographic labeling, integers-vertices i and j are adjacent if and only if |i−j| = 2p

for some integer p ≥ 0 [4, 29].

We still need to define the incomplete hypercubes [6]. If 2n−1 ≤ ℓ < 2n, then the n-dimensional
incomplete hypercube Iℓn has ℓ vertices and is defined recursively as follows. Iℓn comprises two

components, Qn−1 and Iℓ−2n−1

k , where k = ⌈log2(ℓ−2n−1)⌉. The vertices of Qn−1 are lexicograph-

ically labeled from 0 to 2n−1 − 1, and the vertices in Iℓ−2n−1

k from 2n−1 to ℓ− 1, again using the
lexicographic labeling [24]. An edge exists between a vertex u ∈ V (Qn−1) with label i and a vertex

v ∈ V (Iℓ−2n−1

k ) with label j if and only if |i− j| = 2n−1. In Fig. 2 the incomplete hypercube I235
is drawn. The graph I235 comprises Q4 (colored in red), Q2 (colored in blue), and I32 (colored in
green). Note that I11 is isomorphic to Q0 (a single vertex), I22 is isomorphic to Q1, and I32 comprises
of Q1 and Q0.

To our knowledge, no results for computing the exact wirelength of embedding irregular graphs
into irregular graphs are known in the literature. In this paper, we overcome this by taking the
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Figure 2: The incomplete hypercube I235

Turán graph T (ℓ, 2p), where 2n−1 ≤ ℓ < 2n and 1 ≤ p ≤ ⌈log2 ℓ⌉ ≤ n, as a guest graph, and the n-
dimensional incomplete hypercube Iℓn, n ≥ 1 as a host graph. In the next section we formally define
further concepts needed and recall two key lemmas for our algorithm, the so-called Generalized
Congestion Lemma and the Partition Lemma. In Section 3 the algorithm is presented and its
correctness proved.

2 Preliminaries

For n ≥ 1, we denote the set {1, . . . , n} by [n]. If X ⊆ V (G), then the subgraph of G induced by
X will be denoted by G[X].

Let G = (V (G), E(G)) and H = (V (H), E(H)) be graphs. An embedding ϕ = (f, Pf ) of G into
H consists of

1. a one-to-one map f : V (G) → V (H), and

2. a map Pf that assigns to every edge uv of G a path Pf (uv) in H from vertex f(u) to vertex
f(v).

For brevity, we will denote in the rest of the paper the pair (f, Pf ) simply as f . The edge congestion
of a given embedding f of G into H is the maximum number of edges of the graph G that are
embedded on paths containing a single edge of H. Let ECf (eH) denote the number of edges eG of
G such that eH is in the path Pf (eG) in H, that is, ECf (eH) = |{eG ∈ E(G) : eH ∈ E(Pf (eG))}|.
Then the congestion of f is defined as

ECf (G,H) = max
eH∈E(H)

ECf (eH)

and the congestion of embedding G into H is defined as

EC(G,H) = min
f :G→H

ECf (G,H) .
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Further, if f is an embedding of G into H and S ⊆ E(H), then we set ECf (S) =
∑

eH∈S

ECf (eH).

The wirelength of an embedding f of G into H is

WLf (G,H) =
∑

eH∈E(H)

ECf (eH) ,

and the wirelength of embedding G into H is

WL(G,H) = min
f :G→H

WLf (G,H) .

If G is a graph and M ⊆ V (G), then set

IG(M) = {uv ∈ E(G) | u, v ∈ M}.

In other words, IG(M) = |E(G[M ])|, that is IG(M) is the number of edges in the subgraph of G
induced by the vertices of M . Further,

IG(k) = max
M⊆V (G), |M |=k

|IG(M)| .

The maximum subgraph problem (MSP) for k ∈ [n] is to determine M ⊆ V (G) such that
|M | = k and |IG(M)| = IG(k). Such a set is called an optimal set with respect to k [5, 16]. Recall
that the famous Turán’s theorem asserts that among the graphs of order n with no subgraph Kp+1,
the Turán graph T (n, p) has the maximum number of edges. An example is given if Fig. 3, where
H1 is a Turán 5-partite subgraph of G with 47 vertices and H2 is not. For later purposes we state
the following consequence of the Turán’s theorem.

Property 2.1 If G is a complete p-partite graph and T (n, p) is its subgraph, then V (T (n, p)) is
an optimal set with respect to the number of vertices.

The next two lemmas describe efficient techniques to find the exact wirelength using MSP [26,
31].

Lemma 2.2 [26, 31] (Generalized Congestion Lemma) Let f : G → H be an embedding with
|V (G)| = |V (H)|. Let S be an edge cut of H such that E(H) \ S disconnects H into exactly
two connected subgraphs H1 and H2, and set G1 = G[f−1(V (H1))] and G2 = G[f−1(V (H2))].
Furthermore, let S satisfy the following conditions:

(i) For every uv ∈ E(Gi), i ∈ {1, 2}, the path Pf (uv) has no edges in S.

(ii) For every uv ∈ E(G), u ∈ V (G1), v ∈ V (G2), the path Pf (uv) has exactly one edge in S.

(iii) V (G1) and V (G2) are optimal with respect to the number of vertices.

If S exists, then ECf (S) is minimum over all embeddings f : G → H and

ECf (S) =
∑

v∈V (G1)

degG(v)− 2|E(G1)| =
∑

v∈V (G2)

degG(v)− 2|E(G2)| .
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Figure 3: G is a complete 5-partite graph with |V (G)| = 50 and |E(G)| = 1000, H1 is a complete
5-partite subgraph with |V (G)| = 47 and |E(G)| = 883, and H2 is a complete 5-partite subgraph
with |V (G)| = 47 and |E(G)| = 882.

Lemma 2.3 (Partition Lemma) [26, 31] Let f : G → H be an embedding. If {P1, . . . , Pt} is a
partition of E(H), where each part Pi is an edge cut that satisfies the conditions of Lemma 2.2,
then

WLf (G,H) =

t∑
i=1

ECf (Pi).

Moreover, WL(G,H) = WLf (G,H).

For illustration, let G be the complete 4-partite graph K4,4,4,4 on 16 vertices and H be the
mesh M [4× 4] as shown in Fig. 4 (a) and (b). Let F be the identity mapping from G to H, and
let S and T be the edge cuts as shown in Fig. 4 (c) and (d), respectively. The edge cuts S and
T satisfy the first two conditions of the Generalized Congestion Lemma. On the other hand, S
satisfies the third condition of the Generalized Congestion Lemma, whereas T does not. Hence,
finding edge cuts that form an edge partition of the host graph satisfying all the conditions of the
Generalized Congestion Lemma is a challenging problem.

If G is a connected graph, then the relation Θ is a defined on E(G) in the following way. An
edge e = xy is in relation Θ with an edge t = uv, if and only if d(x, u) + d(y, v) ̸= d(x, v) + d(y, u),
where d is the distance function as defined in the introduction. It is straightforward to see that Θ
is both reflexive and symmetric, but it is in general not transitive; a small example for this fact
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Figure 4: (a) Complete 4-partite graph (b) The mesh M [4 × 4] (c) Edge cut T in M [4 × 4] (d)
Edge cut S in M [4× 4].

is provided by the complete bipartite graph K2,3. Hence it is natural to consider the transitive
closure of Θ, denoted by Θ∗. Clearly, if Θ is transitive, then Θ∗ = Θ. The relation Θ∗ is then
an equivalence relation; the partition of E(G) induced by the Θ∗-equivalence classes is called the
Θ∗-partition, see [8, 20, 38].

3 The algorithm

In this section we describe an algorithm that computes the minimum wirelength of embedding
T (ℓ, 2p) into Iℓn, where 2

n−1 ≤ ℓ < 2n and 1 ≤ p ≤ ⌈log2 ℓ⌉ ≤ n. For this sake we first have a closer
look to incomplete hypercubes.

The incomplete hypercube Iℓn contains a set of hypercubes of dimension n−1 and below, where
no two cubes have the same cardinality. For instance, I235 (Fig. 2) comprises Q4 and I73 , which, in
turn, contains Q2 and I32 . If the binary representation of ℓ is 1xn−2 . . . x1x0, then Iℓn contains, in
addition to Qn−1, also Qi, for all i such that xi = 1, 0 ≤ i ≤ n− 2. That is, Qi is a cube of Iℓn iff
the bit xi in the binary representation of ℓ equals 1. Consequently, the set of constituent cubes in
an incomplete hypercube is unique [6]. Recall that the lexicographic labeling of Iℓn assigns to its
vertices node-labels ranging from 0 to ℓ − 1. For our purposes, we increase each label by one, so
that the set labels of the vertices in Iℓn is {1, . . . , 2n−1, 2n−1 + 1, . . . , ℓ}.

To make the algorithm more transparent, we first consider in detail the following specific case.

3.1 Computing the wirelength of embedding T (23, 4) into I235

The relation Θ∗ partitions E(I235 ) into Θ∗-classes Ei, i ∈ [5], see the right-hand side of Fig. 5. We
label the vertices of I235 using the lexicographic labeling from 1 to 23, see the right-hand side of
Fig. 5 again.
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Figure 5: Embedding of T (23, 4) into I235

Note that T (23, 4) = K5,6,6,6, is the complete 4-partite graph with |V1| = 5 and |Vi| = 6,
2 ≤ i ≤ 4. Let V1 = {1, 8, 9, 16, 17}, V2 = {2, 7, 10, 15, 18, 23}, V3 = {3, 6, 11, 14, 19, 22}, and
V4 = {4, 5, 12, 13, 20, 21} be the maximal independent sets of T (23, 4), see the left-hand side of
Fig. 5. Define now the embedding f of T (23, 4) into I235 with f(k) = k, k ∈ [23], where for
kk′ ∈ E(T (23, 4)), the path Pf (kk

′) is an arbitrary, fixed shortest f(k), f(k′)-path in I235 . We shall
demonstrate how to use Lemma 2.2 and Lemma 2.3 to compute the wirelength of T (23, 4) into
I235 .
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Figure 6: The subgraphs G1 = T (23, 4)[f−1(V (H1)] and H1 = Q4 after removing the edge cut E1

The graph I235 \ E1 consists of components H1 and H2, where V (H1) = [16] = {1, 2, . . . , 16}
and V (H2) = [23] \ [16]. Let G1 = T (23, 4)[f−1(V (H1))] and G2 = T (23, 4)[f−1(V (H2))], see
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Fig. 6. The graphs G1 and G2 are isomorphic to K4,4,4,4 and to K1,2,2,2, respectively. Since these
are Turán graphs, Property 2.1 implies that V (G1) and V (G2) are optimal sets. The following
conclusions follow from the fact that H1 and H2 induce convex subgraphs of H. If xy ∈ E(G1),
then all shortest paths between f(x) and f(y) lie in H1. Similarly, if xy ∈ E(G2), then all shortest
paths between f(x) and f(y) lie in H2. Moreover, if xy ∈ E(G), where x ∈ V (G1) and y ∈ V (G2),
then a shortest path between f(x) and f(y) contains exactly one edge from E1. In summary, E1

satisfies conditions (i)-(iii) of Lemma 2.2. Consequently, ECf (E1) is minimum and

ECf (E1) =
∑

v∈V (G1)

degG(v)− 2|E(G1)| = 84 .

Using similar arguments as above, we proceed with I235 \ Ei, i ∈ {2, 3, 4, 5}. First, I235 \
E2 consists of components H1 and H2, where V (H1) = {1, 2, . . . , 8, 17, . . . , 23} and V (H2) =
{9, 10, . . . , 16}. Then G1 = T (23, 4)[f−1(V (H1))] = T (15, 4) and G2 = T (23, 4)[f−1(V (H2))] =
T (8, 4), hence ECf (E2) is minimum and

ECf (E2) =
∑

v∈V (G1)

degG(v)− 2|E(G1)| = 90 .

The graph I235 \E3 has componentsH1 andH2, where V (H1) = {1, 2, 3, 4, 9, 10, 11, 12, 17, 18, 19, 20}
and V (H2) = [23] \ V (H1). Now we have G1 = T (23, 4)[f−1(V (H1))] = T (12, 4) and G2 =
T (23, 4)[f−1(V (H2))] = T (11, 4), hence ECf (E3) is minimum and

ECf (E3) =
∑

v∈V (G1)

degG(v)− 2|E(G1)| = 99 .

For i = 4 we have V (H1) = {1, 2, 5, 6, 9, 10, 13, 14, 17, 18, 21, 22} and V (H2) = [23]\V (H1), the cor-
responding Turán graphs beingG1 = T (23, 4)[f−1(V (H1))] = T (12, 4) andG2 = T (23, 4)[f−1(V (H2))] =
T (11, 4), so that ECf (E4) is also minimum and

ECf (E4) =
∑

v∈V (G1)

degG(v)− 2|E(G1)| = 99 .

Finally, for i = 5 we have V (H1) = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23}, V (H2) = [23] \ V (H1),
and the Turán graphs are G1 = T (23, 4)[f−1(V (H1)] = T (12, 4) and G2 = T (23, 4)[f−1(V (H2)] =
T (11, 4). So ECf (E5) is minimum and

ECf (E5) =
∑

v∈V (G1)

degG(v)− 2|E(G1)| = 99 .

By Lemma 2.3 we conclude that

WL(G,H) = WLf (G,H) =

5∑
i=1

ECf (Ei) = 84 + 90 + 99 + 99 + 99 = 471 .

3.2 The general case

In this section we give an algorithm that computes the minimum wirelength of embedding T (ℓ, 2p)
into Iℓn, where 2n−1 ≤ ℓ < 2n and 1 ≤ p ≤ ⌈log2 ℓ⌉ ≤ n.



376 Shantrinal et al., Embedding Turán graphs into incomplete hypercubes

We first label the vertices of T (ℓ, 2p) by labels 0, 1, . . . , ℓ − 1. We use the snake-wise labeling
just as it as done in the previous subsection for the case T (23, 4); see the left-hand side of Fig. 5. A
minor difference is that here we use labels 0, 1, . . . , ℓ− 1 instead of 1, 2, . . . , ℓ to be consistent with
the labeling to be used for the vertices of the corresponding incomplete hypercubes. Set m = 2p.
We write the labels into a matrix M(x, y) of dimension m× ⌈ℓ/m⌉. In M(x, y), x denotes a part
and y denotes the vertex position within the part. The snake-wise labeling guarantees that each of
the m parts contains either ⌈ℓ/m⌉ or ⌈ℓ/m⌉−1 labels. In the latter parts, we set M(x, ⌈ℓ/m⌉) = −1
to have the whole matrix M well-defined. For instance, the matrix M for T (23, 4) is:

0 7 8 15 16 −1
1 6 9 14 17 22
2 5 10 13 18 21
3 4 11 12 19 20


so that the vertices in the four parts of T (23, 4) are labeled by the labels from the respective sets
{0, 7, 8, 15, 16}, {1, 6, 9, 14, 17, 22}, {2, 5, 10, 13, 18, 21}, and {3, 4, 11, 12, 19, 20}.

We further define the matrix Mlex which is obtained from M by replacing each entry M(x, y)
by the lexicographic label of M(x, y), that is, its binary representation. Each lexicographic label is
thus an array of length n. The set of elements of the matrix Mlex is hence equal to the vertex set
of Iℓn. The mapping M → Mlex that maps M(x, y) to Mlex(x, y) can be interpreted as a bijection
V (T (ℓ, 2p)) → V (Iℓn). As we shall shortly see, this mapping leads to the minimum wirelength of
embedding T (ℓ, 2p) into Iℓn.

Now we are ready for the main algorithm. First, the vertices of T (ℓ, 2p) are labeled using the
values from the matrix M . The labeling implies the aforementioned mapping f : V (T (ℓ, 2p)) →
V (Iℓn), where f(v) ∈ V (Iℓn) has the lexicographic label of the vertex v as given in the matrix
Mlex. Then we use the Θ∗-partitions of Iℓn to apply Lemmas 2.2 and 2.3. This is formalized in
Algorithm 1.

Algorithm 1:

1: Input: Positive integers ℓ, n, p ▷ 2n−1 ≤ ℓ < 2n, 1 ≤ p ≤ ⌈log2 ℓ⌉ ≤ n, and n = ⌈log2 ℓ⌉.
2: Output: Minimum wirelength of embedding T (ℓ, 2p) into Iℓn.
3: Compute matrices M and Mlex.
4: Compute array A = [n1, n2, . . . , n2p ] that stores the cardinalities of the parts of the

vertex-partition of T (ℓ, 2p).
5: for i ∈ [n]
6: compute the array A′

i = [n′
1, n

′
2, . . . , n

′
2p ] containing the cardinalities of the parts of the

vertex-partition of G1, where G1 is the Turán graph containing vertices with digit 0 at
the i-th position in Iℓn \ Ei.

7: Use Lemma 2.2 to determine the edge congestion of Ei, i ∈ [n].
8: Use Lemma 2.3 to find the exact wirelength.

In order to apply Lemma 2.2 in Algorithm 1, we use the Θ∗-partition of Iℓn as inherited by the
Θ∗-partition of Qn. Therefore, we need to prove that the conditions of Lemma 2.2 are satisfied:

Lemma 3.1 The Θ∗-classes of Iℓn satisfy the conditions of Lemma 2.2.

Proof: The Θ∗-classes F1, . . . , Fn of Qn are well-understood: the class Fi, i ∈ [n], consists of the
edges that differ in position i, cf. [14]. (In the lexicographic labeling of the vertices of Qn, the class
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Fi then consists of the edges xy such that |x − y| = 2i−1.) Moreover, removing a class Fi from
Qn disconnects Qn into two copies of Qn−1, both being convex subgraphs of Qn. These two com-
ponents are induced by the vertices of the forms x1 . . . xi−10xi+1 . . . xn and x1 . . . xi−11xi+1 . . . xn,
respectively. Using the lexicographic labeling this implies that the set of vertices of such a compo-
nent consists of 2i−1 blocks of 2n−i consecutive integers.

The described structure of Qn is hereditary when considering its induced subgraph Iℓn. In
particular, the Θ∗-classes E1, . . . , En of Iℓn are the restrictions of the Θ∗-classes F1, . . . , Fn of Qn.
(For an example consider Fig. 5, where I235 and its five Θ∗-classes are shown.) Moreover, since
the Θ∗-classes of Qn satisfy the first two conditions of Lemma 2.2 and Θ∗-classes of Iℓn are the
restriction of the Θ∗-classes of Qn, we infer that also the Θ∗-classes of Iℓn satisfy the first two
conditions of Lemma 2.2.

For the third condition of Lemma 2.2, let H1 and H2 be the components of Iℓn \ Ei. Also let
G1 = T (ℓ, 2p)[f−1(V (H1))] and G2 = T (ℓ, 2p)[f−1(V (H2))]. We claim that G1 and G2 are Turán
graphs.

We assume that the vertices of T (ℓ, 2p) are ordered based on their lexicographic labels. Then
the vertices of G1 have labels of the form x1 . . . xi−10xi+1 . . . xn. Hence they are partitioned in
at most 2i−1 blocks of consecutive vertices. Note that all blocks, except possibly for the last one,
contain 2n−i vertices. We consider two cases depending on whethere p ≤ n− i or p > n− i.

In the first case, each block of 2n−i vertices, contains exactly 2n−i−p vertices from each part of
the partition vertex-sets of T (ℓ, 2p), as shown in the left figure in Fig. 7. If the last block contains
fewer than 2n−i−p vertices, say s, then we write s = r2p + t where r ≥ 0 and 0 ≤ t < 2p. Now this
block contains either r or r + 1 vertices of each part. Hence, the parts of the vertex-partition of
G1 either have the same size or differ by 1, i.e. G1 is a Turán graph.

M

part x

group of blocks

part x

M

Figure 7: Illustration of the proof of Lemma 3.1 (i.e. Counting vertices in parts of G1)

It remains to consider the case where p > n − i. We further group the blocks of vertices to
groups of size 2p−n+i−1; see the right figure in Fig. 7. The first group contains the first vertex of
half of the parts of the vertex-partition of T (ℓ, 2p), the second one the second vertex of the other
half parts, and in general, the group 2s − 1 contains the (2s − 1)-th vertex of half of the parts,
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and group 2s contains the 2s-th vertex of the other half parts. If b is the total number of blocks
(recall that b ≤ 2i−1), we write b = r2p−n+i + t, where r ≥ 0 and 0 ≤ t < 2p−n+i. The first
r2p−n+i blocks contain exactly r vertices of each part of the vertex-partition of T (ℓ, 2p), and the
last t blocks contain at most one vertex from each part. We conclude that G1 is a Turán graph.
Similarly, one can argue that G2 is also a Turán graph, as claimed. 2

We are now ready to prove our main theorem:

Theorem 3.2 Algorithm 1 is correct and can be implemented to run in O(ℓ log2 ℓ) time.

Proof: For the correctness of the algorithm we combine Lemma 3.1 and Lemma 2.3. Each Θ∗-class
Ei of I

ℓ
n by Lemma 3.1 satisfies the three conditions of Lemma 2.2. Since the Θ∗-classes partition

the edges of Iℓn, we can apply Lemma 2.3 and conclude that the computed wirelength is minimum.
Hence Algorithm 1 computes the minimum wirelength WL(T (ℓ, 2p), Iℓn) and is correct.

We next consider the complexity of the algorithm. Using the matrix M , vertices of T (ℓ, 2p) are
equipped with labels from 0 to ℓ− 1, while the edges of the graph need not to be stored explicitly,
since this is a complete multipartite graph. Similarly, the matrix Mlex labels the vertices of the
incomplete hypercube Iℓn with their lexicographic labels, where each lexicographic label is an array
of length n. Edges are computed based on this labeling and need to be stored. The mapping is
implied by the labels ranging from 0 to ℓ−1. As n = ⌈log2 ℓ⌉, creating matrices M and Mlex takes
O(ℓ log ℓ) time. When constructing matrix M , the array A = [n1, n2, . . . , n2p ] can be created with
the same time complexity. Note that the sum of nj in A is equal to ℓ.

The rest of the algorithm involves Lemmas 2.2 and 2.3. For these we use the following two
properties of subgraph G1 which is defined as in the proof of Lemma 3.1: (1) by removing the
Θ∗-class Ei, all vertices of G1 have digit 0 at the i-th position, and (2) G1 is a Turán graph. (We
assume here that the vertices of G1 are label with lexicographic labels.) Hence by iterating over the
vertices of T (ℓ, 2p) (using M) the array A′ = [n′

1, n
′
2, . . . , n

′
2p ] with the cardinalities of the parts of

the vertex-partition of Turán graph G1 can be computed. Now, deciding whether a vertex belongs
to G1 takes n time, by reading its lexicographic label. Hence A′ can be computed in O(ℓ log ℓ)
time. Let ℓ′ be the sum of all numbers n′

j in A′. Applying Lemma 2.2 for Ei reduces to computing∑2p

j=1 n
′
j((ℓ− nj)− (ℓ′ − n′

j)). Each sum is bounded above by the value ℓ2 (actually by the number

of edges of the Turán graph T (ℓ, 2p), which is at most ℓ2/2), and the total wirelength is bounded
above by the value nℓ2 (since there are n Θ∗-classes). Hence arithmetic operations for Lemmas 2.2
and 2.3 involve numbers of size at most ℓ3, and therefore cost O(log ℓ) each. Lemma 2.2 is applied
n times, each application of Lemma 2.2 performs O(2p) = O(ℓ) operations, while Lemma 2.3
performs n operations. The total cost of these computations is O(nℓ log ℓ) = O(ℓ log2 ℓ). Hence
the total time complexity is in O(ℓ log2 ℓ). 2

4 Concluding remarks

In this article, we have given an algorithm to compute the wirelength of embedding a Turán
graph into an incomplete hypercube. Finding the wirelength of embedding Turán graphs into
further architectures such as grids, arbitrary trees, Christmas trees, hypertrees, Cayley graphs,
and permutation graphs, are under investigation.
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