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Abstract

We present practical algorithms for constructing partitions of graphs
into a fixed number of vertex-disjoint subgraphs that satisfy particular
degree constraints. We use this in particular to find k-cuts of graphs of
maximum degree A that cut at least a £-1(1 + Wlkfl) fraction of the
edges, improving previous bounds known. The partitions also apply to
constraint networks, for which we give a tight analysis of natural local
search heuristics for the maximum constraint satisfaction problem.

These partitions also imply efficient approximations for several prob-
lems on weighted bounded-degree graphs. In particular, we improve the
best performance ratio for the weighted independent set problem to Ai”,
and obtain an efficient algorithm for coloring 3-colorable graphs with at

most 222 colors.
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1 Introduction

Graph partitioning is a common theme in combinatorial optimization. We con-
sider in this paper partitions of the vertices into a fixed number of induced
subgraphs so that the indegrees of the vertices, or their degrees within their as-
signed subgraph, be within pre-specified upper bounds. The simplest objective
is to limit the maximum indegree, while more generally we have bounds for each
vertex which depend on the degree of that vertex. Since it is NP-complete in
general to determine if a partition exists, we seek instead weak restrictions on
the indegree upper bounds that guarantee existence.

An immediate area of application is the MAX k-CUT problem, which is to
partition the vertices of a graph into k parts so as to maximize the number of
the edges going between subgraphs. This is the dual problem of minimizing the
average indegree.

Edge cutting can be generalized beyond pure graphs to constraint systems:
each edge is a binary relation whose satisfaction depends on the assignment of
the incident vertices. The maximum constraint satisfaction problem, MAX-CsP,
is to find a k-partition of the vertices that maximizes the number of satisfied
edges. Constraint satisfaction is a recurring theme in Artificial Intelligence
with a variety of applications, e.g. in machine vision, temporal reasoning and
scheduling. It generalizes other important combinatorial problems including
Satisfiability. The MAX-CsP problem naturally involves a parameter known as
consistency: an instance is r-consistent, if for any constraint and any value of
one incident vertex, there are r choices for the other vertex that satisfy the
constraint. Note that MAX k-CUT is a special case of (k — 1)-consistent MAX-
Csp.

Our treatment of MAX k-CUT and MAX-CSP is characterized by two at-
tributes. First, we seek to analyze the performance of simple and natural local
search algorithms, which was our initial motivation in the current study. Sec-
ond, the analysis focuses on the absolute ratio of the algorithms, which is the
fraction of the edges (or constraints) that are cut (or satisfied). This is con-
trasted with the relative ratio, better known as the performance ratio, which is
the ratio of the number of edges satisfied by the algorithm to the size of the
optimal solution.

When the maximum indegree is fixed while the number of subgraphs is
allowed to vary, we obtain a form of a coloring problem. In the standard Graph
Coloring problem, indegree is fixed to be zero. The partitions we obtain also
apply to these coloring problems.

Our results After preliminary definitions in Section 2, we consider plain local
search for MAX-CsP in Section 3. We show that it produces a k-partition of
r-consistent instances such that the number of satisfied constraints incident on
a vertex v of degree d(v) is at least [%(u)} This gives an absolute ratio of ,
which is tight. Slightly better bounds hold for special cases.

We next give, in Section 4, a method, also based on local search, that pro-
duces tighter partitions. It obtains a partition of a graph where, for a non-
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constraint graph, each vertex v assigned to the t-th subgraph is of indegree at
most L% —1]. We use this to obtain an absolute ratio of £-1(1+ Wlk_l) for

MAX k-CuT, improving the best previous known ratio of k—;l( 1+ %) This can
be implemented in O(An) time. We, however, find that this approach cannot
improve the ratio for Max-Csp.

Finally, we derive, in Section 5, improved performance ratios for Graph Col-
oring and a family of induced subgraph problems in weighted bounded-degree
graphs. These use a simplification of our partitioning that reduces to a re-
sult of Lovasz, where the bounds for all the vertices are identical. We obtain
a performance ratio of ﬁ for the weighted independent set problem, and
1/1(A+1)/3] for all hereditary induced subgraph problems on weighted graphs
in linear time. Also, we show how to color 4-clique-free graphs, which include
3-colorable graphs, using at most 3,%%2 colors in linear time.

Previous results A number of approximation results are known for MAX k-CUT.
Let n and m denote the number of vertices and edges in the input graph, re-
spectively. For k = 2, there are absolute ratios of 1 + 5= [10], 3 + ﬁ

[12], and § + %=L [20], while the relative ratio has recently been improved to
about 0.878 by Goemans and Williamson [9]. For k > 2, the best absolute ratio
is 221 (1 + 1) [22], while Frieze and Jerrum [7] generalized the results of [9],
achieving a relative ratio of £ + ©(%f).

For MAX-Csp, the only published absolute ratio we are aware of is the
i+ 'Z—;Ll ratio of Poljak and Turzik [20] for domain size k = 2 and consistency r =
1. An absolute ratio of 7 can be observed for a greedy algorithm, which would
also be the derandomized version of the randomized schema similar to that
used by Yannakakis [23] and Goemans and Williamson [8] used to approximate
maximum satisfiability.

As for relative ratios, Khanna et al. [14] considered weighted MaXx-Csp
with domain size 2. They achieved a ratio of % via a sophisticated local search
algorithm. More recently, this ratio was improved to % by Trevisan [21] using
randomized rounding of linear programs. The current best ratio is 0.859, due to
Feige and Goemans [6] via randomized rounding of semidefinite programs. Lau
and Watanabe [16] have proved a ratio of 0.408 for MAX-CsP with domain size
3, and in general a ratio of % for domain k.

2 Preliminaries
Let G denote an unweighted, undirected, not necessarily simple, graph, with

vertex set V' and edge set E. Let n denote the number of vertices, m the
number of edges, and d(v) the degree of vertex v. Let k be a positive integer.

Graph partitioning The mazimum k-cut problem (MAX k-CuT) is defined
as follows:
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INSTANCE: Graph G = (V, E), and positive integer k.
SOLUTION: A partition of V into k subsets such that the number
of edges across subsets is maximized.

Constraint Satisfaction The domain of a vertex v is the set of assignable
values for v. For our purpose, these domains are all {1,...,k}. An assignment
is a mapping of vertices to values in their respective domains. A constraint
R(u,v) between vertices u and v, is a binary relation on {1,...,k} x {1,...,k}
which defines the pairs of values that can be assigned to v and v simultaneously.
A constraint R(u,v) is said to be satisfied by an assignment f iff (f(u), f(v)) is
in R(u,v).

The maximum constraint satisfaction problem (MAX-Csp) is defined as fol-
lows:

INSTANCE: Graph G = (V, E), with constraint relation R(u,v)
associated with each edge (u,v) € E, and positive integer k.
SOLUTION: An assignment f : V. — {1,...,k} such that the
number of satisfied constraints is maximized.

An assignment can be viewed as a partition of vertices into k classes, or
subsets. We shall use “edge” and “constraint” interchangably.

Consistency A constraint R(u,v) is said to be r-consistent (1 < r < k) iff,
for every value z, 1 < x < k, there exist at least r consistent values y such
that (z,y) € R(u,v), and vice versa. A MaX-CsP instance is r-consistent iff
all its constraints are r-consistent. Let MAX-Csp(k,r) represent the class of
MAX-CsP instances which have domain size k and are r-consistent. Observe
that MAX k-CuUT is equivalent to MAX-Csp(k, k — 1) with all constraints being
the “not-equal” constraint ((z,y) € R(u,v) iff  # y).

Approximation Let A be an algorithm for a maximization problem. We say
that A approzimates the problem within a relative ratio p (0 < p < 1) iff on
all instances, A returns a solution whose value is at least p times the value of
the optimal solution in time polynomial in the size of the input. We say that
A approximates the problem within an absolute ratio € iff it returns a solution
whose value is at least € times the largest possible solution on each given input.
Clearly, an absolute ratio implies a no smaller relative ratio but not vice versa.

Satisfiable instances A MaX-CsP instance G = (V, E) is said to be sat-
isfiable if all its constraints can be simultaneously satisfied. It is known that
ratios that hold for the class of 1-consistent instances also hold for the class of
satisfiable instances.

Observation 1 If 1-consistent MAX-CSP can be approximated within absolute
ratio p, then satisfiable MAX-CSP can be approzrimated within absolute ratio p.
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Proof. Let G be an instance of satisfiable MAX-CsP of m constraints. Then
we can construct a 1-consistent CSP instance G’ = (V, E’) in time O(nk?) [5]
such that: (1) each vertex in V has domain size at most k; (2) E/ C E (though
the underlying relations may not be the same); and (3) for any assignment f, a
constraint in E’ is satisfied iff it is satisfied in E, while all constraints in E — E’
are always satisfied.

Suppose [ is an assignment which satisfies at least em’ constraints in G'.
The same f then satisfies at least em’ 4+ (m —m’) > em constraints in G. B

3 Simple Local Search

In this section, we consider the performance of a simple local search procedure
for MAX-CsP.

The objective value of an assignment is the number of constraints that it
satisfies. Two assignments f and f’ are said to be neighbors if their values differ
on exactly one vertex. An assignment is a local optimum iff its objective value
is at least that of all its neighbors. Let LS be the following simple local search,
or hillclimbing, procedure:

Start with any arbitrary initial assignment f.
while (there is a neighbor f’ of f with a higher objective value) do

The following lemma is the key to our analysis:

Lemma 2 Let f be any locally optimal solution computed by LS from an in-
stance of MAX-Csp(k,r). Then, for all vertices v, the number of constraints
. . . .d

incident on v that are satisfied by f is at least VT(U)]

Proof. Let v be a vertex, and evaluate the number of satisfied constraints as
we examine all k£ possible values for v. Only the constraints incident on v are
affected, while consistency ensures that each of them is satisfied at least r times,
independent of the value of the other incident vertices. Thus, the locally optimal
rd(v)—l

2

value for v must satisfy at least [ of the incident constraints. n

We obtain a bound on the performance of simple local search.
Theorem 3 LS approzimates MAX-CsP (k,r) within an absolute ratio of 7.

Proof. Termination of the search is guaranteed by the fact that the objective
function is monotone increasing with a maximum of m. Then, summing up over
all the vertices, at least % Do rdlgv) = % constraints are satisfied, by Lemma 2.

This bound is tight in that there are instances, even satisfiable ones, where
the heuristic satisfies no more than 7 constraints. We present these in Section
4.1. This result can, however, be slightly strengthened when the degrees of the

vertices satisfy a certain congruence relation.
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Corollary 4 Suppose thereis an s, 1 < s < k—1, such that, for each constraint,
the residue (k —r)d(v) mod k is at least s. Then, LS satisfies at least my +nzy
constraints.

Proof. The number of satisfied constraints incident on a given vertex v is at
least:

rd(v) k—r rd(v) + s
Ty = ) - 1 )] + )

Summing over all vertices, the total number of satisfied constraints is at least:
1Y, [d@)E+2) = mE+ng. |

4 Modified Local Search

We present in this section a lemma on low-degree partitioning of graphs, and
its application to improved approximations of MAX k-CuT. The bounds on the
degrees in the resulting partition are specified in terms of a matrix, which we
define as follows.

Definition 1 Let G = (V, E) be a graph on n vertices, k be an integer, and A
be a n x k integer matriz. A is a degree partitioning matrix (DPM) of G if,

Z Alv,j] > dw) —k+1, for each vertez v € V.

J=1

A DPM suggests a partition f where, for each vertex v, the number indeg(v)
of neighbors within its subgraph is bounded from above by the corresponding
entry Afv, f(v)]. We shall argue the existence of such a partition, as a corollary
of the termination of a simple local improvement algorithm.

Given a k-partition f, let deg;(v) denote the number of vertices in subset j
that are adjacent to v. Namely, deg;(v) = [{w : (v,w) € E and f(w) = j}|. Let
indegy(v) be a shorthand for degy(,)(v). We omit f when implicit.

We consider a local search algorithm that evaluates the following local con-
dition:

Alv, j] — deg;(v) has a maximum at j = f(v). (1)
The local search rule is simply to change the assignment of a vertex to one
satisfying (1). The termination condition is that the local condition be satisfied
at each vertex.

Observe that the local condition can always be fulfilled with a non-negative
value Afv, j] — deg;(v), given the defining property of the DPM.

We find that the local search always terminates, and does so relatively
quickly, especially given a starting assignment of rudimentary quality.

Lemma 5 Consider a graph G, an associated DPM A, and a starting assign-
ment f. Then, at most

> |(mx v - Alo, (0)] + gindeg (o) 8

veG I
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iterations are performed until a locally optimal assignment is obtained under
condition (1).

Before we give the proof, we note that this shows that in most cases the
number of iterations is O(m). This holds for instance when given a greedy
initial assignment or the trivial assignment that maximizes the A-value for each
vertex independently. It also holds when the improvements are scheduled so
that all vertices are tested for improvement in the first n iterations, e.g. by
using a worklist approach. Finally, one would expect in all applications that
all entries A[v, j] would be bounded by the degree d(v) of the vertex. In all of
these cases, the number of iterations is O(m). It, however, appears plausible
that there exist an initial assignment and a sequence of improvements whose
number is asymptotically greater than m.

Proof.  Consider the potential function W(f) = > [2A[v, f(v)] — indeg(v)],
which measures the progress towards a locally optimal solution. In an iteration
of the algorithm, a single vertex v is moved from partition 4 to partition j. This
changes the potential only for the part contributed by v on one hand, and by
the neighbors of v in subsets ¢ and j on the other hand. The resulting change
in potential is

AV = (24]v, j] = deg;(v)) = (24]v, 1] — degi(v)) + (degi(v) — deg;(v))
= 2[(Afv, j] = deg;(v)) = (A, i] = degi(v))]

The local search rule ensures that Afv, j]—deg;(v) is strictly greater than A[v, i]—
deg;(v) when v is moved from partition i to j. Hence A¥ > 2.

The difference in the potential of the final, locally optimal solution f’ and
the initial solution f is

Z[Z(A[v, ' (v)] = Alv, f(v)]) +indegs(v) — indegys: (v)].

v

Hence, half this number of iterations suffices. |

We now use this partitioning to approximate MAX k-CuT. For this, we need
a slightly stronger local improvement search.

Theorem 6 MAX k-CUT can be approrimated within an absolute ratio of% (1+
1
IATh—1 ).

Proof. The k-partition is obtained in two steps. First, we find a partition that
is locally optimal w.r.t. (1). We then apply standard local search, optimizing
the number of cut edges, until local optima is achieved.

For the former, we use an evenly split DPM, with Afv, ] = L%J —1, for
each vertex v and each subgraph t. For such a balanced DPM, the application
of standard local search preserves optimality w.r.t. (1). Namely, if deg;(v) <
degi(v), then Alv, j] — deg;(v) > Alv,i] — deg;(v), since Afv, ] and Afv, j] differ
by at most one. Hence, we obtain an assignment f that is locally optimal under
both criterias.
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We now focus on bounding the quality of the resulting assignment. Local
optimality w.r.t. (1) ensures that

indeg(v) < |2y (3)

Let Unsat denote the number of edges that are not satisfied, i.e. have both
endpoints within the same subgraph. Let V; denote the set of vertices in the
i-th subgraph.

Applying (3) and simplifying by ignoring the floor, we obtain

k
1 m n 1
= — ) < _— = —_— . .
Unsat 5 E g indeg(v) < r 3 + 5% t;t |VZ] (4)

t veV,

Replace the last term of the sum using |Vi| =n — Zf:_ll [Vi], to get

k—1
1
Unsat < %—5% (k—t)-|Vil. (5)
t=1

By standard local optimality, each vertex v in the graph is adjacent to at
least indeg(v) vertices in V;, while each vertex in V; can contribute to at most
A of these adjacencies. Hence, the number of vertices in V; is bounded by

ind Unsat
Vi S8 Zg(”) 2%~ t=l..k-L
veEG

Plug this into (5) to obtain

<
Unsat A A (6)
Thus,
m k-1 m k-1
< D+t = - .
Unsat < /04 577 = T - a5 =7
Hence, at least
k—1 (1+ 1 )
" AT k-1
edges are satisfied, yielding the theorem. |

Time complexity In the case of a balanced DPM as above, the difference in
the initial and final potential (as in Lemma 5) is at most n plus the difference in
the number of satisfied edges. By using a Greedy initial assignment, the initial
number of unsatisfied edges is at most 7*. Thus, n + 7* iterations suffice.

The local search algorithms can be implemented to require only amortized

O(A) time per iteration. We pre-compute the degrees of the vertices into each
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subgraph in the starting partition, and then only O(A) updates are needed in
each iteration. Hence, the total complexity is at most O(A7).

If we are content with the performance bounds, and do not seek local optima,
the local search can be terminated prematurely when sufficiently many edges
are satisfied. Starting with a greedy assignment, we only need to satisfy gx <n
additional edges. From the potential function, we see that this is accomplished
in at most 2n iterations, or in time O(An).

4.1 Extension to Constraint Satisfaction

The concept of a degree partitioning matrix and the corresponding partition
can also be extended to constraint systems. A matrix A is said to be a DPM of
an r-consistent constraint graph G if,

k
Z Alv, j] > (k—r)d(v) — k + 1, for each vertex v.

i=1

Define deg;(v) to be the number of constraints incident on v that are not satisfied
if the assignment of v is changed to j (assuming a given assignment f). As
before, indeg(v) = degy ) (v). The algorithm and its proofs of optimality and
time complexity remain the same.

It is tempting to try to prove a similar result for Max-Csp(k,r). Unfortu-
nately, this is not possible, since instances can be constructed where a locally
optimal solution satisfies at most an ¢ fraction of the constraints. In fact, even
the relative ratio of the algorithm is tight.

Theorem 7 Local search under (1) does not approzimate MaX-CSP within bet-

ter than 1., neither absolute nor relative. Namely, there is an infinite sequence

of satisfiable instances where some locally optimal solutions satisfy only an

fraction of the constraints.

Proof. Given k and r, we construct the following constraint graph G. G contains
3k vertices v; ;, for i =0,...,k—1 and j =0, 1,2, each of degree 2k. There are
constraints between v; ; and vy ;» whenever j # j’, given by:

R(vi j,vir j41 mod3) = { (z,y) : [(i'—i)+(y—z)] mod k lies between 0 and r—1 }.

Notice that the constraints are not symmetric.

An optimal solution assigns each vertex v;; to subset ¢, yielding a totally
satisfied solution. Suppose we have an initial assignment where all vertices are
assigned to subset £k — 1. Then each vertex v;; is consistent with 27 of the
adjacent vertices; i.e. r vertices of the form vy ji1 moa3 and r of the form
Vi j—1 mod 3. Hence, indeg(v; ;) < 2k —2 = Alv; j, k — 1]. Furthermore, one can
verify that moving a single vertex to a different subgraph leaves the number of
incident satisfied constraints unchanged. Hence, we have a local optima with
an absolute and relative ratio of £. Note that this proof can be extended to
graphs of any number of layers greater than 2. |
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It is also easy to construct multigraphs where at most an 1 fraction of the

constraints can be simultaneously satisfied. In the case of simple constraint
graphs, however, it appears that a slightly larger fraction is satisfiable, while it
does not exceed the %(1+ ©(%)) bound of Max k-CUT.

5 Applications to induced subgraph problems
and graph coloring

An important special case of the graph partitioning in the previous section is
when we only seek to bound the maximum indegree from above. In this case,
Lemma 5 reduces to the following result of Lovész.

Lemma 8 (Lovasz [18]) Let G = (V, E) be a multigraph without self loops.
Letty,ta,. ..ty be non-negative integers such that ), (t;+1)—1 = A(G). Then,
V' can be partitioned into k subsets inducing subgraphs G1,Ga, . ..Gy such that
A(Gz) < ti, fO?” 1= 1,2, . k.

By (2), we achieve this in O(7) iterations, or O(A7) time.

This lemma has several elegant applications to the approximation of induced
subgraph and vertex partitioning problems. A property of graphs is said to
be hereditary if, whenever it holds for a graph it also holds for any induced
subgraph.

Theorem 9 Hereditary weighted induced subgraph problems can be approxi-
mated within relative ratio of 1/[(A +1)/3] in linear time.

Proof. We partition the graph into at most s = [%1 graphs of degree at
most 2, in linear time, using Lemma 8. Such graphs consist of disjoint paths
and cycles, and allow for a linear time solution of hereditary induced subgraph
problems via dynamic programming. Any property m holds either for every
path, or for all paths of length up to ¢, where ¢ is a fixed constant, and the
same dichotomy holds for cycles.

Our approximate solution will be the largest of the (exact) solutions from
these s subgraphs. The optimal solution of the whole graph can contain at most
as many vertices from each subgraph as the optimal solution on that subgraph.
Hence, the optimal solution is at most s times as large as the approximate
solution. |

One such problem is MAX COMPATIBLE CONSTRAINT SATISFACTION [4,
MS11], This is problem on a CSP instance, where the objective is to find an
assignment to a subset of the vertices that satisfies all the induced constraints.

Corollary 10 MAX COMPATIBLE CONSTRAINT SATISFACTION can be approz-
imated within a relative ratio of 1/[242] in linear time.

The previous best approximation for the weighted independent set problem
is % due to Hochbaum [11]. We can use her approximation for A = 3 to improve
our ratio when A is a multiple of 3.
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Proposition 11 The weighted independent set problem can be approximated
within a relative ratio of Aiﬁ. When A mod 3 = 2, the ratio is Aiﬂ, while

when A mod 3 = 0, the ratio is ﬁ?ﬁ'

Proof. When A mod 3 is congruent to 1 or 2, the claim follows from Theorem 9.
When A mod 3 = 0, partition the vertices into % classes, where all but possibly
the last have maximum degree 2. Find a %—approximate weighted independent
set in the last class, compute optimal solutions of the other classes, and let
output the largest of all of these. Let W denote the weight of our solution.
The weight of the optimal solution is at most the sum of the weights of the
optimal solutions on the % subgraphs. The weight of the optimal solution of
the last subgraph is at most %W, but at most W for the other subgraph. Hence,
the weight of the optimal solution is at most [2 + (§ — 1)]W = [£ + ]W. =
By applying a preprocessing method championed by Hochbaum [11], we can
obtain improved approximations of weighted vertex cover, for A > 5. The
relative approximation of minimization problems is defined identically to that

of maximization problems, except that the ratio is necessarily greater than 1.

Corollary 12 The weighted vertex cover problem can be approximated within

2 - Ai-',-Q in time O(An?/?).

5.1 Coloring

Lovasz’s lemma also has implications for the coloring of bounded-degree graphs,
as observed previously by Catlin [3], Borodin and Kostochka [2] and Lawrence
[17]. The constructive nature of the lemma has apparently not been made
explicit before. Our implementation yields an efficient coloring algorithm.

Proposition 13 Graphs without j-cliques can be colored with % colors in
linear time.

Proof. Partition the input graph into subgraphs of degree 3 or 4 via Lemma
8, with (A + 2) mod 3 subgraphs of degree 4 and the remaining ones of degree
3. Assuming the graph contains no clique on 4 vertices, each subgraph G;
can be colored with A(G;) colors by the algorithm that follows from Lovdsz’
constructive proof of Brooks’ theorem [19]. n

w colors for graphs without ¢-cliques.

This can be generalized to
Karger, Motwani and Sudan [13] have recently obtained a A*~(1) logn ap-
proximation for 3-coloring. The advantage of our approach, however, is speed,
simplicity, ease of implementation, and better bounds for all constant (or slightly

superconstant) values of A.
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