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Abstract

In this paper, we propose a distributed broadcasting algorithm with
optimal time complexity and without message redundancy for one-to-
all broadcasting in the one-port communication model on arrangement
graph interconnection networks. The algorithm exploits the hierarchical
property of the arrangement graph to construct different-sized broadcast-
ing trees for different-sized subgraphs. These different-sized broadcasting
trees constitute a spanning tree on the arrangement graph. Every proces-
sor individually performs its broadcasting procedure based on the span-
ning tree. It is shown that a message can be broadcast to all the other

n!
(n−k)!

− 1 processors in at most O(k lg n) steps on the (n, k)-arrangement
graph interconnection network. The algorithm can also guarantee that
each of processors on the arrangement graph interconnection network re-
ceives the message exactly once.

Communicated by Alon Itai: submitted June 1996; revised May 1998.
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1 Introduction

The star graph [1] is one of the widely studied interconnection network topolo-
gies. It has been proposed as an attractive alternative to the hypercube with
many superior characteristics. A major practical difficulty with the star graph
is related to its number of nodes: n! for the n−star graph. Recently, a new
interconnection network topology called the (n, k)-arrangement graph has been
proposed in [5]. This topology is a generalized class of star graphs in the sense
that a star graph is a special arrangement graph, and presents a cure for the
design drawback of the star graph. It brings a solution to the problem of growth
of the number n! of nodes in the n−star graph with respect to the dimension
n. Namely, the (n, k)-arrangement graph has more flexibility in selecting the
design parameters: size, diameter, and degree than the star graph. It also keeps
all the desirable topological qualities of the star graph topology such as hier-
archical structure, vertex and edge symmetry, simple routing and many fault
tolerance properties.

Broadcasting is one of the fundamental communication problems for dis-
tributed memory interconnection networks. In broadcasting, one processor (or
node) has a message which needs to be communicated to everyone; such a pro-
cessor is called the source of broadcasting and every other node to which the
message needs to be sent is called the destination of broadcasting. Broadcasting
is a very important operation used in various linear algebra algorithms, database
queries, transitive closure algorithms, and linear programming algorithms. The
interconnection network must facilitate efficient broadcasting so as to achieve
high performance during execution of jobs.

The efficiency of the broadcasting algorithms is characterized by the time
complexity, the number of steps required, and the message complexity, the to-
tal number of messages exchanged, to complete the broadcasting. Hence, it is
desirable to develop a broadcasting algorithm that optimizes both the time com-
plexity and the message complexity. The broadcasting problems on the hyper-
cube and the star graph have been investigated in recent years. In [8], Johnsson
and Ho presented three new communication graphs for hypercubes and defined
scheduling disciplines, so that the communication tasks are completed within a
small constant factor of the best known lower bounds. In [11], Sheu, Liaw and
Chen presented a distributed broadcasting algorithm without message redun-
dantly in star graphs. It takes 2n − 3 steps in the multi-port communication
model. In [9], Mendia and Sarkar proposed a broadcasting algorithm with
the optimal time complexity in the one-port communication model on the star
graph. It exploits the rich structure of the star graph and works by recursively
partitioning the original star graph into smaller star graphs. In [12], Sheu, Wu
and Chen proposed a broadcasting algorithm that broadcasts a message to all
nodes in the star graph at the optimal time based on the algorithm in [9]. It
also performs broadcasting without redundant messages. In [4], Bai, Yamakawa,
Ebara and Nakano proposed a broadcasting algorithm in the one-port commu-
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nication model on the arrangement graph. It can broadcast a message to all
nodes in optimal time. But the message complexity of the algorithm is not
optimal.

In this paper, we consider the one-to-all broadcasting problem in the one-
port communication model on the arrangement graph and propose a distributed
broadcasting algorithm in the message passing mode. By exploiting the rich
topological properties of the arrangement graph to construct different sized
broadcasting trees for different sized subgraphs recursively, this algorithm can
broadcast a message to all the other nodes on the arrangement graph in the op-
timal time complexity in the sense of O−notation and without message redun-
dancy. The remainder of this paper is organized as follows. The arrangement
graph , its basic properties and some definitions are introduced in Section 2.
The broadcasting algorithm is described in Section 3. The conclusion is given
in Section 4.

2 Preliminaries

Let n and k with 1 ≤ k ≤ n be two integers, and let us write < n >=
{1, 2, . . . , n} and < k >= {1, 2, . . . , k}. Let P k

n be the set of permutations
of k elements chosen from < n >. The k elements of a permutation p are
denoted p1, p2, . . . , pk ; we write p = p1p2 . . . pk.

Definition 1 The (n, k)-arrangement graph An,k = (V, E) is an undirected
graph given by:

V = {p1p2 . . . pk | pi in < n > and pi 6= pi′ for i 6= i′} = P k
n , and

E = {(p, q)| p and q in V and for some i ∈< k >, pi 6= qi

and pi′ = qi′ for i 6= i′} .
(1)

The (4, 2)−arrangement graph is shown in Figure 1. It illustrates that A4,2

can be decomposed into 4 smaller subgraphs, where each of them has the fixed
element i for 1 ≤ i ≤ 4 in position 2. Each of subgraphs contains three nodes.

The (n, k)−arrangement graph is a regular graph of degree k(n − k), the
number of nodes n!

(n−k)! , and diameter b 3
2kc. Notice that there are (n−1)!

(n−k)! nodes
in An,k which have the element pi in position i for any fixed pi ∈< n > and
i ∈< k >. These nodes form a subgraph of An,k. The arrangement graph
still has many other good characteristics. For a more thorough coverage of the
arrangement graph, refer to [5].

As shown in Definition 1, there are n − k elements that are not used in
permutation p. We define the label pout of the node p to denote these elements.
Using the label pout, we define the operator gij that carries out the permuta-
tion p and the label pout of the node p. In this way, we represent the node p
and its edges on the arrangement graph so that the node p corresponds to the
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Figure 1: (4,2)- arrangement graph

permutation p with a label pout, and its edges correspond to the actions of the
operators on the permutation p and the label pout.

Let INT (p) = {p1, p2, . . . , pk}, which is the set of k elements of < n > used
in permutation p, and let EXT (p) =< n > −INT (p), which is the set of n− k
elements of < n > not used in permutation p.

Definition 2 For each node p, define Pout, which we call the set of labels pout

of p, to be the set of elements of Pn−k
n given:

Pout = {pk+1 . . . pj . . . pn| pj in EXT (p) for k + 1 ≤ j ≤ n
and pj1 6= pj2 for j1 6= j2} .

(2)

Example. Consider < n >= {1, 2, 3, 4, 5}, < k >= {1, 2, 3} and p = 245. Then,
Pout = {13, 31} and the two possible values of pout are 13 and 31.

Definition 3 The operator gij(p, pout): P k
n → P k

n takes a node p to its adjacent
node p′ where p′ and p differ only in the ith position, and the element in the ith
position of p′ is the element in the jth position of pout, 1 ≤ i ≤ k, k+1 ≤ j ≤ n.
We define g0 to be the identity operator, and pg0 = p for all p and pout.
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Example. Let p = 123 be a node in A5,3 and be acted on by g15. For the
different pout = 45 or 54, pg15 = 523 or 423.

From the definitions of operator and label, we know that the operator gij of
the node p has the different actions for the different pout of the node p. In this
paper, we assume that the source node has a given pout and any node acted on
by the operator acts on its pout; any node revises its pout based on the received
message and uses this pout before receiving a new message.

Let Firsti(p) have as its value the first i elements of the node p, that is,
Firsti(p) = p1p2...pi, 1 ≤ i ≤ k, and First0(p) = λ, where λ is the empty
string. For given p = p1p2......pk and pout = pk+1...pn, let Electi(p, pout) have
as its value the ith element of p and pout, that is, Electi(p, pout) = pi, 1 ≤ i ≤ n.
We will write Electi(p) when pout is understood. Here, we give two definitions of
subgraphs based on permutation p and its label pout on the arrangement graph.
We say Al

n,k the lth level subgraph of An,k and the level l + 1 is lower than the
level l.

Definition 4 The induced subgraph Al
n,k(Firstl(p)), 1 ≤ l ≤ k, of An,k for a

node p, is the induced subgraph having as vertices the set of the nodes whose the
first l elements are p1p2...pl, and A0

n,k = An,k. The set V l
n,k(Firstl(p)) of the

nodes in Al
n,k(Firstl(p)) is given by:

V l
n,k(Firstl(p)) = {p1 . . . pl pl+1 . . . pi . . . pk|

pi ∈< n > −{p1, ..., pl} , l + 1 ≤ i ≤ k} ∈ V .
(3)

Example. V 1
5,3(2) = {2pq|p, q 6= 2} is the set of the nodes of the subgraph A1

5,3(2)
on A5,3, where each of the nodes in the subgraph A1

5,3(2) has the element 2 in
the first position.

Definition 5 We will write, for p and its pout, the expression Al
n,k(Electi(p))

for Al
n,k(Firstl(q)), where q = p1...pl−1pi, l − 1 ≤ i ≤ n.

Example. Let p = 123, with its pout = 45, be a node in A5,3. Then First1(p) = 1
and Elect4(p) = 4. Each of the nodes in A1

5,3(First1(p)) = A1
5,3(1) has the ele-

ment 1 in position 1. Each of the nodes in A2
5,3(Elect4(p)) = A2

5,3(First1(p)4) =
A2

5,3(14) has the element 4 in position 2 and the element 1 in position 1.
V5,3 = {V 1

5,3(1), V 1
5,3(2), V 1

5,3(3), V 1
5,3(4), V 1

5,3(5)}.
Definitions 4 and 5 mean that Al

n,k(Firstl(p)) and Al
n,k(Electi(p)) are de-

fined based on the node p, pout pair. Each of the nodes in Al
n,k(Firstl(p)) has

the same l elements in the first l positions as the node p has. Each of the nodes
in Al

n,k(Electi(p)) has the element Electi(p) in position l and the same l − 1
elements in the first l − 1 positions as the node p has.
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3 Broadcasting Algorithm

In this section, we consider one-to-all broadcasting problem on a fault-free ar-
rangement graph An,k, and develop a broadcasting algorithm with the optimal
time complexity in the sense of O−notation and without message redundancy.
We assume that a node consists of a processor with bidirectional communication
links to each of its adjacent nodes. Any node knows the condition of its adjacent
links and has a large enough buffer to preserve the message that it sends and
received. At any given time, a node can communicate with at most one of its
adjacent nodes. There are no faults on the arrangement graph.

Theorem 1 [10] If an interconnection network consists of N nodes or proces-
sors that can communicate with at most one of its adjacent nodes at any given
time, then any one-to-all broadcasting algorithm on the network must take at
least Ω(lg N) steps.

The (n, k)-arrangement graph is a graph with hierarchical structure. Since
we use recursively its hierarchical property to develop our broadcasting algo-
rithm on An,k, we consider the broadcasting procedure on some subgraph Al

n,k

of An,k, 0 ≤ l ≤ k. Let p be a source node in some Al
n,k and be ready to broad-

cast a message to its n−l node-disjoint subgraphs Al+1
n,k (Electi(p)), l+1 ≤ i ≤ n,

of Al
n,k(Firstl(p)). According to the relationship of p and n− l subgraphs Al+1

n,k

of Al
n,k(Firstl(p)), n− l subgraphs Al+1

n,k can be divided into the following three
cases:

case 1: Al+1
n,k (Elect(l+1)(p)) in which p is.

case 2: Al+1
n,k (Electi(p)), l + 2 ≤ i ≤ k, which are not directly connected to p.

case 3: Al+1
n,k (Electi(p)), k + 1 ≤ i ≤ n, which are directly connected to p.

Since the node p is in Al+1
n,k (Electl+1(p)), we only need to send the message

to k − l − 1 node-disjoint subgraphs Al+1
n,k (Electi(p)), l + 2 ≤ i ≤ k, and n − k

node-disjoint subgraphs Al+1
n,k (Electi(p)), k + 1 ≤ i ≤ n. In case 2, p is not

directly connected to any node that belongs to Al+1
n,k (Electi(p)), l + 2 ≤ i ≤

k. This is because the element Electi(p) in position l + 1 of the nodes in
Al+1

n,k (Electi(p)), l + 2 ≤ i ≤ k, is in INT (p). To send a message to some
subgraphs of Al+1

n,k (Electi(p)), l+2 ≤ i ≤ k, we have to send the message to some
intermediate nodes that are directly connected to some nodes in Al+1

n,k (Electi(p)),
l + 2 ≤ i ≤ k, and then send the message to these subgraphs. In case 3, some
nodes in Al+1

n,k (Electi(p)), k + 1 ≤ i ≤ n, are directly connected to p since
the elements Electi(p) in position l + 1 of the nodes in Al+1

n,k (Electi(p)|k + 1 ≤
i ≤ n) are not in INT (p). If p sends a message to all n − l node-disjoint
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subgraphs Al+1
n,k of Al

n,k(Firstl(p)) sequentially, it takes O(n − l) steps for p to
complete this broadcasting procedure. Applying recursively this procedure, it
takes O{(k− l)(n− l)} steps for p to broadcast a message to all the other nodes
in Al

n,k(Firstl(p)). Since there are N = (n−l)!
(n−k)! nodes in Al

n,k(Firstl(p)) and an
optimal broadcasting procedure requires at most O(lg N) = O((k − l) lg(n− l))
steps based on Theorem 1, this broadcasting procedure is not optimal in time
complexity.

If we only consider broadcasting the message to at least one of the nodes in
each of n− l node-disjoint subgraphs Al+1

n,k of Al
n,k(Firstl(p)) and then making

each of the nodes that received broadcast the message on the given lower level
subgraph, a broadcasting algorithm with optimal time has been proposed in
[4]. This algorithm embeds the intermediate nodes in a broadcasting tree to
achieve a broadcasting procedure with the optimal time complexity. But it is
not optimal in the message complexity. The reason is that it did not consider
that different intermediate nodes belong to different level subgraphs and should
broadcast the message on different level subgraphs.

To perform the broadcasting procedure with time and message optimality on
Al

n,k(Firstl(p)), we define the intermediate node p(i) that is directly connected
to Al+1

n,k (Electi(p)) for l + 2 ≤ i ≤ k as follows.

Definition 6 There may be many intermediate nodes. An intermediate node
p(i) is a node that satisfies Firsti−1(p(i)) = Firsti−1(p) and Electn(p(i)) =
Electi(p) for l + 2 ≤ i ≤ k.

Lemma 1 The intermediate node p(i) is adjacent to Al+1
n,k (Electi(p)), l + 2 ≤

i ≤ k.

Proof: For l + 2 ≤ i ≤ k, p(i)g(l+1)n is in Al+1
n,k (Electi(p)). 2

Table 1: The broadcasting procedure from p to each of Al+1
n,k (Electi(p)),

l + 2 ≤ i ≤ n.

Phase the receiving nodes comments
beginning p the node p is in Al+1

n,k (Electl+1(p))
1 p(k),..., p(l + 2) p(i), l + 2 ≤ i ≤ k, is

adjacent to Al+1
n,k (Electi(p)))

p(i)g(l+1)n, l + 2 ≤ i ≤ k, p(i)g(l+1)n, l + 2 ≤ i ≤ k,
is in Al+1

n,k (Electi(p)))
2 p(j) p(j), k + 1 ≤ j ≤ n,

k + 1 ≤ j ≤ n is in Al+1
n,k (Electj(p))

As shown in Table 1, we divide the broadcasting procedure for p to broadcast
the message to each of Al+1

n,k (Electi(p)), l + 2 ≤ i ≤ n, into two phases:
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Phase 1: The node p and the intermediate nodes p(i′), l + 2 ≤ i ≤ i′ ≤ k,
broadcast the message to the intermediate nodes p(i), l + 2 ≤ i ≤ k.
Then, the intermediate nodes p(i), l + 2 ≤ i ≤ k, broadcast the message
to Al+1

n,k (Electi(p)) at one step.

Phase 2: The node p, the intermediate nodes p(i), l+2 ≤ i ≤ k, and the nodes
p(j′) in Al+1

n,k (Electj′(p)), k + 1 ≤ j′ ≤ j ≤ n − 1, broadcast the message
to the nodes p(j) in Al+1

n,k (Electj(p)), k + 1 ≤ j ≤ n − 1. Then, the node
p sends the message to Al+1

n,k (Electn(p)) at the last step.

Phase 1. At the beginning of broadcasting procedure, p sends the message
to p(k) = pgkn. Then, Firstk−1(p(k)) = Firstk−1(p) and Electn(p(k)) = k.
At the next step, p and p(k) send the message to p(k − 1) = pg(k−1)n and
p(k − 2) = p(k)g(k−2)n respectively. Then, Firstk−2(p(k − 1)) = Firstk−2(p)
and Firstk−3(p(k − 2)) = Firstk−3(p). In this way, the message can be sent to
k − l − 1 intermediate nodes p(i), l + 2 ≤ i ≤ k. Because each step doubles the
number of the nodes that receive the message, there are 2m nodes that receive
the message at the mth step. It takes O(lg(k − l)) steps for p to complete the
broadcasting procedure to k− l− 1 intermediate nodes respectively adjacent to
k − l − 1 node-disjoint subgraphs Al+1

n,k (Electi(p)) for l + 2 ≤ i ≤ k. Then, the
k− l−1 intermediate nodes p(i), l+2 ≤ i ≤ k, can send the message to k− l−1
subgraphs Al+1

n,k (Electi(p)) respectively at one step.
Phase 2. Because Electj(p(i)) = Electj(p) for l + 2 ≤ i ≤ k and k + 1 ≤ j ≤
n − 1, the intermediate node p(i) for l + 2 ≤ i ≤ k is also directly connected
to Al+1

n,k (Electj(p)) for k + 1 ≤ j ≤ n − 1. After k − l − 1 intermediate nodes
p(i), l + 2 ≤ i ≤ k, receive the message, we can make the source node and these
intermediate nodes send respectively the message to k − l nodes p(j) in k − l
node-disjoint subgraphs Al+1

n,k (Electj(p)), k + 1 ≤ j ≤ k + (k− l) ≤ n− 1. Here,
p(k + 1) = pg(l+1)(k+1) and p(k + (i − l)) = p(i)g(l+1)(k+(i−l)) for l + 2 ≤ i ≤ k.
Since Electi(p(j)) = Electi(p) for k+1 ≤ j ≤ k+(k−l) < i ≤ n−1, the node p(j)
can also send the message to p(j+2(k−l)) at the next step if j+2(k−l) ≤ n−1.
Similarly, additional step doubles the number of subgraphs that received the
message, it takes O(lg n−k

k−l ) steps to complete the broadcasting procedure to
n− k − 1 node-disjoint subgraphs Al+1

n,k (Electj(p)) for k + 1 ≤ j ≤ n− 1. Then,
p can send the message to Al+1

n,k (Electn(p)) at the last step.
After completing the broadcasting procedures of Phase 1 and 2, there is

only one node that received the message in each of Al+1
n,k (Electi(p)) for l +

2 ≤ i ≤ n. The node in each of Al+1
n,k (Electi(p)) for l + 2 ≤ i ≤ n can be

considered a source node to broadcast the message within the given (l+1)th level
subgraphs. In Al+1

n,k (Electl+1(p)), there are k − l nodes that hold the message,
which are p and p(i), l + 2 ≤ i ≤ k. If they are all considered the sources of
Al+1

n,k (Electl+1(p)), some nodes in this subgraph will receive the message more
than once. To ensure that each node in the broadcasting procedure receives
once only, we develop the broadcasting procedure Phase 3 that can perform the
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broadcasting in Al+1
n,k (Electl+1(p)) by decomposing Al+1

n,k (Electl+1(p)) into the
different level node-disjoint subgraphs based on p and p(i) for l+2 ≤ i ≤ k. Here,
we first give two Lemmas concerning the decomposing of Al+1

n,k (Firstl+1(p)) into
the different level subgraphs based on p and p(i) for l + 2 ≤ i ≤ k.

Lemma 2 Based on p and the intermediate node p(l + 2) for l + 2 ≤ k,
Al+1

n,k (Firstl+1(p)) can be decomposed into the (l + 2)th level node-disjoint sub-
graphs as follows.

V l+1
n,k (Firstl+1(p)) = {

⋃

l+2≤i≤n−1

V l+2
n,k (Electi(p(l + 2)))} ∪ V l+2

n,k (Firstl+2(p)) .

(4)

Proof: Based on Definition 5, V l+2
n,k (Electl+2(p)) = V l+2

n,k (Firstl+2(p)). Since
Firstl+1(p) = Firstl+1(p(l + 2)) and Electn(p(l + 2)) = Electl+2(p) from Defi-
nition 6,

⋃

l+3≤i≤n

Electj(p) =
⋃

l+2≤i≤n−1

Electi(p(l + 2)). Therefore,

V l+1
n,k (Firstl+1(p)) = V l+2

n,k (Electl+2(p)) ∪ {
⋃

l+3≤i≤n

V l+2
n,k (Electi(p))}

= {
⋃

l+2≤i≤n−1

V l+2
n,k (Electi(p(l + 2)))} ∪ V l+2

n,k (Firstl+2(p)) .

2

From Lemma 2, p(l + 2) for l + 2 ≤ k is in Al+2
n,k (Electl+2(p(l + 2))) that

is one of the subgraphs Al+2
n,k (Electi(p)), l + 2 ≤ i ≤ n, of Al+1

n,k (Firstl+1(p)).
The node p(l +2) can be considered a source node to broadcast the message on
Al+1

n,k (Firstl+1(p)). Since Firstl+2(p) = Firstl+2(p(l+3)) for l+3 ≤ n, p(l+3)
is in Al+2

n,k (Electn(p(l + 3))) = Al+2
n,k (Firstl+2(p)). Therefore, p(l + 2) can apply

the broadcasting procedures of Phase 1 and 2 to broadcast the message to the
subgraphs Al+2

n,k (Electi(p)), l+3 ≤ i ≤ n−1, and remains Al+2
n,k (Electn(p(l+2)))

for p(l + 3). To avoid message redundancy, we will recursively use p(i), l + 2 ≤
i ≤ k, to perform broadcasting in Ai−1

n,k (Electn(p(i))) = Ai−1
n,k (Firsti−1(p)).

Lemma 3 Based on p and p(i), l + 2 ≤ i ≤ k, Al+1
n,k (Firstl+1(p)) can be de-

composed into the different level node-disjoint subgraphs as follows:

V l+1
n,k (Firstl+1(p)) = {

⋃

l+2≤i≤k,i≤j≤n−1

V i
n,k(Electj(p(i)))} ∪ p . (5)

Proof: Recursively applying Lemma 2 until p. 2

Table 2 shows the broadcasting procedures of Phase 3 based on Lemma
3 for p(i), l + 2 ≤ i ≤ k, to broadcast the message to the given different
level node-disjoint subgraphs on Al+1

n,k (Firstl+1(p)). The node p(l + 2) can ap-
ply the broadcasting procedures of Phase 1 and 2 to broadcast the message
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on Al+1
n,k (Firstl+1(p)) and only remains Al+2

n,k (Electn(p(l + 2))) for p(l + 3) if
p(l + 3) ≤ k, where Al+2

n,k (Electn(p(l + 2))) = Al+2
n,k (Firstl+2(p)). Similarly,

p(l + 3) can broadcast the message on Al+2
n,k (Firstl+2(p)) and only remains

Al+3
n,k (Electn(p(l + 3))) for p(l + 4) if l + 4 ≤ k. Recursively applying the broad-

casting procedure that p(i) broadcasts the message on Ai−1
n,k (Firsti−1(p)) and

only remains Ai
n,k(Electn(p(i))) for p(i+1) until p, the message can be broadcast

with message redundancy in the given different level node-subgraphs.

Table 2: The broadcasting procedures of the intermediate nodes p(i), l + 2 ≤
i ≤ k.

sending node sending to subgraphs not sending to subgraph
p(l + 2) Al+2

n,k (Electj(p(l + 2))) Al+2
n,k (Electn(p(l + 2)))

in Al+1
n,k (Firstl+1(p)) l + 2 ≤ j ≤ n − 1 = Al+2

n,k (Firstl+2(p))
...

...
...

p(i − 1) Ai−1
n,k (Electj(p(i − 1))) Ai−1

n,k (Electn(p(i − 1)))
in Ai−2

n,k (Firsti−2(p)) i − 1 ≤ j ≤ n − 1 = Ai−1
n,k (Firsti−1(p))

p(i) Ai
n,k(Electj(p(i))) Ai

n,k(Electn(p(i)))
in Ai−1

n,k (Firsti−1(p)) i ≤ j ≤ n − 1 = Ai
n,k(Firsti(p))

p(i + 1) Ai+1
n,k (Electj(p(i + 1))) Ai+1

n,k (Electn(p(i + 1)))
in Ai

n,k(Firsti(p)) i + 1 ≤ j ≤ n − 1 = Ai+1
n,k (Firsti+1(p))

...
...

...
p(k) Ak

n,k(Electj(p(k))) Ak
n,k(Electn(p(k)))

in Ak−1
n,k (Firstk−1(p)) k ≤ j ≤ n − 1 = Ak

n,k(Firstk(p)) = p

p no sending

Now, we will present a broadcasting algorithm with optimal time complex-
ity and without message redundancy for one-to-all broadcasting on an arrange-
ment graph Al

n,k. Let Broadcasting algorithm denote our one-to-all broad-
casting algorithm. We will describe it based on three phases as shown in Ta-
ble 1 and 2. Since the node p(j), k + 1 ≤ j ≤ n − 1, is the source node in
Al+1

n,k (Electj(p(j))), we only need to improve Phase 2 so that the node p(j),
k + 1 ≤ j ≤ n − 1, will start to broadcast the message on Al+1

n,k (Electi(p(j)))
in Phase 2 after completing the broadcasting procedure from p to each of
Al+1

n,k (Electi(p)), k + 1 ≤ i ≤ n − 1. In the broadcasting procedure, the nodes
that hold the message send the broadcasting request to the other nodes. Every
node individually starts to perform its broadcasting algorithm while receiving
the request. Let M denote a broadcasting request. A request M consists of
following six parameters as shown in Table 3 and M = {Data, pout, l, i, m, ID}.
At the beginning of broadcasting, M = {Data, pout, l, 0, 0, 0}. The formal de-
scription of our broadcasting algorithm is given below.
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Table 3: Parameters that a request M contains

1 Data Message to be broadcast.
2 pout The given label to be sent to the receiving node.
3 l Dimension of subgraph.
4 i Integer used for determining edges.
5 m Used for determining the order of broadcasting.
6 ID Used for determining the phase of node in broadcasting.

ID = 0 The source node.
ID = 1 The message is sent to p(i), l + 2 ≤ i ≤ k.
ID = 2 The message is sent to p(j), k + 1 ≤ j ≤ n − 1.

Broadcasting algorithm(M)
var i, n, l, k, m, ID : integer; gij : operator;

begin /* p decides its pout based on M and sends M to the receiving node */
the node p gets M from buffer;

/* begin Phase 1: broadcast M to p(i), l + 2 ≤ i ≤ k */
if ID = 0 and l ≤ k − 2 then begin

repeat /* the source node broadcasts M to p(i), l + 2 ≤ i ≤ k */
m := m + 1; i := k + 1 − 2m−1;
if i ≥ l + 2 then p sends M(Data, pout, l, i, m, 1) to pgin

until i < l + 2
end;
if ID = 1 then begin

I = i;
repeat /* p(i′), l + 2 ≤ i < i′ ≤ k broadcast M to p(i) */

m := m + 1; i := I − 2m−1;
if i ≥ l + 2 then p sends M(Data, pout, l, i, m, 1) to pgin

until i < l + 2;
p sends M(Data, pout, l + 1, 0, 0, 0) to pg(l+1)n

/* p(i), l + 2 ≤ i ≤ k, broadcast M to Al+1
n,k (Electi(p))) */

end;
/* end Phase 1 */
/* begin Phase 2: broadcast M to p(i), k + 1 ≤ i ≤ n,

and in Al+1
n,k (Electi(p)), k + 1 ≤ i ≤ n − 1 */

if ID = 0 and l ≤ k − 1 then begin
m := 0;
repeat /* the source node broadcasts M to p(i), k + 1 ≤ i ≤ n − 1 */

m := m + 1; i := k + 1 + (2m−1 − 1)(k − l);
if i ≤ n − 1 then p send M(Data, pout, l, i, m, 2) to pg(l+1)i

until i > n − 1

p send M(Data, pout, l + 1, 0, 0, 0) to Al+1
n,k (Electn(p)))

/* sends M to p(n) in Al+1
n,k (Electn(p))) */

end;
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if ID = 1 then begin
m := 0;
repeat /* p(i′), l + 2 ≤ i′ ≤ k, broadcast M to p(i), k + 2 ≤ i ≤ n − 1 */

m := m + 1; i := k + I − l + (2m−1 − 1)(k − l);
if i ≤ n − 1 then p send M(Data, pout, l, i, m, 2) to pg(l+1)i

until i > n − 1
end;
if ID = 2 then begin

I := i;
repeat /* p(i′), k + 1 ≤ i′ < i ≤ n − 1, broadcast M to p(i) */

m := m + 1; i := I + (2m−1)(k − l);
if i ≤ n − 1 then p send M(Data, pout, l, i, m, 2) to pg(l+1)i;

until i > n − 1
Broadcasting algorithm(Data, p, l + 1, 0, 0, 0)

/* p(i), k + 1 ≤ i ≤ n − 1, broadcast M in Al+1
n,k (Electi(p)) */

end;
/* end Phase 2 */
/* begin Phase 3: p(i), l + 2 ≤ i ≤ k − 1, broadcasts M in Ai−1

n,k (Firsti−1(p)) */

if ID = 1 then begin
l := I ; m := 0;
repeat /* Phase 1 of the source node */

m := m + 1; i := k + 1 − 2m−1;
if i ≥ l + 2 then p sends M(Data, pout, l, i, m, 1) to pgin

until i < l + 2
m := 0;
repeat /* the source node broadcasts M to p(i), k + 1 ≤ i ≤ n − 1 */

m := m + 1; i := k + 1 + (2m−1 − 1)(k − l);
if i ≤ n − 1 then p send M(Data, pout, l, i, m, 2) to pg(l+1)i

until i > n − 1
end

/* end Phase 3 */
end;

Figure 2 illustrates the broadcasting procedure for A7,4 to be decomposed
into its 7 subgraphs A1

7,4, 6 subgraphs A2
7,4, 5 subgraphs A3

7,4 and 4 subgraphs
A4

7,4 based on the source node and the intermediate nodes. Let the source node
1234 have the given pout = 567 and be denoted 1234(567). The source node
1234(567) broadcasts the message to 3 intermediate nodes p(i), 2 ≤ i ≤ 4, in
A1

7,4(1) and the other 6 subgraphs A1
7,4(Electi(p)), 2 ≤ i ≤ 7, after completing

the broadcasting procedure of Phase 1 and 2 from 1234(567) to the other 6
subgraphs A1

7,4. In A1
7,4(1), there are 3 intermediate node p(2) = 1437(562),

p(3) = 1274(563) and p(4) = 1237(564) that received the message. These 3
nodes are the source nodes of A1

7,4(1), A2
7,4(12) and A3

7,4(123) respectively . Since
p(2) ∈ A1

7,4(14) and p ∈ A1
7,4(12), the source node p(2) = 1437(562) in A1

7,4(1)
only needs to broadcast the message to A2

7,4(13), A2
7,4(15), A2

7,4(16) and A2
7,4(17)

in executing the broadcasting procedure of Phase 3. In the same way as p(2) =
1437(562) does on A1

7,4(1) , the source node p(3) = 1274(563) in A2
7,4(12) only
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2 1 2

source node

source node

source node

1237(564) 1437(562)1274(563)

p(3) p(4) p(2)

1235(764) 1236(574)

1234(567)

A   (3) A   (6) A   (2)A   (4)

A   (16) 

A   (124) A   (125) A   (126)7,4 7,4 7,4

A   (13) A   (15) A   (17)7,47,47,47,4

7,4 7,4 7,4 7,4 7,4
1 1 1 11

7,4
1

2 2 2 2

3 3 3

A   (14)

A   (127)

7,4

7,4
3

2

source node p

p
1234(567)

p

p

A   (123)3
7,4

A   (12)2
7,4

A7,4

A   (12)

A   (1)

7,4
2

7,4
1

A   (1)7,4
1

A   (123)7,4
3

p(2)

p(3)

p(4)

33 43

A   (7)A   (5)

3

Figure 2: Partitioning A7,4 into its subgraphs based on the properties of nodes

needs to broadcast the message to A3
7,4(124), A3

7,4(125) and A3
7,4(126), and the

source node p(4) = 1237(564) on A3
7,4(123) only needs to broadcast the message

to A4
7,4(1235) and A4

7,4(1236). Since any one of A2
7,4 can be considered as one

A5,2, we will take A5,2 for example to illustrate Broadcasting algorithm in
figure 3.

Figure 3 illustrates the broadcasting tree from the source node 12 on A5,2

by applying our algorithm. Let 12(345) be the source node. Each of the nodes
that receive the message decides its pout based on the received message. The
number-labeled edges denote the steps in broadcasting. The node 15(342) is
a intermediate node in Phase 1. It only sends to 13(542) and 14(352), and
does not send to 12(345) on A1

5,2(1). This is because 12(345) holds the message
and A2

5,2(12) = A2
5,2(Elect5(15(342))). This figure shows that our algorithm

completes the broadcasting in 6 steps without redundant messages on A5,2.
Now, we prove that the algorithm Broadcasting algorithm is optimal in the

time and message complexity.

Lemma 4 After applying Phase 1 and 2, Broadcasting algorithm can broad-
cast a message from the source node p in Al

n,k(Firstl(p)) to k−l−1 intermediate
nodes in Al+1

n,k (Firstl+1(p)) and to only one node in each of n−l−1 node-disjoint
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5

15(342)

25(341)

52(341)

32(145)25(341)

52(341)

32(145)

source node
12(345)

45(312)

A  (1)

A  (4)5,2

5,2

5,2

A  (3)5,2

A  (5)

1

1

1

1

1

5

413(542)

14(352)
2

3

1
5,2A  (2)

3

4
21(345)

5

23(541)

2

3

24(351) 43(512)

41(352)

42(315)

5 64

31(245)

34(125)

35(142)

53(241)

54(321)

51(342)

6
5

4

3 4

Figure 3: The broadcasting from the source node 12(345) in A5,2

subgraphs Al+1
n,k (Electi(p)), l + 2 ≤ i ≤ n, in O(lg(n − l)) steps.

Proof: In Phase 1, there are k − l − 1 nodes intermediate p(i), l + 2 ≤ i ≤ k,
that received the message. These nodes belong to Al+1

n,k (Firstl+1(p)). Since
k − l − 1 nodes p(i), l + 2 ≤ i ≤ k, send respectively the message to k − l − 1
node-disjoint subgraphs Al+1

n,k (Electi(p)), l + 2 ≤ i ≤ k, only once in Phase 1,
and there is only one node p(j) which received the message in Phase 2 in each
of n−k node-disjoint subgraphs Al+1

n,k (Electj(p)), k+1 ≤ j ≤ n, the source node
p can broadcast a message to only one node in each of n − l − 1 node-disjoint
subgraphs Al+1

n,k (Electi(p)), l + 2 ≤ i ≤ n.
Let L1 and L2 denote the number of the steps required for the nodes in

Phase 1 and 2 to broadcast the message to each of the other n−l−1 subgraphs
Al+1

n,k only once. Let L denote the number of the steps required for p to complete
the broadcasting procedure of Phase 1 and 2. As shown in Phase 1, since
l + 2 ≤ k + 1 − 2m−1 and l + 2 ≤ I − 2m−1 with max(I) = k, L1 = max{1 +
dlg(k− l−1)e, 2+dlg(k− l−2)e} ≤ 2+dlg(k− l)e. Similarly, L2 ≤ 2+dlg n−l−2

k−l e
as shown in Phase 2. Therefore,

L = L1 + L2 = O(1) + O(lg(k − l) + lg
n − l − 2

k − l
) = O(lg(n − l)) .
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2

Lemma 5 In applying Phase 3, each of k − l − 1 intermediate nodes p(i),
l + 2 ≤ i ≤ k, is the source node in each of k − l − 1 different level subgraphs
Ai−1

n,k (Firsti−1(p)).

Proof: Based on Lemma 2 and 3, it is trivial to prove Lemma 5. 2

Theorem 2 Broadcasting algorithm on Al
n,k can broadcast a message from

the source node to all the other (n−l)!
(n−k)! − 1 nodes in at most O((k − l) lg(n − l))

steps without redundant messages.

Proof: We use induction to prove that Broadcasting algorithm has no redun-
dant messages on Al

n,k. As a basis, it is easy to prove that this algorithm has
no redundant messages for l = k and l = k−1 on Al

n,k since Ak
n,k is only a node

and Ak−1
n,k is a complete graph.

Assume that Broadcasting algorithm has no redundant messages on Al+1
n,k

for 1 ≤ l + 1 ≤ k − 2.
Let p be the source node of broadcasting in Al

n,k(Firstl(p)). Al
n,k(Firstl(p))

can be decomposed into the (l + 1)th level node-disjoint subgraphs as follows.

V l
n,k(Firstl(p)) = V l+1

n,k (Firstl+1(p)) ∪ {
⋃

l+2≤i≤n

V l+1
n,k (Electi(p))}

From Lemma 4, each of Al+1
n,k (Electi(p)), l + 2 ≤ i ≤ n, has a source node after

applying Phase 1 and 2. Hence, Broadcasting algorithm is no redundant
messages on these subgraphs by the inductive hypothesis. From Lemma 5, the
intermediate nodes p(l+2) is the source node in the subgraph Al+1

n,k (Firstl+1(p)).
Based on Lemma 2, Al+1

n,k (Firstl+1(p)) can be decomposed into the lower level
node-disjoint subgraphs as follows.

V l+1
n,k (Firstl+1(p)) = {

⋃

l+2≤i≤n−1

V l+2
n,k (Electi(p(l + 2)))} ∪ V l+2

n,k (Firstl+2(p)) .

Since the intermediate nodes p(l+2) in Phase 3 execute the broadcasting proce-
dure of Phase 1 and 2 except for not sending the message to Al+2

n,k (Electn(p(l+
2))) = Al+2

n,k (Firstl+2(p)), each of Al+2
n,k (Electi(p(l+2))), l+3 ≤ i ≤ n−1, has a

source node after applying Phase 3. Since p(l+2) is in Al+2
n,k (Electl+2(p(l+2)))

and p(i) for l + 3 ≤ i ≤ k is in Al+2
n,k (Electn(p(l + 2))) = Al+2

n,k (Firstl+2(p)),
Broadcasting algorithm has no redundant messages on Al+1

n,k (Firstl+1(p)) by
inductive hypothesis. It is shown that our algorithm can broadcast the message
from the source node to each of the other nodes exactly once on Al

n,k.
Now, we prove that Broadcasting algorithm takes O((k− l) lg(n− l)) steps

to complete broadcasting on Al
n,k. Based on Lemma 4, our algorithm can reduce
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the broadcasting problem size on Al
n,k to the broadcasting problem size on Al+1

n,k

in O(lg(n − l)) steps for 0 ≤ l ≤ k − 1 recursively. Since, in the broadcasting
procedure of our algorithm, Al

n,k is decomposed into its lower level subgraphs
until Ak

n,k, the message is broadcast to all the other nodes on Al
n,k through at

most k − l source nodes in different lower level subgraphs. Let Length denote
the number of the steps required for broadcasting a message on Al

n,k.

Length ≤ (k − l)O(lg(n − l)) = O((k − l) lg(n − l))

2

Theorem 3 Broadcasting algorithm can broadcast a message from the source
node to all the other n!

(n−k)!−1 nodes in at most O(k lg n) steps without redundant
messages on An,k.

Proof: Based on Theorem 2, it is trivial to prove Theorem 3. 2

As shown in Theorem 1, since an optimal broadcasting algorithm requires at
most Ω(k lg n) steps to complete broadcasting on An,k, Broadcasting algorithm
is optimal in the time complexity. Since this algorithm broadcasts a message
only once to each of the other nodes on An,k, it is also optimal in the message
complexity.

4 Conclusion

In this paper, we have presented a one-to-all distributed broadcasting algorithm
for the fault-free arrangement graph interconnection network. This algorithm
is based on the hierarchical property of the arrangement graph. It can broad-
cast a message to all the other nodes on the (n, k)-arrangement graph in at
most O(k lg n) steps. It can also guarantee that each of the other nodes on
the arrangement graph receives the message exactly once. It is shown that
our Broadcasting algorithm can perform the broadcasting on the arrangement
graph with optimal time and message complexity.
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