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Abstract

An orthogonal drawing of a graph is an embedding of the graph in
the two-dimensional grid such that edges are routed along grid-lines. In
this paper we explore lower bounds for orthogonal graph drawings. We
prove lower bounds on the number of bends and, when crossings are not
allowed, also lower bounds on the size of the grid.
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1 Introduction

A graph G = (V, E) is an abstract structure consisting of points (or vertices)
V and connections (or edges) E. Such a structure is found in many industrial
applications, such as networks, production schedules and diagrams. With the
aid of graph drawing, a graph is displayed in visual form, and the underlying
information can be understood easily.

Many years of research have been spent on the development of graph drawing
styles and graph drawing algorithms, see for example [8]. In this paper, we study
orthogonal drawings, i.e., embeddings in the rectangular grid (see Section 2 for a
precise definition). Many criteria are used to judge the quality of an orthogonal
drawing, two of the most important ones are the area and the number of bends.

Orthogonal drawings with vertices drawn as points exist only if every vertex
in the graph has at most four incident edges. Such a graph is called a 4-graph,
or more generally, a graph is called a ∆-graph if the maximum degree of the
graph is at most ∆. In this paper we study only 4-graphs; lower bounds for
graphs with larger degrees, specifically, lower bounds for the complete graph,
have been studied in [6].

The question whether a graph can be embedded in a grid of prescribed size is
NP-complete [9, 13]. Heuristics have been developed that are within a factor of
O(log n) of the minimal area (see [16] for an overview). With respect to planar
drawings of planar graphs, minimizing the number of bends is NP-complete [10],
but if the combinatorial embedding and the outer-face is fixed (the graph has a
fixed planar drawing), then the orthogonal drawing with the minimum number
of bends can be found in O(n7/4

√
log n) time ([20] and [11]) and in linear time

for 3-connected 3-graphs [18].
Another approach to orthogonal graph drawing is to develop simple heuris-

tics and to prove worst-case bounds on the area and the number of bends. See
farther below for an overview. The quality of such heuristics is measured by
comparing them to lower bounds, i.e., to graphs that need at least a certain
grid-size or at least a certain amount of bends in any orthogonal drawing. Some
previous lower bounds have appeared in [12, 14, 19, 21, 22]. In this paper, we
study, and in many cases improve, lower bounds for orthogonal drawings of
4-graphs and 3-graphs.

Many heuristics have been tailored to some particular graph class, for ex-
ample 3-connected planar 3-graphs [12]. To measure the quality of such an
algorithm, one should use a lower bound graph that also falls into this class.
Thus we study many graph classes, distinguishing them by the following pa-
rameters (see Section 2 for formal definitions of technical terms):

• Degree of planarity: A graph can be planar or not. For a planar graph,
there are three possibilities: An algorithm can draw the graph with cross-
ings but using the fact that the graph is planar (non-planar drawing, see
e.g. [15]), it can draw the graph without crossings (planar drawing), or it
can draw the graph without crossings and exactly reflect the fixed planar
drawing of the planar graph (plane drawing).
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• Connectivity: Many heuristics are designed originally for graphs that are
2-connected or even 3-connected, and then extended to 1-connected graphs
(e.g. [5, 12, 17]). In our study we include 4-connected graphs for the sake
of completeness.

• Degree of simplicity: Most heuristics consider only simple graphs. How-
ever, some lower bounds are easier to obtain by proving a lower bound for
a graph with multiedges or loops, and then converting this graph into a
simple graph by subdividing edges. We will thus include multigraphs and
graphs with loops in our discussion.

• Maximum degree: Some heuristics only work on graphs with maximum
degree 3 (e.g. [1, 7, 12, 17]). We will thus study both 4-graphs and
3-graphs.

In Table 1 we list the (to our knowledge) best upper bounds on the grid-size
and the number of bends for simple graphs. We contrast these upper bounds
with the lower bounds, which, if given without citation, will be proved in this
paper.

The paper is outlined as follows: After giving definitions in Section 2, we
first prove lower bounds for non-planar drawings in Section 3 and for non-
planar drawings of planar graphs in Section 4. We continue with lower bounds
for plane drawings in Section 5. Using the same graphs, but considering many
planar drawings, we then obtain lower bounds for planar drawings in Section 6.
Some of the more tedious proofs are deferred to the appendix.

2 Definitions

Let G = (V, E) be a graph with n vertices and m edges. G is called a ∆-graph
if its maximum degree is at most ∆. By subdividing an edge e we understand
that we delete e, add a new vertex (the subdivision vertex), and connect it with
the two endpoints of e.

G is called 1-connected if for any two vertices there exists a path between
them. It is called c-connected, c ≥ 2, if for any c − 1 vertices v1, . . . , vc−1 the
graph remains 1-connected if these vertices are deleted. Menger’s theorem states
that a graph is c-connected if and only if for every pair of vertices there exist
c vertex-disjoint paths connecting them. The connectivity of a graph G is the
maximum number c such that G is c-connected. A ∆-graph has connectivity at
most ∆.

Edges of the form (v, v) are not necessarily forbidden; such edges are called
loops. It is also not necessarily forbidden that two vertices are connected by more
than one edge; such edges are called multiple edges. Edges with multiplicity
two, three and four are called double edge, triple edge, and quadruple edge,
respectively. A graph without loops and multiple edges is called simple. A
graph without loops is called a multigraph. We use the expression degree of
simplicity as categorizing term for “simple graph”, “multigraph”, and “graph
with loops”.
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G is called planar if it has a planar drawing, i.e., a drawing in 2D without
crossing. A planar drawing of a planar graph defines for every vertex v a circular
clockwise ordering of the incident edges of v; the collection of these orderings
is called a combinatorial embedding. A planar drawing splits the plane into
components called faces; the unbounded component is called the outer-face. A
combinatorial embedding of a planar graph defines a planar drawing of it, which
is topologically unique except for the choice of the outer-face. We say that a
planar graph has a fixed planar drawing if both a combinatorial embedding and
an outer-face have been specified.

An orthogonal drawing of G is an embedding of G in the two-dimensional
rectangular grid. More precisely, every vertex is mapped to a grid-point, i.e., a
point with integer coordinates. Every edge is mapped to a path of grid-segments
connecting the two endpoints of the edge. A place where the route of an edge
changes direction is called a bend. No two vertices may be mapped to the same
point. No two edges may use the same grid-segment. No edge may pass through
a grid-point of a non-incident vertex. No two bends may coincide.

An orthogonal drawing is called planar if no routes of edges intersect. It
is called plane if it is planar and reflects the fixed planar drawing of the input
graph. To facilitate notation, we use the term non-planar drawing for a drawing
that may or may not have crossings.

If an orthogonal drawing can be enclosed by a box of width n1 and height n2

we call it a drawing with grid-size n1 × n2 and area n1 · n2. The width is one
less than the number of columns and the height is one less than the number of
rows.

Earlier, we proved the following theorem.

Theorem 1 [4] Let Γ be an orthogonal drawing of a 4-graph G = (V, E) which
has b bends, and uses r rows and c columns. Let |V | = n and |E| = m. Then
(a) max{r, c} ≤ 1

2b + 2n − m, and (b) r + c ≤ b + 2n − m.

3 Non-planar drawings

In this section we study lower bounds for non-planar orthogonal drawings.
Specifically, we present new lower bounds on the number of bends. The area
is lower-bounded by Ω(n2) [22], and we have not succeeded in improving the
constant of this lower bound.

To prove lower bounds on the number of bends, we describe for each case
(depending on connectivity, degree of simplicity, and maximum degree) a class
of graphs. These graphs are built by combining many copies of a small graph
through subdividing edges, identifying vertices and adding edges. We first in-
troduce these small graphs and study their lower bounds. Then we investigate
how subdividing edges affects lower bounds. Finally, we define the graph classes
and prove lower bounds.
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3.1 Lower bounds for small graphs

We use the following small graphs: the loop L, the triple edge T , the quadruple
edge Q, the complete graph on 4 vertices K4, the 4-wheel W , the complete graph
on 5 vertices K5, and the octahedron O. See also Figure 1.

Figure 1: From left to right: L, T , Q, K4, W , K5, and O.

We now prove lower bounds on the number of bends of the small graphs.
Most of these lower bounds were known before, but the argument for their proof
was “by exhaustively checking cases” [19]. Such an argument is dangerous, for
example in the above paper Storer claimed that the graph in his Figure 9 requires
10 bends, but in fact it can be drawn with 8 bends as shown in Figure 2. Thus,
we provide a formal (and tedious) proof for each of these graphs, which can be
safely skipped on first reading.

a

b c

a

b

c

Figure 2: The graph by Storer [19], and an orthogonal drawing of it with 8
bends.

Lemma 1 The following number of bends is required in any orthogonal drawing:
L: 3 bends T : 4 bends Q: 8 bends K4, W : 4 bends K5, O: 12 bends

Proof: In the following proofs, let n and m be the number of vertices and
edges of the graph in question, and let Γ be an arbitrary, but fixed, orthogonal
drawing of the graph. Denote by r, c, and b the number of rows, columns, and
bends of Γ, respectively.

For each graph, we first show a lower bound on r, or on r + c, usually with
the following “cut-argument”: Let C be a column, let V≤(C) be the vertices
placed in C or in a column to the left of C, and let V>(C) be the vertices placed
to the right of C. Any edge between V≤(C) and V>(C) must cross the gap
to the right of column C. Consequently, if the cut (V≤(C), V>(C)) contains k
edges, then there are at least k rows. Then we obtain a lower bound on b by
applying Theorem 1.

The individual claims are proved as follows:
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L: The loop encloses at least one box of the grid, hence uses at least two rows
and two columns. From Theorem 1(b), it follows that b ≥ r+c+m−2n ≥
2 + 2 + 1 − 2 = 3.

T : After possible rotation of Γ, the two vertices are placed in different columns.
Let C be the left column containing a vertex. Then the cut (V≤(C), V>(C))
contains 3 edges. So r ≥ 3, and from Theorem 1(a), it follows that
b ≥ 2r + 2m − 4n ≥ 6 + 6 − 8 = 4.

Q: After possible rotation of Γ, the two vertices are placed in different columns.
Let C be the left column containing a vertex. Then the cut (V≤(C), V>(C))
contains 4 edges. So r ≥ 4, and from Theorem 1(a), it follows that
b ≥ 2r + 2m − 4n ≥ 8 + 8 − 8 = 8.

K4: Let C be the leftmost column containing vertices. If |V≤(C)| ≥ 3, then
there are at least three vertices placed in the column C, so r ≥ 3. If
|V≤(C)| ≤ 2, then there are at least three edges in the cut (V≤(C), V>(C)),
and again r ≥ 3. Applying the same argument to the topmost row contain-
ing vertices, we obtain c ≥ 3. By m = 2n−2, it follows from Theorem 1(b)
that b ≥ r + c + m − 2n = 3 + 3 − 2 = 4.

W : The proof is word by word the same as for K4.

O: Assume first that each column contains at most three vertices. Then, by
scanning columns from left to right, we can find a column C such that
2 ≤ |V≤(C)| ≤ 4. The cut (V≤(C), V>(C)) contains at least six edges, so
r ≥ 6.

If there exists a column containing at least four vertices, then each row
contains at most three vertices by n = 6. Thus we obtain c ≥ 6 with the
same argument as before.

Either way, by Theorem 1(a), b ≥ 2 max{r, c}+2m−4n ≥ 12+24−24 = 12.

K5: Since K5 is not planar, Γ has at least one crossing. Replace this crossing
with a new vertex. We obtain an orthogonal drawing of some simple graph
with six vertices where every vertex has degree 4. This drawing has the
same number of bends as Γ. However, there exists only one simple graph
with six vertices where every vertex has degree 4, namely, the octahedron.
This graph needs 12 bends in any orthogonal drawing, so b ≥ 12.

2

3.2 Subdividing edges

To build large graphs, we subdivide edges of a small graph and then use the
resulting vertices of degree 2 to connect many copies of this small graph by
identifying vertices or adding edges. Thus, we now must study how subdividing
edges affects a lower bound on the number of bends.
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Lemma 2 If graph G needs at least b bends in any orthogonal drawing, and G′

results from subdividing one edge in G, then G′ needs at least b−1 bends in any
orthogonal drawing.

Proof: Let Γ′ be an arbitrary orthogonal drawing of G′, and assume that it has
b′ bends. Removing the subdivision vertex, we obtain a drawing Γ of G. This
drawing inherits all bends of Γ′, and it may have one more bend at the point of
the removed subdivision vertex. By the lower bound on G therefore b′ + 1 ≥ b,
or b′ ≥ b − 1. 2

3.3 Building large graph classes

In this section we give the definitions of the graph classes for lower bounds. For
easier orientation among the excessive number of cases, we use the following
classification scheme: The graphs in graph class N [∆, c, α]

• have maximum degree ∆, ∆ ∈ {3, 4},
• are c-connected, c ∈ {1, 2, 3, 4}, and

• have degree of simplicity α, i.e., they are simple, multigraphs, or may have
loops if α = s, m and l, respectively.

When talking of one particular graph of class N [∆, c, α] we append a pa-
rameter k which relates to the size, i.e., the number of vertices, of the graph.
More precisely, the graph consists of k or 2k copies of one of the small graphs
defined before. To avoid trivial cases, we will consider only graphs with k ≥ 3.

The details of how to build each graph class are given below. To facilitate the
description, we use the following notations. A δ-vertex is a vertex of degree δ.
If there are k copies of a small graph, then they are numbered 1, . . . , k. If
there are 2k copies, then they are numbered (1, 1), . . . , (k, 1), (1, 2), . . . , (k, 2).
All additions are modulo k.

N [4, 4, s](k): Take k copies of K4. Connect two 3-vertices
of copy i to two 3-vertices of copy i+1, i = 1, . . . , k.

N [4, 3, s](k): Take 2k copies of Q. Subdivide three edges
in each copy. Identify a 2-vertex of copy (i, 1) with a 2-
vertex of copy (i, 2), i = 1, . . . , k. Identify a 2-vertex of
copy (i, j) with a 2-vertex of copy (i + 1, j), i = 1, . . . , k,
j = 1, 2.

N [4, 3, m](k): Take 2k copies of Q. Subdivide one edge
once and one edge twice in each copy. Identify a 2-vertex
of copy (i, 1) with a 2-vertex of copy (i, 2), i = 1, . . . , k.
Identify a 2-vertex of copy (i, j) with a 2-vertex of copy
(i + 1, j), i = 1, . . . , k, j = 1, 2.
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N [4, 2, s](k): Take k copies of K5. Subdivide two edges in
each copy. Identify a 2-vertex of copy i with a 2-vertex of
copy i + 1, i = 1, . . . , k.

N [4, 2, m](k): Take k copies of Q. Subdivide two edges in
each copy. Identify a 2-vertex of copy i with a 2-vertex of
copy i + 1, i = 1, . . . , k.

N [4, 2, l](k): Take k copies of L. Connect the vertex of
copy i to the vertex of copy i + 1, i = 1, . . . , k.

N [4, 1, s](k): Take k copies of K5. Subdivide one edge in
each copy. Connect the 2-vertex of copy i to the 2-vertex
of copy i + 1, i = 1, . . . , k − 1.

N [4, 1, m](k): Take k copies of Q. Subdivide one edge in
each copy. Connect the 2-vertex of copy i to the 2-vertex
of copy i + 1, i = 1, . . . , k − 1.

N [3, 3, s](k): Take 2k copies of L. Subdivide the edge
twice in each copy. Connect a 2-vertex of copy (i, 1) to a
2-vertex of copy (i, 2), i = 1, . . . , k. Connect a 2-vertex
of copy (i, j) to a 2-vertex of copy (i + 1, j), i = 1, . . . , k,
j = 1, 2.

N [3, 2, s](k): Take k copies of T . Subdivide two edges in
each copy. Connect a 2-vertex of copy i to a 2-vertex of
copy i + 1, i = 1, . . . , k.

N [3, 2, m](k): Take k copies of L. Subdivide the edge in
each copy. Connect a 2-vertex of copy i to a 2-vertex of
copy i + 1, i = 1, . . . , k.

N [3, 1, s](k): Take k copies of K4. Subdivide one edge in
each copy. Add k − 2 vertices w2, . . . , wk−1. Connect the
2-vertex of copy 1 to w2. Connect the 2-vertex of copy i
to wi, i = 2, . . . , k − 1. Connect the 2-vertex of copy k to
wk−1. (This graph was presented first in [19].)

N [3, 1, l](k): Take k copies of L. Add k − 2 vertices
w2, . . . , wk−1. Connect the 2-vertex of copy 1 to w2. Con-
nect the 2-vertex of copy i to wi, i = 2, . . . , k−1. Connect
the 2-vertex of copy k to wk−1.

One immediately verifies the claims on the maximum degree and degree of
simplicity. The claims on the connectivity will be proved for c = 2, 3, 4 in the
appendix.
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3.4 Lower bounds

Theorem 2 There exist lower bounds for the number of bends of non-planar
orthogonal drawings as indicated below:

Non-planar graphs

Maximum Connec- Degree of simplicity α

degree ∆ tivity c Simple graph Multigraph Graph with loops

4-graph 4 n bends – 1 –
3 10

7 n bends 10
7 n bends –

2 5
3n bends 2 2n bends 3n bends

1 11
6 n bends 7

3n bends 3n bends

3-graph 3 n
3 bends – –

2 n
2 bends 3 n bends –

1 n
2 + 1 bends [19] n bends 3

2n + 3 bends

Proof: For each case of maximum degree ∆, connectivity c and degree of
simplicity α, we list in Table 2 the graph class used for the lower bound. (Note
that for the cases (4, 1, l) and (3, 1, m) we use 2-connected graphs, which are
also 1-connected.)

This table, which contains the proof of the lower bound for each case, should
be read as follows: For each graph class, we start with some small graph which
has, say, nt vertices and needs at least bt bends in any orthogonal drawing by
Lemma 1. We do some number d of subdivisions of edges in each copy; the
small graph with subdivisions then has nd = nt + d vertices and needs at least
bd = bt − d bends by Lemma 2.

To build larger classes, we take q copies of the resulting small graph and
add na vertices. To connect these copies and vertices, we add edges or identify
vertices. Both operations cannot decrease the lower bound on the number of
bends. If we identified i vertices per copy, then each copy now contributes
ni = nd − 1

2 i vertices. The total number n of vertices therefore is qni + na, and
the lower bound b on the number of bends is qbd. Reformulating the latter in
terms of n yields the desired lower bound. 2

Remark: Note that we could have used class N [4, 3, s] to obtain the same
lower bound for case (4, 3, m). We did not do this because N [4, 3, m](k) is planar
while N [4, 3, s](k) is not; this will be exploited in the next section.

4A hyphen signifies that no such graphs exist, at least not for n ≥ 5.
5Storer [19] reported a lower bound of 11

6
n bends, but his proof is incorrect (see also

Figure 2).
6A similar lower bound was proved by Papakostas and Tollis (private communication).
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Non-planar drawings
Case Graph Small graph Subdivide Build Ident. Final graph
(∆, c, α) class nt bt d nd bd q na i ni n b

(4, 4, s) N [4, 4, s] K4 4 4 0 4 4 k 0 0 4 4k 4k=n

(4, 3, s) N [4, 3, s] Q 2 8 3 5 5 2k 0 3 7
2 7k 10k=10

7 n

(4, 3, m) N [4, 3, m] Q 2 8 3 5 5 2k 0 3 7
2 7k 10k=10

7 n

(4, 2, s) N [4, 2, s] K5 5 12 2 7 10 k 0 2 6 6k 10k=5
3n

(4, 2, m) N [4, 2, m] Q 2 8 2 4 6 k 0 2 3 3k 6k=2n

(4, 2, l) N [4, 2, l] L 1 3 0 1 3 k 0 0 1 k 3k=3n

(4, 1, s) N [4, 1, s] K5 5 12 1 6 11 k 0 0 6 6k 11k=11
6 n

(4, 1, m) N [4, 1, m] Q 2 8 1 3 7 k 0 0 3 3k 7k=7
3n

(4, 1, l) N [4, 2, l] L 1 3 0 1 3 k 0 0 1 k 3k=3n

(3, 3, s) N [3, 3, s] L 1 3 2 3 1 2k 0 0 3 6k 2k=n
3

(3, 2, s) N [3, 2, s] T 2 4 2 4 2 k 0 0 4 4k 2k=n
2

(3, 2, m) N [3, 2, m] L 1 3 1 2 2 k 0 0 2 2k 2k=n

(3, 1, s) N [3, 1, s] K4 4 4 1 5 3 k k−2 0 5 6k−2 3k=n
2 +1

(3, 1, m) N [3, 2, m] L 1 3 1 2 2 k 0 0 2 2k 2k=n

(3, 1, l) N [3, 1, l] L 1 3 0 1 3 k k−2 0 1 2k−2 3k=3
2n+3

Non-planar drawings of planar graphs
(4, 4, s) Npl[4, 4, s] W 5 4 0 4 4 k 0 0 5 5k 4k = 4

5n

(4, 3, s) Npl[4, 3, s] O 6 12 3 9 9 2k 0 3 15
2 15k 18k = 6

5n

(4, 2, s) Npl[4, 2, s] O 6 12 2 8 10 k 0 2 7 7k 10k = 10
7 n

(4, 1, s) Npl[4, 1, s] O 6 12 1 7 11 k 0 0 7 7k 11k = 11
7 n

T
able

2:
For

the
proof

of
T

heorem
2

and
3.
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4 Non-planar drawings of planar graphs

In this section we study lower bounds for non-planar drawings of planar graphs.
The interest in such drawings arises from the fact that every planar graph can
be drawn with O(n log2 n) area if crossings are allowed [15], whereas both non-
planar graphs and planar drawings of planar graphs may require Ω(n2) area
([22] and Section 6).

The lower bound for the area of non-planar drawings of planar graphs is
Ω(n log n) [14]. We did not improve on this lower bound, but study here lower
bounds on the number of bends. For the most part, we use the graphs defined
in Section 3.3. As can be seen from the drawings, these graphs are planar, with
the exception of N [4, c, s](k), c = 1, 2, 3, 4.

We now define four graph-classes Npl[4, c, s](k), of c-connected simple planar
4-graphs, using the 4-wheel W and the octahedron O.

Npl[4, 4, s](k): Take k copies of W . Connect two 3-vertices
of copy i to two 3-vertices of copy i + 1, i = 1, . . . , k.

Npl[4, 3, s](k): Take 2k copies of O. Subdivide three edges
on one face of each copy. Identify a 2-vertex of copy (i, 1)
with a 2-vertex of copy (i, 2), i = 1, . . . , k. Identify a 2-
vertex of copy (i, j) with a 2-vertex of copy (i + 1, j), i =
1, . . . , k, j = 1, 2.

Npl[4, 2, s](k): Take k copies of O. Subdivide two edges on
one face of each copy. Identify a 2-vertex of copy i with a
2-vertex of copy i + 1, i = 1, . . . , k.

Npl[4, 1, s](k): Take k copies of O. Subdivide one edge of
each copy. Connect the 2-vertex of copy i with the 2-vertex
of copy i + 1, i = 1, . . . , k − 1.

One immediately verifies that these are indeed simple planar 4-graphs. The
claims on the connectivity will be proved for c = 2, 3, 4 in the appendix.

Theorem 3 There exist lower bounds for the number of bends of non-planar
orthogonal drawings of planar graphs as indicated below:

Non-planar drawings of planar graphs

Maximum Connec- Degree of simplicity α

degree ∆ tivity c Simple graph Multigraph Graph with loops

4-graph 4 4
5n bends – –

3 6
5n bends 10

7 n bends –
2 10

7 n bends 2n bends 3n bends
1 11

7 n bends 7
3n bends 3n bends

3-graph 3 n
3 bends – –

2 n
2 bends n bends –

1 n
2 + 1 bends [19] n bends 3

2n + 3 bends
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Proof: For all graphs except the simple 4-graphs, the lower bound is given by
the same graph class as in Theorem 2 and has been proved there. For the simple
4-graphs, the proof is done in Table 2, which has to be read as explained in the
proof of Theorem 2. 2

5 Plane drawings of planar graphs

In some algorithms for planar orthogonal drawings, e.g. [12, 20], the output
planar orthogonal drawing exactly reflects the input planar drawing, i.e., the
combinatorial embedding and the outer-face. In this section we prove lower
bounds for such plane orthogonal drawings.

5.1 Definition of graph classes

We define new graphs for lower bounds for plane drawings, using the same
classification scheme as before after replacing “N” by “P”. Thus, P [∆, c, α] is a
class of planar c-connected ∆-graphs with degree of simplicity α. We again use
a parameter k that relates to the size of the graph: P [∆, c, α](k) consists of k
edge-disjoint cycles C1, . . . , Ck, which are connected to each other by identifying
vertices or adding edges. To explain the fixed planar drawing of the graph, we
need some terminology. Let e be an edge and let C and C′ be circles. In a
planar drawing, removing the closed Jordan curve defined by C splits the plane
into two open regions, one bounded and one unbounded. Edge e is called inside
circle C if all interior points of the open Jordan curve representing e are in the
bounded open region thus defined by C. In particular, the endpoints of e, but
not e itself, may belong to C. Circle C′ is called inside circle C if all edges
of C′ are inside C. We say that k cycles C1, . . . , Ck are stacked if Ci is inside
Ci+1, i = 1, . . . , k − 1. We fix the combinatorial embedding and outer-face of
P [∆, c, α](k) such that the cycles C1, . . . , Ck are stacked.

To facilitate the notations for the definitions, let an l-cycle be a cycle with
l vertices. If Ci is an l-cycle, then denote its vertices as vi

1, . . . , v
i
l in clockwise

order around the cycle.

P [4, 4, s](k): C1 and Ck are 4-cycles. C2, . . . , Ck−1 are 8-cycles.
Identify vertices v1

1 , v
1
2 , v1

3 , v
1
4 with vertices v2

1 , v
2
3 , v

2
5 , v2

7 . Iden-
tify vertices vi

2, v
i
4, v

i
6, v

i
8 with vertices vi+1

1 , vi+1
3 , vi+1

5 , vi+1
7 , i =

2, . . . , k−2. Identify vertices vk−1
2 , vk−1

4 , vk−1
6 , vk−1

8 with vertices
vk
1 , vk

2 , vk
3 , vk

4 . We have n = 4k−4 and m = 2n.

P [4, 3, s](k): C1 and Ck are 3-cycles. C2, . . . , Ck−1 are 6-cycles.
Identify vertices v1

1 , v
1
2 , v1

3 with vertices v2
1 , v

2
3 , v

2
5 . Identify ver-

tices vi
2, v

i
4, v

i
6 with vertices vi+1

1 , vi+1
3 , vi+1

5 , i = 2, . . . , k−2. Iden-
tify vertices vk−1

2 , vk−1
4 , vk−1

6 with vertices vk
1 , vk

2 , vk
3 . We have

n = 3k − 3 and m = 2n.
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P [4, 3, m](k): Take a copy of P [4, 3, s](k−2). Subdivide two edges
of C1 and add a double edge inside C1. Subdivide two edges of
Ck−2 and add a double edge such that Ck−2 is inside it. We have
n = 3k − 5 and m = 2n.

P [4, 2, s](k): Take a copy of P [4, 2, m](k) defined below. Subdi-
vide one edge of C1 and one edge of Ck. We have n = 2k and
m = 2n − 2. (This graph was presented first in [21].)

P [4, 2, m](k): C1 and Ck are 2-cycles. C2, . . . , Ck−2 are 4-cycles.
Identify vertices v1

1 , v1
2 with vertices v2

1 , v2
3 . Identify vertices

vi
2, v

i
4 with vertices vi+1

1 , vi+1
3 , i = 2, . . . , k − 2. Identify vertices

vk−1
2 , vk−1

4 with vertices vk
1 , vk

2 . We have n = 2k− 2 and m = 2n.
(This graph was presented first in [21].)

P [4, 2, l](k): Take a copy of P [4, 2, s](k − 2). Add a loop inside
C1 at the 2-vertex of C1. Add a loop at the 2-vertex of Ck−2 such
that Ck−2 is inside it. We have n = 2k − 4 and m = 2n.

P [4, 1, m](k): Take a copy of P [4, 1, l](k− 2) defined below. Sub-
divide C1 twice and add a double edge inside C1. Subdivide Ck−2

twice and add a double edge such that Ck−2 is inside it. We have
n = k + 1 and m = 2n.

P [4, 1, l](k): C1 and Ck are 1-cycles. C2, . . . , Ck−2 are 2-cycles.
Identify v1

1 with vertex v2
1 . Identify vi

2 with vertex vi+1
1 , i =

2, . . . , k − 2. Identify vertex vk−1
2 with vk

1 . We have n = k − 1
and m = 2n.

P [4, 1, s](k): This graph class is defined only for k = 3l.
C1, C4, . . . , C3l−2 are 3-cycles. C2, C5, . . . , C3l−1 are 4-cycles.
C3, C6, . . . , C3l are 3-cycles. Identify vertices v3i−2

1 , v3i−2
3 with

vertices v3i−1
1 , v3i−1

3 , i = 1, . . . , l. Identify vertices v3i−1
2 , v3i−1

4

with vertices v3i
1 , v3i

3 , i = 1, . . . , l. Identify vertex v3i
2 with vertex

v3i+1
2 , i = 1, . . . , l − 1. We have n = 5

3k + 1 and m = 2n− 2.

P [3, 3, s](k): C1 and Ck are 3-cycles. C2, . . . , Ck−1 are 6-cycles.
Connect vertices v1

1 , v1
2 , v

1
3 with vertices v2

1 , v
2
3 , v

2
5 . Connect ver-

tices vi
2, v

i
4, v

i
6 with vertices vi+1

1 , vi+1
3 , vi+1

5 , i = 2, . . . , k−2. Con-
nect vertices vk−1

2 , vk−1
4 , vk−1

6 with vertices vk
1 , vk

2 , vk
3 . We have

n = 6k − 6 and m = 3
2n.
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P [3, 2, s](k): Take a copy of P [3, 2, m](k) defined below. Subdi-
vide one edge of C1 and one edge of Ck. We have n = 4k− 2 and
m = 3

2n − 1.

P [3, 2, m](k): C1 and Ck are 2-cycles. C2, . . . , Ck−2 are 4-cycles.
Connect vertices v1

1 , v
1
2 with vertices v2

1 , v2
3 . Connect vertices

vi
2, v

i
4 with vertices vi+1

1 , vi+1
3 , i = 2, . . . , k − 2. Connect ver-

tices vk−1
2 , vk−1

4 with vertices vk
1 , vk

2 . We have n = 4k − 4 and
m = 3

2n.

P [3, 1, m](k): Take a copy of P [3, 1, l](k) defined below. Subdi-
vide the edge of C1 and the edge of Ck. We have n = 2k and
m = 3

2n − 1.

P [3, 1, l](k): C1 and Ck are 1-cycles. C2, . . . , Ck−2 are 2-cycles.
Connect v1

1 with vertex v2
1 . Connect vi

2 with vertex vi+1
1 , i =

2, . . . , k − 2. Connect vertex vk−1
2 with vk

1 . We have n = 2k − 2
and m = 3

2n.

P [3, 1, s](k): This graph class is defined only for k = 2l.
C1, . . . , Ck are 3-cycles. Connect vertices v2i−1

1 , v2i−1
3 with ver-

tices v2i
1 , v2i

3 , i = 1, . . . , l. Connect vertex v2i
2 with vertex v2i+1

2 ,
i = 1, . . . , l − 1. We have n = 3k and m = 3

2n − 1.

One immediately verifies the claims on planarity, maximum degree and de-
gree of simplicity. The claims on the connectivity will be proved for c = 2, 3, 4
in the appendix.

5.2 Lower bounds

Lemma 3 If an orthogonal planar drawing Γ of a graph with n vertices and m
edges contains k stacked cycles, then it has at least 2k rows, 2k columns, and
4k + m − 2n bends.

Proof: Let C1, . . . , Ck be the k stacked cycles. Pick a point p in Γ which is not
on a grid-line and inside cycle C1. When traversing the horizontal ray starting
at p and proceeding towards +∞, we must cross all k stacked cycles. Because p
is not on a grid-line, the horizontal line through p does not intersect any grid-
points, therefore we must cross at least k edges. To accommodate these edges,
there must be at least k columns to the right of p. See Figure 3.

Similarly, there must be at least k columns to the left of p, and at least k
rows above and k rows below p. This proves the claim on the rows and columns.
The claim on the number of bends is then a reformulation of Theorem 1(b). 2



T. Biedl., New Lower Bounds , JGAA, 2(7) 1–31 (1998) 16

≥ k edges

Ck

C2

C1

Figure 3: Going from inside C1 to outside Ck we cross all stacked cycles.

Since the fixed planar drawing of P [∆, c, α](k) contains k stacked cycles, we
obtain immediately the following corollary.

Corollary 4 For any combination of ∆, c, α, k for which P [∆, c, α](k) is de-
fined, P [∆, c, α](k) needs a (2k − 1) × (2k − 1)-grid and 4k + m − 2n bends in
any plane orthogonal drawing.

Theorem 4 There exist lower bounds for plane orthogonal drawings as indi-
cated below, with the first entry in each cell being a lower bound on the grid-size,
and the second entry being a lower bound on the number of bends:

Plane drawings of planar graphs

maximum c Degree of simplicity α

degree ∆ Simple graph Multigraph Graph with loops

4-graph 4 (n
2 +1)×(n

2 +1) – –
n+4 bends – –

3 (2
3n+1)×(2

3n+1) (2
3n+7

3 )×(2
3n+ 7

3 ) –
4
3n+4 bends 10

7 n bends (*) –
2 (n−1)×(n−1) (n+1)×(n+1) (n+3)×(n+3)

2n−2 bends [21] 2n+4 bends [21] 3n bends (*)
1 (6

5n−11
5 )×(6

5n−11
5 ) (2n−3)×(2n−3) (2n+1)×(2n+1)

12
5 n−22

5 bends 4n−4 bends 4n+4 bends

3-graph 3 (n
3 +1)×(n

3 +1) – –
n
3 bends (*) – –

2 n
2×n

2 (n
2 +1)×(n

2 +1) –
n
2 +1 bends n bends (*)

1 (2
3n−1)×(2

3n−1) (n−1)×(n−1) (n+1)×(n+1)
5
6n−1 bends 3

2n−1 bends 3
2n+4 bends
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Graphs n k 2k − 1 m m − 2n b

P [4, 4, s] 4k − 4 1
4n + 1 1

2n + 1 2n 0 n + 4
P [4, 3, s] 3k − 3 1

3n + 1 2
3n + 1 2n 0 4

3n + 4
P [4, 3, m] 3k − 5 1

3n + 5
3

2
3n + 7

3 (*) (*) (*)
P [4, 2, s] 2k 1

2n n − 1 2n − 2 −2 2n− 2
P [4, 2, m] 2k − 2 1

2n + 1 n + 1 2n 0 2n + 4
P [4, 2, l] 2k − 4 1

2n + 2 n + 3 (*) (*) (*)
P [4, 1, s] 5

3k + 1 3
5n − 3

5
6
5n − 11

5 2n − 2 −2 12
5 n − 22

5

P [4, 1, m] k + 1 n − 1 2n − 3 2n 0 4n− 4
P [4, 1, l] k − 1 n + 1 2n + 1 2n 0 4n + 4
P [3, 3, s] 6k − 6 1

6n + 1 n
3 + 1 (*) (*) (*)

P [3, 2, s] 4k − 2 1
4n + 1

2
1
2n 3

2n − 1 − 1
2n − 1 n

2 + 1
P [3, 2, m] 4k − 4 1

4n + 1 1
2n + 1 (*) (*) (*)

P [3, 1, s] 3k 1
3n 2

3n − 1 3
2n − 1 − 1

2n − 1 5
6n − 1

P [3, 1, m] 2k 1
2n n − 1 3

2n − 1 − 1
2n − 1 3

2n − 1
P [3, 1, l] 2k − 2 1

2n + 1 n + 1 3
2n − 1

2n 3
2n + 4

Table 3: For the proof of Theorem 4.

Proof: The results marked (*) are identical to the claims of Theorem 3 and
have been proved in Theorem 2. For all other cases, the lower bounds follow
from reformulating Corollary 4 in terms of the number of vertices. This is done
in Table 3.

We list for all defined graph classes the number of vertices n and reformulate
k in terms of n. This yields the lower bound of 2k − 1 on the width and height
by Corollary 4. Then, if needed, we list m relative to n, and m − 2n, which
allows us to compute the lower bound of the number of bends b = 4k + m− 2n.

2

Remark: One might think that the lower bound for simple 3-connected 4-
graphs could be improved from 4

3n + 4 bends to 10
7 n by using class N [4, 3, s].

However, this is not true because N [4, 3, s](k) is not planar; we could only use
graph Npl[4, 3, s](k), but the lower bound of 6

5n bends for this graph is not
better than the lower bound of 4

3n + 4 shown above.

6 Planar drawings of planar graphs

To the author’s knowledge no research has been done into lower bounds for
planar orthogonal drawings when we can choose the combinatorial embedding
of the graph. We provide such results here. Our main contribution are lower
bounds on the grid-size; we prove lower bounds on the number of bends as well,
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but these are frequently not better than the ones known for non-planar drawings
of planar graphs (Theorem 3).

The difficulty in proving lower bounds for planar drawings lies in the fact
that possible combinatorial embeddings and outer-faces of the graph have to be
tested. We deal with this by using graph classes that have only one possible
combinatorial embedding, up to renaming of vertices. For 4-connected and
3-connected planar graphs, the combinatorial embedding is unique. For the
2-connected planar graphs without loops defined in Section 5.1, one can show
that the combinatorial embedding is also unique up to renaming of vertices.
Unfortunately, the combinatorial embedding is not unique for our graph classes
that have loops or are not 2-connected. For this reason, we will use 2-connected
graphs without loops to obtain lower bounds for 1-connected graphs and graphs
with loops.

In fact, a weaker property than uniqueness of the combinatorial embedding
will suffice for our lower bound argument. This property is detailed in the
following lemma.

Lemma 5 If ∆, c, α, k is a combination for which P [∆, c, α](k) is defined, and
if k ≥ 3, c ≥ 2 and α 6= l, then for any planar drawing of P [∆, c, α](k) there
exists some i, 1 ≤ i < k, such that the cycles C1, . . . , Ci are stacked, and the
cycles Ck, Ck−1, . . . , Ci+1 are stacked.

Proof: For c = 2 this will be proved in the appendix. For c ≥ 3 the combina-
torial embedding is unique, thus in any planar drawing the outer-face F must
be a face in the drawing of Section 5.1. One verifies that there are only three
possibilities for F : It can be C1, it can be Ck, or it can be composed of edges
of two cycles Ci and Ci+1, i ∈ {1, . . . , k − 1} and (for ∆ = 3) edges that were
added to connect Ci and Ci+1. See also Figure 4. In the first case, set i = 1;
in the second case, set i = k − 1, and in the third case, use Ci as defined. One
verifies the claim. 2

C1

Ck

Ck

C1

C1

Ci Ci+1

Ck

Figure 4: Three possibilities for the outer-face: it can be C1, it can be Ck, or it
can be incident to two cycles Ci and Ci+1. Shown here is P [4, 3, s](7).

To obtain a slightly stronger lower bound, we will use only those graphs
P [∆, c, α](k) for which k is odd.
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Lemma 6 If ∆, c, α, k is a combination for which P [∆, c, α](k) is defined, and
if k ≥ 3 is odd, c ≥ 2 and α 6= l, then P [∆, c, α](k) needs a k × k-grid and at
least 4k + m − 2n − (∆ − 2)c bends in any planar orthogonal drawing.

Proof: Let 1 ≤ i < k be such that the cycles C1, . . . , Ci and Ck, . . . , Ci+1 are
stacked (Lemma 5). Let G1 be the graph induced by the vertices in C1, . . . , Ci

and let G2 be the graph induced by the vertices in Ci+1, . . . , Ck.

Ci

Ci+1

G1
G2

Ci

Ci+1

G2

G1

Figure 5: Graph G1 consists of stacked cycles C1, . . . , Ci and G2 consists
of stacked cycles Ck, . . . , Ci+1. Shown here is P [4, 2, m](9) with i = 5 and
P [3, 2, m](7) with i = 4.

Let n1, m1, n2, m2 be the number of vertices and edges of G1 and G2, re-
spectively. Graph G1 has i stacked cycles and hence needs 2i rows, 2i columns
and 4i + m1 − 2n1 bends by Lemma 3. Graph G2 has k − i stacked cycles and
hence needs 2(k − i) rows, 2(k − i) columns and 4(k − i) + m2 − 2n2 bends by
Lemma 3.

For the claim on the grid-size, observe that max{i, k− i} ≥ dk
2 e = k+1

2 since
k is odd, so at least one of G1 and G2 needs k + 1 rows and k + 1 columns, and
thus width and height k.

For the claim on the number of bends, we distinguish by the maximum
degree ∆. If ∆ = 4, then Ci and Ci+1 were connected by identifying at most c
vertices, so n1 + n2 ≤ n + c, m1 + m2 = m, and the number of bends is at least

4i+m1−2n1 +4(k− i)+m2−2n2 ≥ 4k+m−2n−2c = 4k+m−2n− (∆−2)c.

If ∆ = 3, then Ci and Ci+1 were connected by adding c edges, so n1 + n2 = n
and m1 + m2 = m − c, and the number of bends is at least

4i+m1−2n1 +4(k− i)+m2−2n2 = 4k+m− c−2n = 4k+m−2n− (∆−2)c.

Either way, the second claim follows. 2

Theorem 5 There exist lower bounds for plane orthogonal drawings as indi-
cated below, with the first entry in each cell being a lower bound on the grid-size,
and the second entry being a lower bound on the number of bends:
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Planar drawings of planar graphs

Maximum c Degree of simplicity α

degree ∆ Simple graph Multigraph Graph with loops
4-graph 4 (n

4 +1)×(n
4 +1) – –

n − 4 bends – –
3 (n

3 +1)×(n
3 +1) (n

3 +5
3 )×(n

3 +5
3 ) –

4
3n − 2 bends 10

7 n bends (*) –
2 n

2×n
2 (n

2 +1)×(n
2 +1) (n

2 +1)×(n
2 +1)

2n − 6 bends 2n bends 3n bends (*)
1 n

2×n
2 (n

2 +1)×(n
2 +1) (n

2 +1)×(n
2 +1)

2n − 6 bends 7
3n bends (*) 3n bends (*)

3-graph 3 (n
6 +1)×(n

6 +1) – –
n
3 bends (*) – –

2 (n
4 +1

2 )×(n
4 +1

2 ) (n
4 +1)×(n

4 +1) –
n
2 bends (*) n+1 bends (*) –

1 (n
4 +1

2 )×(n
4 +1

2 ) (n
4 +1)×(n

4 +1) (n
4 +1)×(n

4 +1)
n
2 + 1 bends (*) n bends (*) 3

2n+3 bends (*)

Proof: The results marked (*) are identical to the claims of Theorem 3 and
have been proved in Theorem 2. For all other cases, the lower bounds follow
from reformulating Lemma 6 for an appropriate graph class in terms of the
number of vertices. For each case of maximum degree ∆, connectivity c and
degree of simplicity α, we list in Table 4 the used graph class P [∆′, c′, α′](k).

For each graph class P [∆′, c′, α′](k), we list k, which is the lower bound on
the width and height by Lemma 6, and which we computed relative to n already
in Table 3. Where needed, we then compute 4k and m− 2n; the latter is again
taken from the proof of Theorem 4. Finally we compute (∆′ − 2)c′; note that
here we have to take the parameters of the graph class used for the lower bound,
not the parameters of the case under consideration. Combining these values,
we get b = 4k + m − 2n − (∆′ − 2)c′, which is the lower bound on the number
of bends by Lemma 6. 2

7 Remarks and open problems

In this paper we studied lower bounds on the grid-size and the number of bends
for orthogonal drawings. We provided lower bounds for various graph classes,
depending on degree of planarity, maximum degree, connectivity, and degree of
simplicity. In most cases, we gave lower bounds for the first time or considerably
improved previous ones.

Not for all graph classes do there exist specialized algorithms, thus not all
lower bounds can be compared to upper bounds. As far as algorithms do exist,
the upper bounds and lower bounds are generally very close for plane drawings
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Case Graph Grid-size Bends
(∆, c, α) class k 4k m − 2n (∆′−2)c′ b

(4, 4, s) P [4, 4, s] 1
4n + 1 n + 4 0 8 n − 4

(4, 3, s) P [4, 3, s] 1
3n + 1 4

3n + 4 0 6 4
3n − 2

(4, 3, m) P [4, 3, m] 1
3n + 5

3 (*) (*) (*) (*)
(4, 2, s) P [4, 2, s] 1

2n 2n −2 4 2n − 6
(4, 2, m) P [4, 2, m] 1

2n + 1 2n + 4 0 4 2n

(4, 2, l) P [4, 2, m] 1
2n + 1 (*) (*) (*) (*)

(4, 1, s) P [4, 2, s] 1
2n 2n −2 4 2n − 6

(4, 1, m) P [4, 2, m] 1
2n + 1 (*) (*) (*) (*)

(4, 1, l) P [4, 2, m] 1
2n + 1 (*) (*) (*) (*)

(3, 3, s) P [3, 3, s] 1
6n + 1 (*) (*) (*) (*)

(3, 2, s) P [3, 2, s] 1
4n + 1

2 (*) (*) (*) (*)
(3, 2, m) P [3, 2, m] 1

4n + 1 (*) (*) (*) (*)
(3, 1, s) P [3, 2, s] 1

4n + 1
2 (*) (*) (*) (*)

(3, 1, m) P [3, 2, m] 1
4n + 1 (*) (*) (*) (*)

(3, 1, l) P [3, 2, m] 1
4n + 1 (*) (*) (*) (*)

Table 4: For the proof of Theorem 5.

(with the exception mentioned below). For planar drawings, the upper and
lower bounds are close with respect to the number of bends, but do not match
with respect to the grid-size. Our conjecture is here that the upper bounds
should be improved, as most algorithms do not change the embedding of the
planar graphs, or not by much. Finally, much work remains to be done for
non-planar drawings, in particular with respect to improving the lower bound
on the area.

Some remaining open problems are the following:

• For which classes can the lower bounds be improved? In particular, are
there better lower bounds for planar drawings of 1-connected graphs? Are
there better lower bounds on the area of non-planar drawings?

• We verified that the presented graph classes indeed have an orthogonal
drawing which matches the lower bounds, up to a small additive constant,
with two exceptions:

– We did not find a drawing of N [4, 4, s](k) with less than 3
2n bends, or

a drawing of Npl[4, 4, s](k) with less than 6
5n bends, and conjecture

that these numbers are the correct lower bound on the number of
bends. How can this be shown?
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– The lower bound on the grid-size for planar orthogonal drawings is
computed by taking the maximum of the two subgraphs defined by
the two sets of stacked cycles. However, this disregards that both
subgraphs need grid-space. Intuitively, one would think that if one
subgraph needs 2i rows and columns, and the other subgraph needs
2k − 2i rows and columns, then, to place the drawings next to each
other, one needs at least 2k rows or columns, thus yielding a lower
bound of roughly a k × 2k-grid.
This agrees with our experience of trying to draw the planar graphs
while changing the outer-face. However, to prove this lower bound,
one would have to show that each subgraph “almost completely” fills
its grid in any drawing. What is the appropriate definition of “almost
completely”, and how can this be shown?

• No algorithms are known that use the fact that a graph is 4-connected.
No algorithms are known for non-planar 3-connected graphs. Certainly,
drawings of such graphs can be obtained by applying an algorithm for
graphs of lower connectivity, but could the upper bounds be improved
with specialized algorithms for graphs of high connectivity?

• Are there better upper bounds for plane drawings of 1-connected 3-graphs?
The algorithm by Kant [12] does not work, as it may change the combi-
natorial embedding. (This can be seen already from the fact that Kant’s
algorithm achieves n

2 +1 bends, while the lower bound for plane drawings
of 3-graphs is 5

6n − 1 bends.) The cited upper bound results from an
algorithm for 4-graphs [2], and can thus likely be improved.

• The algorithm by Leiserson [15] creates small non-planar drawings of pla-
nar graphs, but has not been analyzed with respect to the constants in-
volved in the area, and with respect to the number of bends. Is there an
algorithm that draws every planar graph in O(n log2 n) area (preferably
with small constant) and with at most 11

7 n bends?
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A Connectivity-proofs

We now prove the claims on the connectivity for c = 2, 3, 4. To limit the
excessive number of cases, we restrict the attention to the simple graphs, and
leave the rest to the reader.

We use the following notations: Two paths P1 and P2 will be called fully
vertex-disjoint if no vertex belongs to both P1 and P2, and weakly vertex-disjoint
if P1 and P2 may begin or end at the same vertex, but are otherwise vertex-
disjoint.

A.1 Graphs N [∆, c, α](k) and Npl[∆, c, α](k)

A.1.1 4-connectivity

Lemma 7 N [4, 4, s](k) is 4-connected for all k ≥ 2.

Proof: Recall that N [4, 4, s](k) was built using k copies K1
4 , . . . , Kk

4 of K4. Let
the four vertices of Ki

4 be vi
1, v

i
2, v

i
3 and vi

4, named such that the added edges are
(vi

2, v
i+1
1 ) and (vi

4, v
i+1
3 ), i = 1, . . . , k (addition is modulo k). See Figure 6(a).

Let w1 and w2 be two arbitrary vertices of N [4, 4, s](k). We will show that
there are four weakly vertex-disjoint paths from w1 to w2; this proves the claim
by Menger’s theorem. By symmetry we may assume that w1 belongs to K1

4 .
Let l be such that w2 belongs to K l

4.
If l > 1, then define the following four fully vertex-disjoint paths connecting

the four vertices of K1
4 with the four vertices of K l

4 (see Figure 6(a)):

• v1
2 − v2

1 − v2
2 − v3

1 − . . . − vl−1
2 − vl

1,

• v1
4 − v2

3 − v2
4 − v3

3 − . . . − vl−1
4 − vl

3,

• v1
1 − vk

2 − vk
1 − vk−1

2 − . . . − vl+1
1 − vl

2, and

• v1
3 − vk

4 − vk
3 − vk−1

4 − . . . − vl+1
3 − vl

4,

v1
1

v1
3

v1
2

v1
4

vl
1 vl

2

vl
3 vl

4

(a)

v1
1

v1
3

v1
2

v1
4

(b)

Figure 6: N [4, 4, s](k) is 4-connected: (a) Four fully vertex-disjoint paths can be
found between K1

4 and K l
4, and (b) N [4, 4, s](k), k ≥ 2 contains a subdivision

of K5.

For each of these paths, vertex w1 either is its endpoint in K1
4 , or is incident

to its endpoint in K1
4 , and w2 either is its endpoint in K l

4 or incident to the
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endpoint in K l
4. Thus, the four paths can be completed to four weakly vertex-

disjoint paths connecting w1 and w2.
If l = 1, then for k ≥ 2 N [4, 4, s](k) contains a subdivision of K5 such that

each vertex in K1
1 is mapped to a vertex of K5. See Figure 6(b). Four weakly

vertex-disjoint paths exist between any two vertices in a K5, and therefore also
between any two vertices in K1

4 . 2

Lemma 8 Npl[4, 4, s](k) is 4-connected for k ≥ 2.

Proof: The proof the same as the proof of the above lemma, except that the
4-wheel W plays the role of K4 and the octahedron O plays the role of K5.
Recall that Npl[4, 4, s](k) was built using k copies W 1, . . . , W k of W . Let the
five vertices of W i be vi

1, . . . , v
i
5, named such that the added edges are (vi

2, v
i+1
1 )

and (vi
4, v

i+1
3 ), i = 1, . . . , k (addition is modulo k). See Figure 7(a).

Let w1 and w2 be two arbitrary vertices of Npl[4, 4, s](k). We will show that
there are four weakly vertex-disjoint paths from w1 to w2; this proves the claim
by Menger’s theorem. By symmetry we may assume that w1 belongs to W 1.
Let l be such that w2 belongs to W l.

If l > 1, then define the same four fully vertex-disjoint paths between W 1

and W l as in the proof of Lemma 7; see also Figure 7. Every vertex in W can
be connected to the four vertices of degree 3 with four weakly vertex-disjoint
paths. Thus, the four paths above can be completed to four weakly vertex-
disjoint paths connecting w1 and w2.

If l = 1, then for k ≥ 2 Npl[4, 4, s](k) contains a subdivision of the octahedron
O such that every vertex of W 1 is mapped to a vertex of O. See Figure 7(b).
Because the octahedron is a triangulated planar graph without a separating
triangle, it is 4-connected. Thus four weakly vertex-disjoint paths exist between
any two vertices in an octahedron, and therefore also between any two vertices
in W 1. 2

v1
1

v1
3

v1
2

v1
4

vl
1 vl

2

vl
3 vl

4

v5
1

(a)

v1
1

v1
3

v1
2

v1
4

(b)

Figure 7: Npl[4, 4, s](k) is 4-connected: (a) Four vertex-disjoint paths can be
found between W 1 and W l, and (b) Npl[4, 4, s](k), k ≥ 2 contains a subdivision
of the octahedron.
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A.1.2 3-connectivity

Lemma 9 N [4, 3, s](k) is 3-connected for k ≥ 3.

Proof: In Figure 8(a) we show the k-prism Pk which has 2k vertices. This
graph is 3-connected for k ≥ 3, because it is the graph of a convex polyhedron
(see also Figure 10). N [4, 3, s](k) can be derived from Pk as follows: Subdivide
all edges of Pk and replace each original vertex with a quadruple edge with three
edges subdivided.

(a)

p1,1

p2,1

p1,2

p2,2 p2,3

p1,3 p1,4

p2,4

(b) (c)

Figure 8: (a) The k-prism (k = 4 in this example). (b) By subdividing the edges
of a k-prism, and (c) substituting a subdivided quadruple edge for each vertex
of the k-prism, we obtain N [4, 3, s](k). This graph contains a subdivision of the
k-prism.

Let w1 and w2 be two arbitrary vertices of N [4, 3, s](k). We will show that
there are three weakly vertex-disjoint paths from w1 to w2; this proves the claim
by Menger’s theorem.

Let pi,j be the vertex in the ith row and jth column of Pk as shown in
Figure 8(a). Let Qi,j be the subdivided quadruple edge that replaces pi,j in
N [4, 3, s](k).

Assume first that w1 and w2 belong to different copies of the subdivided
quadruple edge, say w1 belongs to Qi1,j1 and w2 belongs to Qi2,j2 . There are
three weakly vertex-disjoint paths from pi1,j1 to pi2,j2 in Pk because Pk is 3-
connected. These paths can be transformed to three fully vertex-disjoint paths
in N [4, 3, s](k) between the three subdivision vertices of Qi1,j1 and the three
subdivision vertices of Qi2,j2 , because N [4, 3, s](k) contains a subdivision of
the k-prism (see Figure 8(c) and Figure 9). From every vertex in Qi,j we
can find three weakly vertex-disjoint paths to the three subdivision-vertices of
Qi,j , therefore we can complete the paths to three weakly vertex-disjoint paths
connecting w1 and w2.

Now assume that w1 and w2 belong to the same copy of the subdivided
quadruple edge. If one of w1 or w2 is a subdivision vertex, then it also belongs
to some other copy of a subdivided quadruple edge and we are done by the
above case. So w1 and w2 are the original vertices of the quadruple edge, and
hence connected by three (actually, four) weakly vertex-disjoint paths within
the quadruple edge. 2
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Figure 9: For any two vertices, we can find three weakly vertex-disjoint paths in
the k-prism, and therefore also three fully vertex-disjoint paths in N [4, 3, s](k).

The proof that Npl[4, 3, s](k) is 3-connected for k ≥ 2 is identical to the
above proof, except that octahedron replaces the quadruple edge. We leave the
details to the reader.

Lemma 10 N [3, 3, s](k) is 3-connected for k ≥ 3.

Proof: In Figure 10 we show a polyhedron, the graph of which is the k-prism.
Cutting off each corner of this polyhedron, we obtain a polyhedron the graph
of which is N [3, 3, s](k), so this graph is triconnected. 2

Figure 10: By cutting off the corners of the k-prism, we obtain the polyhedron
of N [3, 3, s](k).

A.1.3 2-connectivity

Lemma 11 N [4, 2, s](k) , Npl[4, 2, s](k), and N [3, 2, s](k) are 2-connected for
k ≥ 2.

Proof: As shown in Figure 11, these graphs are Hamiltonian, i.e., they have a
simple cycle with n vertices. Any Hamiltonian graph is 2-connected. 2

Figure 11: N [4, 2, s](k), Npl[4, 2, s](k), and N [3, 2, s](k) are Hamiltonian.
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A.2 Graphs P [∆, c, α](k)

Lemma 12 P [4, c, s](k), c = 3, 4 is c-connected for k ≥ 3.

Proof: Recall that P [4, c, s](k), c = 3, 4 consists of k stacked cycles C1, . . . , Ck

and that vertex vp
j is the jth vertex in clockwise order of cycle Ci. As a first

step, define a path connecting v1
j with vk

j , j = 1, . . . , c as

v1
j =v2

2j−1 − v2
2j=v3

2j−1 − v3
2j=v4

2j−1 − . . . vk−2
2j =vk−1

2j−1 − vk−1
2j =vk

j .

See also Figure 12. These c fully vertex-disjoint paths will be called spirals.

Figure 12: The spirals of P [4, 4, s](6) and P [4, 3, s](5).

Next, we show that for any vertex w and any spiral S that does not contain
w, there are four weakly vertex-disjoint paths from w to a vertex in S. Let w
belong to cycle Ci; since every vertex belongs to two cycles and by k ≥ 3 we
can choose i such that 1 < i < k. Two neighbors of w are on Ci−1, thus we
can find two weakly vertex-disjoint paths from w to a vertex in S ∩ Ci−1 using
edges of Ci−1. Two neighbors of w are on Ci+1, thus we can find two weakly
vertex-disjoint paths from w to a vertex in S ∩ Ci+1 using edges of Ci+1. See
Figure 13.

w

S

w

S

Figure 13: Any vertex w not in S has four weakly vertex-disjoint paths to a
vertex in S.

Let w1, . . . , wc−1 be c − 1 arbitrary vertices of P [4, c, s](k). We will show
that the graph that results from removing these vertices is connected, hence
P [4, c, s](k) is c-connected.
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Since c − 1 vertices are removed, but there are c spirals, at least one spiral,
say S, remains intact. Let w be an arbitrary vertex 6= w1, . . . , wc−1. Then either
w ∈ S, or there were four weakly vertex-disjoint paths from w to a vertex in S
in P [4, c, s](k). By c ≤ 4, and because no vertex in S is removed, one of these
paths remains intact after removing w1, . . . , wc−1, so w is connected to a vertex
in S. Thus, all vertices in the remaining graph are either in S, or connected to
S, and S itself is connected, so the remaining graph is connected. 2

Lemma 13 P [3, 3, s](k) is 3-connected for k ≥ 2.

Proof: The proof is the same as in Lemma 12 with two exceptions: (a) The
spirals are defined differently, because Ci and Ci+1 are now connected by added
edges rather than identified vertices. (b) For any vertex w and any spiral S with
w 6∈ S, there are only three weakly vertex-disjoint paths from w to vertices in S.
These paths use the cycle Ci containing w, and either Ci+1 or Ci−1 (whichever
one contains a neighbor of w). See Figure 14. 2

S

w

Figure 14: The new definition of spirals, and the three vertex-disjoint paths
from w to vertices in spiral S.

Lemma 14 P [4, 2, s](k) and P [3, 2, s](k) are 2-connected for k ≥ 2.

Proof: As shown in Figure 15, these graphs are Hamiltonian. Any Hamiltonian
graph is 2-connected. 2

Figure 15: P [4, 2, s](k) and P [3, 2, s](k) are Hamiltonian.
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B Many stacked cycles

In this section, we prove Lemma 5 for the case c = 2, i.e., we prove that in any
planar drawing of P [∆, 2, α](k), α 6= l, k ≥ 3, there exists an i, 1 ≤ i < k such
that the cycles C1, . . . , Ci and the cycles Ck, . . . , Ci+1 are stacked. We do this
in detail for P [4, 2, m](k), k ≥ 3, and then sketch the proof for the other graph
classes.

Recall that P [4, 2, m](k) consists of k cycles C1, . . . , Ck, where C1 and Ck

have length 2 while all other cycles have length 4. In the original planar drawing,
these cycles were stacked, i.e., all edges of Ci were inside Ci+1, i = 1, . . . , k − 1.
Let from now on an arbitrary planar drawing of P [4, 2, m](k) be fixed. We will
use the notion of outside: An edge is outside a cycle C if it is not an edge of C
and not inside C. A cycle C′ is outside a cycle C if all edges of C′ are outside C.

Claim 1 For 1 ≤ i < k, Ci is either inside or outside Ci+1.

Proof: Assume to the contrary that there exists an i such that some edges of
Ci are inside Ci+1 and some are outside Ci+1. By k ≥ 3, we have i > 1 or
i + 1 < k. We assume the former, the other case is proved similarly using cycle
Ci+2. So assume i > 1, thus Ci is a 4-cycle with vertices vi

1, v
i
2, v

i
3, v

i
4; vertices

vi
2 and vi

4 also belong to Ci+1.
Because we have a planar drawing, and some edges of Ci are inside and some

are outside Ci+1, one vertex of Ci which is not in Ci+1, say vi
1, must be inside

Ci+1, and the other such vertex vi
3 must be outside Ci+1.

By i > 1, vertices vi
1 and vi

3 both belong to Ci−1 and are thus connected
with a path P using only edges of Ci−1. This path thus leads from inside Ci+1

(at vi
1) to outside Ci+1 (at vi

3). Because Ci+1 and Ci−1 are vertex-disjoint, this
path must cross Ci+1 at an edge, a contradiction to planarity. See Figure 16(a).

2

Claim 2 For 1 < i < k, either Ci+1 or of Ci−1 must be inside Ci.

Proof: Let vi
1, . . . , v

i
4 be the four vertices of Ci. Assume that Ci+1 and Ci−1

are both not inside Ci, so they are both outside Ci by Claim 1. In the induced
planar drawing of the subgraph consisting of Ci, Ci−1 and Ci+1, cycle Ci then
is a face. Add an extra vertex v5 inside this face and connect it to the vertices
of Ci. Thus, using edges of the three circles, we obtain a planar drawing of K5,
a contradiction. See Figure 16(b). 2

Now we are ready to prove the main claim for P [4, 2, m](k), k ≥ 3.

Lemma 15 In any planar drawing of P [4, 2, m](k), k ≥ 3, there exists an
i, 1 ≤ i < k, such that the cycles C1, . . . , Ci are stacked, and the cycles
Ck, Ck−1, . . . , Ci+1 are stacked.

Proof: Let i be the smallest integer for which not all edges of Ci are inside
Ci+1; i = k−1 if no such integer exists. Thus, the cycles C1, . . . , Ci are stacked.
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?
P

(a)

vi
1

vi
3

vi
2

Ci+1

vi
4

Ci

part of Ci+1

part of Ci−1

(b)

Ci
vi
3

vi
2 v5

vi
4

vi
1

Figure 16: (a) Edges of Ci cannot be both inside Ci+1 and outside Ci+1, oth-
erwise cycle Ci−1 would cause a crossing. (b) One of Ci−1 and Ci+1 must be
inside Ci, otherwise there would be a planar drawing of a K5.

If i = k−1 then nothing is left to prove. If i < k−1, then not all edges of Ci

are inside Ci+1, so Ci is not inside Ci+1, so by Claim 1 Ci is outside Ci+1. By
Claim 2, therefore Ci+2 must be inside Ci+1, which means that Ci+1 is outside
Ci+2. Applying induction, one shows that for j = i + 1, . . . , k − 1, Cj is outside
Cj+1; thus the cycles Ck, . . . , Ci+1 are stacked. 2

Lemma 16 In any planar drawing of P [3, 2, m](k), k ≥ 3, there exists an
i, 1 ≤ i < k, such that the cycles C1, . . . , Ci are stacked, and the cycles
Ck, Ck−1, . . . , Ci+1 are stacked.

Proof: The proof is similar to the one of the previous lemma; we will only
sketch an outline here. Claim 1 holds by planarity because Ci and Ci+1 are
vertex-disjoint. Claim 2 holds because otherwise we could again construct a
planar drawing of K5. Exactly as in the proof of Lemma 15 we can thus find
the integer i. 2

Lemma 17 In any planar drawing of P [4, 2, s](k) and P [3, 2, s](k), k ≥ 3, there
exists an i, 1 ≤ i < k, such that the cycles C1, . . . , Ci are stacked, and the cycles
Ck, Ck−1, . . . , Ci+1 are stacked.

Proof: These simple graphs are obtained by subdividing two edges of the cor-
responding multigraph. For any planar drawing of the simple graph, we can
remove the subdivision vertices and obtain a planar drawing of the multigraph;
the claim thus holds by the above lemmas. 2


