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Abstract

The paper considers representations of unions and products of trees as
rectangle-visibility graphs (abbreviated RVGs), i.e., graphs whose vertices
are rectangles in the plane, with adjacency determined by horizontal and
vertical visibility. Our main results are that the union of any tree (or
forest) with a depth-1 tree is an RVG, and that the union of two depth-2
trees and the union of a depth-3 tree with a matching are subgraphs of
RVGs. We also show that the cartesian product of two forests is an RVG.
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1 Introduction

In this paper we study aspects of the question of how to represent a graph in the
plane as a rectangle-visibility graph (RVG for short). In such a representation
the vertices are drawn as rectangles with horizontal and vertical sides, and
two vertices are adjacent if and only if their rectangles can be connected by a
horizontal or vertical band of positive width that intersects no other rectangle.
We call such a representation an RVG layout of the graph. Shermer [11] has
shown that it is NP-complete to determine if a graph is an RVG, and so it is
of interest to determine classes of graphs that are and are not RVGs. There
is now a considerable body of research on RVGs; for results and applications
see [5, 6, 3, 4, 2] and others.

The focus of this paper is those graphs whose edges can be partitioned into
particular types of trees (or forests); we say then that the graph is the union
of these trees. An RVG is seen to be the union of two planar graphs (i.e., has
thickness at most two) by considering the vertical and horizontal edges in its
layout, and so the union of two trees is potentially an RVG. In addition to being
planar, a tree has a natural representation as a bar-visibility graph (or BVG), in
which each vertex is represented by a horizontal bar, and two bars are adjacent
if they can be connected by a vertical band of positive width that intersects
no other bar; BVGs are well understood and can be recognized in polynomial
time [12, 13]. The horizontal and vertical edges of an RVG decompose it into a
union of two BVGs . This leads to the question of when a union of two BVGs
is an RVG; our question is when the union of two trees is an RVG. The union
of two trees has at most 2n − 2 edges, when the union has n vertices, and this
edge-bound is well below the bound of 6n − 20 edges for general RVGs [5, 6];
however, in the same papers it is shown that for each n ≥ 9 and m ≥ 35 there is
a thickness-2 graph with n vertices and m edges that is not an RVG. The union
of two trees has clique number at most 4, and it is possible to lay out K8 as an
RVG; however, again it is not hard to construct graphs with clique number 4
and at most 2n − 2 edges that are not RVGs.

Since a planar graph is an RVG [13] and has arboricity at most 3 [9] (i.e.,
it is the union of three or fewer forests), one might hope that a union of two
trees might be “nearly planar,” and thus be an RVG. In [10] it is shown that
a union of three trees can have thickness greater than 2, and more recently
Bjorling-Sachs and Shermer [1] have constructed an example showing that the
union of two trees needn’t be an RVG. In [2] certain types of unions of trees,
as well as certain classes of k-trees, are shown to be RVGs. Here we look at
classes of tree-unions that are described primarily by the depth of one or both of
the component trees, i.e., by the maximum distance from vertex to root in each
tree. For instance, the example of [10] shows that the union of three depth-2
trees need not have thickness 2. Our main results are that the union of any tree
(or forest) with a depth-1 tree is an RVG, and that the union of two depth-2
trees and the union of a depth-3 tree with a matching are subgraphs of RVGs.
We also show that the cartesian product of two forests is an RVG.
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2 Background and definitions

Throughout the paper we use terminology established in [12, 13] for bar-visibility
graphs, and in [3, 4, 2] and others for rectangle-visibility graphs. We call a
graph G a bar-visibility graph (BVG for short) if its vertices can be represented
by closed horizontal line segments in the plane, nonintersecting except possibly
at endpoints, in such a way that two vertices are adjacent if and only if there
is a vertical visibility band joining the corresponding segments. By a visibility
band we mean a nondegenerate rectangle, with opposite sides subsets of the two
segments, and intersecting no other segments. Such a collection of segments is
called a BVG layout of G.

BVGs are easily seen to be planar graphs and have been characterized as
those planar graphs having a planar embedding with all cut-points lying on a
common face [12, 13]. It is also easy to see that any tree (or forest) is a BVG; in
a standard tree layout, choose a root for the tree and represent it by a horizontal
line segment, and represent each remaining vertex as a segment lying below the
segment representing its parent; for forests put BVG layouts for the component
trees side by side.

A graph G is called a rectangle-visibility graph (RVG for short) if its vertices
can be represented by closed rectangles in the plane that have horizontal and
vertical sides and are pairwise disjoint except possibly along their boundaries,
in such a way that two vertices are adjacent if and only if there is a vertical
or horizontal band of visibility joining the two rectangles. BVGs are easily
seen to be a subclass of RVGs, by fattening the horizontal segments of a BVG
layout into rectangles, and staggering them vertically to avoid any horizontal
visibilities; Wismath [13] has shown that every planar graph is an RVG. By
partitioning the edges of an RVG according to horizontal and vertical visibilities,
it is clear that every RVG has thickness at most 2; in other words, its edges
can be partitioned into two sets, each of which induces a planar graph. More
generally, the thickness of a graph G, denoted θ(G), is the least number of
sets into which its edges can be partitioned so that each set induces a planar
subgraph of G. By results of [3, 4, 5, 6] it is known that not every thickness-2
graph is an RVG.

An RVG (resp., BVG) layout is called noncollinear if no two rectangles
have collinear sides (resp., no two segments have endpoints with the same x-
coordinate). A graph having such a layout is called a noncollinear RVG (resp.,
noncollinear BVG), or NCRVG (resp., NCBVG) for short. In [8] a character-
ization of NCBVGs is given that shows them to be a strict subclass of BVGs;
in [3, 4] it is shown that NCRVGs form a strict subclass of RVGs.

A graph G is called a weak RVG (resp., BVG) if it is a subgraph of an RVG
(resp., BVG); in other words, G has a layout in which every edge corresponds
to a visibility band, but there may also be visibility bands that correspond to
edges not in G. Thus RVGs (resp., BVGs) comprise a subclass of weak RVGs
(resp., weak BVGs). In [13, 12] it is shown that the class containment is strict
for BVGs, and in [3, 4] it is shown to be strict for RVGs.

It is easy to see that the standard BVG layout described above for trees
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can be constructed in a noncollinear manner, and that such a layout can be
modified to give an NCRVG layout for any tree or forest. In what follows we
will make use of a special form of such a layout, which we call a “standard
diagonal arrangement.” In laying out a tree T , we represent each vertex of T
as a rectangle (or square) contained in a rectangular area; for contrast we call
these rectangular areas “boxes” and will indicate how and where to place the
(vertex-) rectangles in a suitable box or subbox. If a vertex v is represented as
a rectangle R, we typically represent its children as squares lying in a (square)
box S below or to the right of R (although there will be some exceptions to
this scheme). We choose a positive integer d so that T is a subtree of a d-ary
tree, and we subdivide S into d2 subboxes. We represent the children of v as
squares, each a strict subsquare of one of the d boxes along the main diagonal.
Thus we retain noncollinearity and v can see between any two of its children.
Such an arrangement is called a “standard diagonal arrangement” (abbreviated
SDA) of the children of v. Figure 1 shows an SDA layout of a depth-2 tree, in
which depth-1 vertices lie below the root, and depth-2 vertices lie to the right
of their depth-1 parents.

R

depth-1

root

depth-2

Figure 1: SDA layout of a depth-2 tree

We make several observations about the SDA. First, such an arrangement
induces both a vertical and a horizontal ordering of the children of v. Second,
if all descendants of the root are arranged in SDAs below or to the right of
their parent, then all vertices in the layout retain both east- and south-visibility,
meaning there are regions in which they see nothing to the east and nothing
to the south. Third, note that if the children of a vertex v are in an SDA in a
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box S below the rectangle representing v, then a child can be moved vertically
up or down in S without altering its visibility to v and without altering its
horizontal ordering as a child of v (of course moving it may cause it to become
horizontally visible to other vertices). An analogous observation holds if v sees
its children in an SDA to its right. If the layout is such that each vertex sees its
children in an SDA to its south (resp., east), then we call the layout a standard
vertical NCRVG tree layout (resp., standard horizontal NCRVG tree layout).
These standard layouts are extended to forests by laying out each component
southeast of the previous one.

Throughout we use lower-case letters to refer to vertices and upper-case
letters for the rectangles representing those vertices and for the surrounding
boxes; for example, we use X to denote the rectangle representing the vertex x,
placed within a box A. If A and B are disjoint boxes with the same dimensions,
and S is a subbox of A, then by the “box in B corresponding to S” we mean
the subbox T of B that has the same dimensions as S and the same relative
position in B as S has in A. We sometimes use subscripts to indicate the depth
of a vertex in a tree. For example, if T is a d-ary tree with root r, then we
typically denote the children of r by xi, and the children of xi by xi,j , where
the indices i, j run from 1 to d.

The results in this paper are primarily concerned with graphs that are
combinations of certain types of trees, particularly unions and products of
trees. By the union of two graphs, G1 ∪ G2, we mean the graph G with
V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2). The sets V (G1) and
V (G2) (resp., E(G1) and E(G2)) may or may not have elements in common.
In contrast, we say that a graph G can be decomposed into the subgraphs G1

and G2 if V (G) = V (G1) = V (G2) and E(G) is the disjoint union of E(G1) and
E(G2). Note that if G can be decomposed into G1 and G2 then G = G1 ∪ G2,
but the converse need not hold.

The cartesian product (or simply product) of the graphs G1 and G2, denoted
G1 × G2, is the graph with vertex set V (G1 × G2) = V (G1) × V (G2) and with
vertices (u1, u2) and (v1, v2) adjacent if either u1 = v1 and (u2, v2) ∈ E(G2) or
u2 = v2 and (u1, v1) ∈ E(G1). By analogy with the product of a subset of the
x-axis with a subset of the y-axis, a horizontal (resp., vertical) edge of G1×G2 is
one that connects vertices with the same G2-coordinate (resp., G1-coordinate).
The n-dimensional hypercube, denoted Qn, is defined recursively as a cartesian
product: Q1 = K2, the complete 2-vertex graph, and Qn+1 = Qn × Q1, for
n ≥ 1.

A caterpillar is a tree containing a simple path P such that every vertex
not on P is distance one from P . A caterpillar forest is a forest in which every
component is a caterpillar. In [2] it is shown that if a graph G is a union of two
caterpillar forests, then G is an NCRVG. The proof uses the fact that a BVG
layout of a caterpillar forest can be projected onto an interval graph in which
no more than two intervals have common intersection; the cartesian product of
the two interval graphs gives an NCRVG layout of G.

Theorem 1 (The Caterpillar theorem [2]) If G is the union of two caterpillar
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forests, then G is a noncollinear rectangle-visibility graph.

3 Unions with depth-1 trees and forests

In this section we consider the union of two trees, one of which has depth 1.
By the Caterpillar Theorem of [2], the union of two caterpillar forests is an
NCRVG and thus so is the union of two depth-1 trees. Even more, the union of
two forests, each forest with all components being depth-1 trees, is an NCRVG.
We show now that not only does the union of any forest with a depth-1 tree
have a weak RVG layout, but also the union of any forest with as many as three
trees of depth 1 has a weak layout. In contrast we show that the union of five
trees, four of which have depth 1, need not be weakly representable. The main
result of this section is that any forest union a depth-1 tree is an NCRVG.

Proposition 1 If a graph G is a union of a forest and one, two, or three depth-1
trees, then G is a weak RVG.

Proof: Denote the forest by F , and denote the depth-1 trees by Ti, with roots
ri, 1 ≤ i ≤ 3. We claim we may assume that F does not contain any of the ri

vertices, but does contain all other vertices of G: For each vertex x not in F
and x 6= ri for any i, add x to F as an isolated vertex. Then, for each i > 0 such
that ri ∈ F , remove ri and any incident edges from F, and add those edges to
Ti. Then F and the trees Ti still have the properties given in the proposition.

Lay out F with the standard vertical NCRVG layout; in this layout each
rectangle is east-, south-, and west-visible. Then place long rectangles Ri to
represent ri, i > 0, along the entire west, south, and east borders, respectively.
Thus each Ri, for i > 0, sees every other rectangle in the layout, and hence all
the vertices and edges of G are represented, giving a weak representation of G
as claimed. 2

Proposition 2 A graph that is the union of a forest and four depth-1 trees need
not be a weak RVG.

Proof: In [DH1, DH2] it is shown that K5,9, though of thickness-2, does not
have a weak RVG representation. That graph is the union of five depth-1 trees.

2

The layout of Prop. 1 can be improved to give a noncollinear layout when
G is the union of a forest and a single depth-1 tree.

Theorem 2 The union of a forest and a depth-one tree is an NCRVG.

Proof: Suppose G = F ∪ T , where F is a forest and T is a depth-1 tree. Let r
be the root of one component of F and r1 the root of T ; as shown in the proof
of Prop. 1 we may assume F contains all the vertices of G, except for r1. Lay
out F with the standard vertical NCRVG layout, with all vertices represented
by squares and r represented at the top by a square R so that all squares in
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the representation lie below R or (for components not containing r) southeast
of R. Next, make a duplicate, horizontal NCRVG layout of F , using the same
square R to represent r, with all squares in the same component as r duplicated
to the right of R, and with all other components of F represented by duplicate
squares NE of R. Thus each vertex of G is currently represented twice, except
for r, which is represented once, and r1, which is not yet represented. In the
end a rectangle R1, representing r1, will be placed along the left-hand (western)
border of the whole array. The general plan is to place squares visible to R1

below R and those invisible to R1 to the right of other squares in F that will
block them from R1, as described below.

For each child xi of r, choose either the representing square below R or to
the right of R, according as xi is or is not adjacent to r1 in T . Then delete
the unused square, to the right or below R, and delete the squares representing
descendants of xi to the right of or below R, respectively. That is, there are two
potential positions for a square representing xi. Choose one of these and erase
the other and all its descendants from the layout. If Xi is below (respectively, to
the right of) R, then place a horizontal (respectively, vertical) NCRVG layout
of its descendants to its right (resp., beneath it); place the new layout to the
right of (resp., below) the entire current configuration. Thus, for each i, the
descendants of xi are still represented twice in the full layout.

Then continue this process for each grandchild xi,j of r and then for each
descendant of r. For each descendant d of r, there are two choices for its
placement, one with west-visibility and one with visibility blocked to the west.
And when a choice is made, two potential locations for each descendant of d are
found, one with west-visibility and one with that visibility blocked. Once the
component of F containing r is completed, the same procedure is carried out for
all vertices in a second component of F and then for each component of F . At the
end, a long rectangle R1 is placed to the left of the entire configuration, extended
to see R if r and r1 are adjacent, and the noncollinear layout is complete. The
layout process is illustrated in Figure 2, in which solid rectangles represent final
positions, and dashed rectangles represent rejected potential positions. 2

We do not know in general about the possibility of a noncollinear represen-
tation of a tree union two depth-1 trees or even of a weak representation of a
tree union a depth-2 tree; in the next section we turn to the question of the
union of two depth-2 trees.

4 Unions with depth-2 trees

In this section we show that the union of two depth-2 trees is always a weak
RVG and, if the two trees have the same root, then it is an RVG. If the roots
are different, the weak RVG result follows from a modification of the proof of
the Caterpillar Theorem of [2], as shown in Prop. 3 below; to achieve the non-
weak RVG result when the roots are the same, a different approach is needed,
as shown in Thm. 3.
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Figure 2: NCRVG layout for a union of a forest and a depth-one tree

Proposition 3 If a graph G is the union of two depth-2 trees with different
roots, then G is a weak RVG.

Proof: Let G = T0 ∪ T1, where, for i = 0, 1, Ti is a depth-2 tree with root ri,
and r0 6= r1. Then for i = 0, 1 we define Fi = Ti \ ri, so that Fi is a depth-1
forest. We add to Fi, as isolated vertices, any vertices of G \ ri not already
in Fi, thus keeping Fi a depth-1 forest (note that now r1−i ∈ Fi). As a final
adjustment to the Fi graphs, we remove from F1 any edges that already appear
in F0, so that F0 and F1 become edge-disjoint forests.

We begin by representing F0 as an interval graph on the positive x-axis with
each depth-1 vertex of F0 represented by a proper subinterval of its parent’s
interval. In addition we arrange the interval graph on the axis so that the
intervals representing the depth-1 tree containing r1 are leftmost. We then
delete the interval representing r1 from the interval representation of F0. Next
we perform an analogous process, representing F1 along the positive y-axis, with
the intervals representing the depth-1 tree containing r0 lowest in the layout; we
then delete r0 from the interval representation of F1. We now take the cartesian
product of the intervals for F0 and F1 to form rectangles in the first quadrant,
non-intersecting since the forests are edge-disjoint. We draw a rectangle, below
the x-axis (resp., left of the y-axis) and extending the full extent of the layout,
label it R0 (resp., R1), and if r0 is adjacent to r1, extend R0 leftward to see R1.
The adjacencies of the trees in F0 (resp., F1) are represented vertically (resp.,
horizontally). The projection of a T0-level-2 rectangle on the x-axis is a proper
subinterval of its parent’s projection; hence R0 is visible to all its T0-children.
In addition, R0 sees all the vertices to which it is adjacent in T1, since they are
the closest to the x-axis. Similarly, all adjacencies with r1 are represented, and
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so the configuration is a weak layout of G. The construction is illustrated in
Figure 3. 2
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Figure 3: Weak RVG layout for a union of two depth-2 trees with different roots

If, using the notation of the proof of Prop. 3, r0 = r1, we can get an RVG
layout G, but the proof is more involved.

Theorem 3 If a graph G is the union of two depth-2 trees with a common root,
then G is an RVG.

Proof: Let G = T0 ∪ T1, where T0 and T1 are depth-2 trees with common root
r. We direct the edges of each tree from parent to child and color the edges of
T0 and T1, red and blue, respectively (if e ∈ T0∩T1, color e red). Let D1 be the
induced graph on V (D1) = {v ∈ G|v is depth-1 in T0 or T1 (or both)}. Then D1

is a 2-edge-colored digraph with the following properties. First, there can be no
monochromatic directed path of length 2 or more in D1; otherwise the second
vertex on the path would have depth-1 and depth-2 in the same tree. Second,
no vertex of D1 can have more than one incoming edge: two incoming edges of
the same color are forbidden since each Ti is a tree, and two incoming edges of
different colors would mean the vertex is level-2 in both trees, hence not in D1.
Thus each (undirected) connected component of D1 is either a tree (of arbitrary
depth) or a collection of vertex-disjoint trees (also of arbitrary depth) whose
roots are joined in a cycle (which must be even).

We begin the layout of G by specifying how to lay out each component
of D1 so that, for every pair of vertices in the component, there is an empty
rectangular region that is west-visible from one vertex and south-visible from
the other (we say the pair has southwest visibility).

For a component that is a tree T with root rT , we lay out T (but not in the
standard vertical SDA format). First we represent rT as a wide rectangle RT
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and place the depth-1 vertices in an SDA below RT ; each pair of vertices thus
laid out has southwest visibility. We repeat this process for the children of each
vertex v having depth-1 in T , first shifting all rectangles positioned southeast of
v southwards to create space for an SDA of v’s children below v and northwest of
all these shifted rectangles; southwest visibility of pairs is thus maintained. We
continue this process for the children of the vertices at each level of T , until the
entire tree is laid out, maintaining southwest visibility of pairs as we proceed.
We call the resulting NCRVG layout a southwest-visible layout of T . Note that,
in addition to each pair of vertices having southwest visibility, each individual
vertex sees nothing to its south, west, or east.

Suppose next that a component C of D1 consists of a cycle v1, v2, ..., vk, v1,
together with vertex-disjoint trees, Tvi rooted at vi, for i = 1, ..., k. We lay out
each Tvi in a southwest-visible configuration as described above, with the total
layout of Tvi contained in a box Bi. We adjust the proportions of the Bi boxes so
that they are all squares of the same size, and then we set them along the main
diagonal of a k × k square, with B1 at the upper left and Bk at the lower right,
so that no rectangle in Bi sees any rectangle in Bj if i 6= j. We then modify this
configuration to include the cycle; thus far we have an NCRVG layout, but we
will give up noncollinearity in this step. Let the rectangle representing vertex
vi of the cycle be labeled Vi. First extend the right side of V1 beyond the left
side of Vk but not as far as the right side of Vk, so that it sees all the other
Vi rectangles to its south. Then extend the right sides of V2, ..., Vk−1 so that
they are collinear and are half-way between the left side of Vk and the right side
of V1. This is a (collinear) southwest-visible layout of the component C, and
as before, in addition to each pair of vertices having southwest visibility, each
individual vertex sees nothing to its south, west, or east.

Once each component Ci (where Ci = C or T as described above) is given
a southwest-visible layout as described above, with component Ci’s layout con-
tained in a rectangular region Ei, we adjust the proportions of the boxes Ei so
that they are all squares of the same size, and we set them in an SDA along the
main diagonal of a larger square box E. The entire configuration is a southwest-
visible RVG layout of D1. The construction guarantees that, in addition to each
pair of vertices having southwest-visibility, each individual vertex sees nothing
to its south, west, or east.

It is now a simple matter to add rectangles representing the remaining ver-
tices of G to the layout. With the exception of the common root r, any vertex
not in D1 is depth-2 in either T0 or T1, or in both, and hence a child of either
one or two vertices in D1. For each pair v 6= w, with v, w ∈ D1, we represent
their common children in an SDA in the left half of the rectangular region that
is south-visible to one and west-visible to the other. To handle the vertices not
in D1 that have exactly one parent in D1 we use a rectangular region F below
the current layout contained in E and having the same size as E. For each
v ∈ D1, we locate the rectangle Fv in F that corresponds to v’s rectangle in E,
and we place those vertices, not in D1, that are children only of v in an SDA
in the right half of the rectangle Fv. Thus E contains all the vertices that are
depth-1 in either tree, plus those depth-2 vertices that have two level-1 parents;
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the latter are blocked to the east by one of their parents, and are seen to the
south from the left half of the other parent. The box F below E contains no
depth-1 vertices; each depth-2 vertex in F is seen to the south from the right
half of its (unique) parent in E. Hence we can represent the final vertex, namely
the common root r of T0 and T1, by a rectangle R that lies to the right of E
and extends the entire length of E; R sees only the vertices of D1, as it should.
Figure 4 illustrates the layout process for a particular graph G, showing G, the
subgraph D1, and the final RVG layout for G.

All the above operations preserve an RVG layout at every stage, and so the
proof is complete. 2
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Figure 4: RVG layout for a union of two depth-2 trees with a common root

If, in the proof of Thm. 3, D1 contains no cycles, then a noncollinear layout
is obtained. Prop. 3 and Thm. 3 together imply the following.

Corollary 1 If G is the union of two depth-2 trees, then G is a weak RVG.

Note that the proof of Thm. 3 is easily modified to give an alternate proof
of Prop. 3, by putting a second root along the west side of the layout. Further-
more, by putting a third root along the south side of the layout, we get a weak
representation of the union of two depth-2 trees and a depth-1 tree (recall from
Thm. 2 that the union of one depth-2 tree with a depth-1 tree is an NCRVG).

Corollary 2 If G = T1 ∪ T2 ∪ T3, where T1 and T2 are depth-2 trees and T3 is
a depth-1 tree, then G is a weak RVG.

Aside from the above results, we do not know in general about the possibility
of representing a tree union a depth-2 tree. In [1] it is shown that the union of
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two depth-3 trees need not be an RVG. In the next section we show that the
union of a depth-3 tree with a matching is a weak RVG.

5 Unions of depth-3 trees and matchings

In this section our primary focus is on unions involving depth-3 trees. By Thm. 2
the union of a depth-3 tree with a depth-1 tree is an NCRVG. It is not known
if the union of a depth-3 tree with a depth-2 tree is an RVG, but the result
of [1] says that the union of two depth-3 trees need not be an RVG. Here we try
to enlarge the class of RVGs that are unions with depth-3 trees by considering
unions of trees with matchings, especially the union of a depth-3 tree with a
matching.

By the Caterpillar Theorem, the union of a depth-1 forest and a matching is
an NCRVG since both are caterpillar forests. By Thm. 3 the union of a depth-2
tree and a matching is an RVG since the matching can be extended to a depth-2
tree using the same root as the given tree; one corollary of the main result of this
section, Theorem 4, is that this union is an NCRVG. We obtain some additional
NCRVG results on special unions of trees with matchings; however, the main
theorem is that the union of a depth-3 tree and a matching is a weak RVG.

To introduce some new techniques involving the use of SDAs, here is a first
result.

Proposition 4 Suppose G is the union of a tree T with root r and a match-
ing M such that (x, y) ∈ M implies distT (x, r) = distT (y, r). Then G is an
NCRVG.

Proof: Suppose T is a subtree of a d-ary tree with root r and depth p. We use a
standard NCBVG layout for T , then expanding it to be formed by rectangles as
follows. Use a collection of p + 1 disjoint, congruent square boxes, placed in the
plane, one above the other. Label these A0, A1, ..., Ap from top to bottom, and
let the root r be represented by the square R that equals A0. Then represent
the children of r as an SDA in box A1. If X is a square in A1, representing
vertex x, then represent its children as an SDA in the square corresponding to
X in A2, and do this for each child of the root. Repeat this process for each
vertex in each level of the tree T .

Suppose vertices x and y, both at distance i from r in T , are joined in the
matching M . These vertices are represented by squares X and Y in box Ai,
lying in subboxes along the diagonal; suppose X lies above and to the left of Y .
Then Y can be shifted vertically upwards until it sees X and no other vertex
to its left. Y still sees its parent above and its children below, and sees no
additional vertex.

2

Note that such vertical shifting can also allow matchings between a child of
vertex x with y when the corresponding rectangle X lies above and to the left of
Y , but in this case such a simple shift does not work to match a child of Y with
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X . Some results, similar to Prop. 4, will follow from our main result, which we
turn to now.

Theorem 4 If G is a union of a depth-3 tree T and a matching M , then G is
a weak RVG.

Proof: We lay out G using a collection of seven boxes: a rectangle R to repre-
sent the root r of T , and six disjoint, congruent square boxes, labeled A through
F , alphabetically in the order they are used. Choose a positive integer d so that
T is a subtree of a d-ary tree. The vertices of T are labeled r, xi, xi,j , and xi,j,k,
1 ≤ i, j, k ≤ d, as described in Section 2.

The layout process of the proof is illustrated in Figure 5, in which T is a
subtree of a ternary tree; for ease of viewing, the rectangles are not drawn to
scale. Its root r is adjacent to three vertices x1, x2, and x3, each themselves
with three additional level-2 neighbors (children). Of these x1,1, x1,2, x1,3,
x2,1, and x2,2 are adjacent to two leaves each, x3,1 to three, and the rest are
leaves themselves. The matching M joins the following pairs of vertices of T :
{x1, x2,1}, {x2, x1,1}, {x3,2, x3,3}, {x3, x2,1,1}, {x2,3, x2,1,2}, and {x3,1, x1,2,1}.
The final position of each rectangle is shown in black outline; a shaded rectangle
represents an initial position from which the rectangle is later moved.

R A

X1

X2

X3

B C

D E

F

Figure 5: Weak RVG layout for a union of a depth-3 tree and a matching

In general we place the level-1 children of r to its right in an SDA in the
box A. In particular, if we divide A into d2 subboxes labeled Ai,j , 1 ≤ i, j ≤ d,
then Xi is a square occupying the middle third of Ai,i (that is, the middle third
in each dimension). The level-2 children of a level-1 vertex xi will lie in box B.
We begin by choosing the box Bi in B that corresponds to the square Xi in A.
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We place the children of xi in an SDA in the lower-right quadrant of Bi, each
occupying the middle third of a square on the diagonal of this quadrant. Hence
all edges from xi to its children correspond to visibility lines running vertically
down from the right half of the square Xi. The level-3 children of a level-2
vertex xi,j lie in box C, in an SDA in the subbox Ci,j of C corresponding to
the square Xi,j , and again each occupies the middle third of a square on the
diagonal. Note that due to the one-third sizing, each square now lies in the
middle third of a subbox with enough perimeter room so that another square
of the same size or a whole SDA of another same-sized square can be fit into
any side of the same subbox. Thus we have laid out the entire depth-3 tree; see
Figure 5.

Next we modify (in seven steps) this layout to add in the visibilities corre-
sponding to the edges of the matching. Note that originally and through step
4 we maintain a noncollinear RVG layout, but the layout may become weak in
step 5.

Step 1: Matching two level-1 vertices. Suppose xi is matched with xj with
i < j. First we shift the square Xj vertically upwards so that the top of Xj lies
halfway up the height of Xi; thus Xj sees Xi to its left, protrudes below Xi,
but fits within the original box Ai,j so that Xj gains no additional visibilities.
Both Xi and Xj maintain east-visibility.

Before this shift, for k > j, Aj,k was a subbox of A with visibility to both
Xj and Xk; we refer to “Aj,k translated” or At

j,k to mean the new subbox of A

that after the vertical shift of Xj lies to right of Xj and above Xk. At
j,k will be

used in the next step.

Step 2: Matching a level-1 and level-2 vertex. First consider a matching
between a child xi,k of xi with a level-1 vertex xj , where i < j. Let A∗

i,j denote
the middle third subbox of Ai,j or of At

i,j if Xi was translated in step 1 (in the
latter case xi was matched with some xi′ , where i′ < i). We use the upper-
left quadrant of the box A∗

i,j . Find the rectangle Xi,k lying in the lower-right
quadrant of Bi, and move it into the corresponding position in the upper-left
quadrant of A∗

i,j . Then Xi sees Xi,k to its east, and Xj sees Xi,k vertically. We
must also move the children of xi,k so that they retain visibility to their parent,
and we move them into box D from their position in box C as follows.

Let hi,k be the horizontal strip east of (the newly relocated) Xi,k, intersected
with D. The children of xi,k currently form an SDA in a subbox of C. Move
this SDA up vertically until these rectangles all lie within hi,k. Xi,k now sees
its children to the east, and we repeat the above process for each child of each
xi that is matched with a level-1 vertex xj with i < j.

Suppose next that xi is matched with a child xj,k of some xj , where i < j.
Then, as above, move the rectangle Xj,k from the lower-right quadrant of Bj

into the corresponding position in the same quadrant of A∗
i,j , and vertically

move the box containing its children in C into D so that they are directly to
the right of Xj,k.

In summary, each A∗
i,j , with i < j, contains at most two squares, a child of

xi matched with xj in the upper-left quadrant, and either a child of xj matched
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with xi in the lower-right quadrant or the level-1 vertex xj matched with xi

in the lower half. Note also that the rectangles in C ∪ D retain their original
horizontal ordering from box C. Also, if xi has more than one child matched
with different level-1 vertices, then Xi sees them all either to the east in the
same relative vertical order that they held before being moved or north in the
same horizontal order as before.

Note that by initially laying out a tree in a zigzag pattern, these ideas can
be used to prove the following.

Proposition 5 Suppose G is the union of a tree T with root r and a matching
M such that (x, y) ∈ M implies that either distT (x, r) = distT (y, r) or that
distT (x, r) = 2k − 1 and distT (y, r) = 2k for some integer k (and the values of
k may vary). Then G is an NCRVG.

In other words, edges of the matching join vertices at the same level or at
alternate adjacent levels; a similar result holds when all matching edges are
between levels 2k and 2k+1.

Step 3: Matching two level-2 vertices. Suppose xi,j is matched with xk,m

with (i, j) lexicographically less than (k, m); note that both vertices are still in
their original position in box B. First shrink the SDA containing xi,j ’s children
in C by half in both dimensions and move this SDA into the top half of its
previous position, clearing the bottom half of the box. Next move the square
Xk,m vertically upwards so that the top of Xk,m lies halfway up the height of
Xi,j (as in step 1) so that Xk,m sees Xi,j to its left and protrudes below Xi,j ,
but sees nothing more to its left. Finally, move the SDA containing Xk,m’s
children vertically upwards in C until it is directly to the right of Xk,m. These
operations preserve an NCRVG layout.

The proof so far can be used to give the following.

Proposition 6 The union of a depth-2 tree and a matching is an NCRVG.

Step 4: Matching a level-1 vertex with a level-3 vertex. Suppose we must
match xi with xj,k,m (where possibly i = j). Suppose first that the rectangle
Xj,k has not been moved outside of box B. Then move Xj,k,m horizontally until
it is entirely below the left-hand half of Xi. Either this area was empty or, if
i = j, contained rectangles only below the right-hand half of Xi. Then Xj,k,m

sees its parent and Xi, but it blocks no visibilities nor introduces any new ones.
Otherwise Xj,k has been moved to the right of, say, Xi′ . We consider two

cases according as xj,k is or is not a child of xi′ . In the former case the square
Xj,k lies in (and is the only square in) the upper-left quadrant of a subbox A∗

i′,j
of A, and the square Xj,k can be expanded leftwards until it almost reaches the
left boundary of the subbox A∗

i′,j (= Ai′,j or At
i′,j). Thus this new rectangle

enters a vertical band v, free of all other rectangles and wide enough to contain
an SDA of d level-3 vertices. Place Xj,k,m within the band v so that it sees
Xj,k vertically and Xi horizontally in the top third of Xi’s horizontal band of
visibility. In the latter case Xj,k lies in the lower-right quadrant of A∗

i′,j and
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can be extended downward into a horizontal band h, similarly free of all other
rectangles and high enough to contain an SDA of d level-3 vertices. Place Xj,k,m

within h so that it sees Xj,k horizontally and Xi vertically in its leftmost third.
Note that we may put several level-3 children of xj,k, staggered in the bands
h and v and positioned so that all desired visibilities and nonvisibilities are
maintained.

Step 5: Matching a level-2 vertex with a level-3 vertex. If vertex xi,j is
matched with vertex xk,m,n, then (i, j) 6= (k, m) (but possibly i = k) and Xi,j

is in its original position in box B. If Xk,m,n is still in box C (when Xk,m

is unmatched or matched with another level-2 vertex), then we move Xk,m,n

horizontally until it is above or below the left-hand half of Xi,j ; thus it is placed
in a subbox of B in the same horizontal band as Xk,m and in the same vertical
band as Xi,j . This subbox was previously empty, but if (k, m) < (i, j), the layout
becomes weak since Xk,m,n sees Xi vertically. (Xk,m and its SDA of children
may have been shifted or its SDA of children may have been contracted if Xk,m

was matched with another level-2 vertex, but this does not matter.)
If Xk,m,n has been moved into box D because its parent Xk,m has been

matched with a level-1 vertex, then we will use box E, the square box congruent
to and to the right of D, to contain Xi,j (and all level-2 vertices that are matched
with level-3 vertices in D). Let Ei be the subbox of E corresponding to Xi in
A. Form d2 subboxes along the diagonal of the upper-left quadrant of Ei and
place Xi,j in the middle third of the j’th subbox down the diagonal (this is the
subbox corresponding to its subbox in the lower-right quadrant of Bi). Xi will
now see Xi,j to the east (but Xi,j does not yet see Xk,m,n); Xi may also see
other children in this direction in subboxes Ai,j or At

i,j , j > i, and in Ei, but
they will each be placed along the diagonal of their enclosing subbox so that Xi

sees these children vertically in the same order in which it initially saw them
horizontally below in B. Xi sees the rest of its children vertically in boxes A
and B.

Next all the (matched and unmatched) children of xi,j must be moved. First
put all children of xi,j back in their original SDA in C. Then move this SDA
vertically upward into D until it lies within the horizontal band west of Xi,j

and east of Xi. Due to spacing between rectangles, this SDA does not block
visibility between Xi and Xi,j , but the layout may have become weak, if it
wasn’t already. All unmatched children of xi,j are now in their proper positions
as is a child that was matched with xi. Let vi,j be the vertical band extending
above and below Xi,j in boxes E and F , the latter box below E and to the
east of C. All other matched children of Xi,j , and also Xk,m,n, will be placed
appropriately in vi,j as follows.

If a child xi,j,p of xi,j was matched with xq, q 6= i, (and so previously had
been moved horizontally into box B), then let Di be the box in D corresponding
to Xi (and now containing all of Xi,j ’s children in its upper-left quadrant). We
move xi,j,p from its position within the upper-left quadrant of Di to the corre-
sponding position in the upper-left quadrant of Ei, and then move it vertically
(within vi,j) until it is contained in the lower half of the (empty) horizontal band
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east of Xq. Then Xq sees Xi,j,p to its east from its lower half, Xi,j sees Xi,j,p

(and any other such children) in the vertical band vi,j . If several children of xi,j

are matched with different xk’s, they are staggered in vi,j so that visibility to
Xi,j is maintained.

If a child xi,j,p of xi,j had previously been matched with a level-2 vertex
xq,r (by a prior application of this case), then Xi,j was in B when this match
occurred, and Xi,j,p was in C. Thus Xq,r was left in its original position, and
Xi,j,p was moved into B to see Xq,r vertically. Move Xi,j,p from its position
in the upper-left quadrant of Di to the corresponding position in the upper-left
quadrant of Ei and then move it downwards (within vi,j) until it is within the
horizontal band east of the lower third of Xq,r (so that visibility is not blocked
by Xq,r’s children). Note that Xi,j,p has been moved into the box F . Again if
several children of xi,j are matched with different xq,r ’s, they are staggered in
vi,j so that visibility to Xi,j is maintained and no two of these children see each
other.

Finally we are ready to move Xk,m,n horizontally into the right-most part
of the band vi,j so that it sees Xi,j vertically and obstructs no visibility of Xi,j

with its children. Xk,m,n still sees its parent horizontally in A or in E. Because
of the “middle-third” construction of the vertices in the original tree layout,
Xk,m,n sees none of the children of Xi,j , although it might be collinear with the
right-most child of Xi,j .

Step 6: Matching two level-3 vertices. Note that all unmatched level-3 ver-
tices lie in C or D; there may also be matched level-3 vertices in these boxes.
The vertical ordering of the level-3 vertices in C ∪D may have been permuted,
but their horizontal ordering is unchanged. Furthermore, they all see their par-
ents horizontally. To match two of these level-3 vertices, take the leftmost one
and move it right until it sees the other vertically.

Step 7: Matching the root with another vertex. Observe that all level-1
vertices and unmatched level-2 vertices are east-visible. All unmatched level-3
vertices are either in C or D, and they are east-visible except when their parent
lies in E. We move the root r and represent it now by a rectangle to the right
of the entire layout, extending from top to bottom of the layout. Then r sees
all its children. If r is matched with a level-3 vertex Xi,j,k in D whose parent
Xi,j lies in E, then we move Xi,j,k horizontally into the upper-right quadrant
of Ei. Note that moving r introduces many extraneous visibilities.

2

We do not know if the results of Theorem 4 are best possible, meaning that
we do not know whether the union of a depth-4 tree and a matching or the union
of a depth-3 tree and a depth-2 tree is an RVG, though by the results of [1] the
union of two depth-3 trees is not necessarily an RVG. The example of [1] does
have a weak RVG representation and so we also wonder if unions of depth-4
trees have a weak representation. Clearly there are other unions of trees to be
studied; for example, the case of caterpillar trees suggests that a breadth-first
analysis might be as fruitful as the depth-oriented one we have pursued here.
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6 Cartesian Products

In this section we give results on thickness and rectangle-visibility for cartesian
products of graphs. Our two main results are that the thickness of a product
is bounded above by the sum of the thicknesses of the factors (and this is best
possible), and that the product of two BVGs is an RVG. From the latter we
conclude that the product of two forests is an RVG. We also generalize the
second result to products of what we call “left-right-bar-visibility” graphs with
certain paths and cycles. We apply these results to conclude that several classes
of graphs are RVGs.

We first give several results on the thickness of product graphs. If G is the
product of two planar graphs, then the horizontal and vertical edges partition G
into two planar graphs. More generally, if G1 and G2 are two arbitrary graphs
and G = G1 ×G2, then the horizontal edges of G can be partitioned into θ(G1)
planar graphs, and likewise the vertical edges of G can be partitioned into θ(G2)
planar graphs. We have thus proved the following:

Proposition 7 If G is the product of two planar graphs, then θ(G) ≤ 2.

Proposition 8 If G = G1 × G2, then θ(G) ≤ θ(G1) + θ(G2).

Corollary 3 If G =
∏

(Gi), then θ(G) ≤ ∑
θ(Gi).

The graphs Pn × K2 and Cn × K2 (where Pn and Cn are, resp., the path
and cycle on n vertices) show that equality need not hold in Prop. 7. On the
other hand, if G is planar and contains K4, equality is achieved by G×K2, since
G × K2 contains a K5 minor. The hypercube graphs provide a useful class of
examples to demonstrate that the bounds in Prop. 8 can always be achieved,
and that they also can always be made strict, for any two thicknesses θ1 and
θ2. Kleinert [7] has shown that the thickness of the hypercubes is given by the
formula θ(Qn) = d(n + 1)/4e. Given any two thicknesses, θ1 and θ2, we can
achieve the upper bound in Prop. 8 by taking Gi = Q4θi−1, for i = 1, 2. On
the other hand, to get strict inequality we take Gi = Q4θi−4, in which case
θ(G1 × G2) = θ1 + θ2 − 1.

It follows from Proposition 7 that the product of two trees has thickness at
most two. In the next proposition we show that the product of two BVGs is an
RVG, and so the product of two trees is an RVG.

Proposition 9 If the graphs G and H are both BVGs, then G×H is an RVG.
Analogous statements hold if G and H are noncollinear or weak BVGs.

Proof: Assume we have BVG layouts of G and H using horizontal bars with left
and right endpoints in the interval [0, 1]; without loss of generality, we assume
that in each layout the bars have distinct y-coordinates. Number the vertices of
G and H in order of their bars in each case from bottom to top, i = 1, ..., nG and
j = 1, ..., nH ; the bars themselves will be denoted BG(i) and BH(j). We give
an RVG layout for G×H in the region [0, 2nG]× [0, 2nH], so that the rectangle



A. Dean and J. Hutchinson, RVG Layouts , JGAA, 2(8) 1–21 (1998) 19

R(i, j) lies in the region [2i − 1, 2i] × [2j − 1, 2j]. The top, bottom, left and
right coordinates (indicated by t, b, l, r, respectively) of R(i, j), i = 1, ..., nG,
j = 1, ..., nH , are as follows:

t[R(i, j)] = 2j − 1 + r[BG(i)]
b[R(i, j)] = 2j − 1 + l[BG(i)]
l[R(i, j)] = 2i − 1 + l[BH(j)]
r[R(i, j)] = 2i − 1 + r[BH(j)]

Looking vertically in this layout we see |V (G)| copies of H , each in a different
column, and similarly |V (H)| copies of G when looking horizontally. It is easy to
see that R(i, j) sees R(i′, j′) if and only if either i = i′ and BH(j) sees BH(j′) in
the BVG layout of H , or j = j′ and BG(i) sees BG(i′) in the BVG layout of G.
The construction is illustrated in Figure 6. It is also clear that this construction
preserves noncollinearity and weakness. 2

12

123
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H

1
2

3H
1

2
3H

1
2

G
1

2
G

1
2

G

1,1

1,2

1,3

2,1

2,2

2,3

Figure 6: RVG layout of G × H , for BVGs G and H

Corollary 4 If G is the product of two trees or forests, then G is an NCRVG.

Although the focus of this paper is combinations of trees, we note that since
the p-dimensional hypercube Qp is a BVG for p = 1, ..., 3, we can apply Prop. 9
to get that Qp is an RVG for p = 1, ..., 6.

Corollary 5 The hypercube graphs Qn, for n = 1, ..., 6, are RVGs.

Q3 is actually a BVG, since it is a 2-connected planar graph. It is known
that the hypercubes of thickness 2 are Q4, ..., Q7 [7]. A bipartite RVG has
e ≤ 4v − 12 [3, 4], and it follows from results in [8] that a bipartite NCRVG
has e ≤ 2n− 2; hence Q7 cannot be an NCRVG but could be an RVG. It is not
known if Q7 is an RVG.
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In the proof of Prop. 9 we can get a somewhat stronger result if the two
BVG layouts have an additional property. A left-right bar-visibility layout of
a graph G, abbreviated LRBVG layout, is a BVG layout of G using horizontal
bars contained in a rectangular region [a, b] × [c, d], such that each bar has
either left endpoint a or right endpoint b (these bars are called left and right
bars, respectively). Examples of LRBVGs include all paths and cycles. It is
easy to see that if G is an LRBVG, then G is outerplanar, i.e., it has a planar
embedding in which all vertices lie on the outer face. The proofs of the following
propositions concerning LRBVGs are fairly straightforward, and are omitted.

Proposition 10 If G and H are BVGs, and at least one of G and H is an
LRBVG, then G × H × P2 is an RVG.

Corollary 6 If G and H are both LRBVGs, then G × H × K is an RVG, for
K = P2, P3, P4, or C4.

If Q3 were an LRBVG, then it would follow from Cor. 6 that Q7 is an RVG,
but this is not the case: It is well known that a graph G is outerplanar if and
only if it does not contain a subgraph homeomorphic to K4 or K2,3. Since Q3

contains a homeomorph of K2,3, it is not outerplanar, hence not an LRBVG.
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