
Journal of Graph Algorithms and Applications
http://www.cs.brown.edu/publications/jgaa/

vol. 2, no. 4, pp. 1–20 (1998)

Scheduled Hot-Potato Routing

Joseph (Seffi) Naor

Department of Computer Science
Technion, Haifa 32000, Israel

http://www.cs.technion.ac.il/
naor@cs.technion.ac.il

Ariel Orda Raphael Rom

Department of Electrical Engineering
Technion, Haifa 32000, Israel

http://www.ee.technion.ac.il/
ariel@ee.technion.ac.il rom@ee.technion.ac.il

Abstract

This paper is concerned with fast, hot-potato routing, performed ac-
cording to a predetermined schedule. At each time period each node se-
lects an outgoing link, through which an incoming packet is sent. No
buffers are used. We investigate first the problem of how to route a
network-wide demand of packets, given the predetermined schedule. We
show that certain versions of the problem have efficient solutions, while
other versions are intractable. We then consider the problem of finding an
optimal schedule given a network-wide demand of packets. We indicate
that the problem is tractable for either a single source or single destination.
However, for the multi-source multi-destination case we show that it is an
NP-complete problem. We present an efficient heuristic for directed tree-
networks, and adapt it to general topologies through a recursive scheme,
for which an efficient performance bound is shown.

Communicated by S. Khuller: submitted November 1996; revised November 1997.

Raphael Rom is also with Sun Microsystems, Mountain View, CA, 94043.

A preliminary version of this paper appeared in the Proceedings of IEEE INFOCOM

1995, Boston, MA, USA, pp. 579-586. This work was supported by the Broadband

Telecommunications R&D Consortium administered by the chief scientist of the Israeli

Ministry of Industry and Trade.

J. Naor et al., Scheduled Hot-Potato Routing , JGAA, 2(4) 1–20 (1998) 2

1 Introduction

Due to the development of high-speed networks, there has recently been growing
interest in efficient routing techniques that would allow a fast decision at the
node regarding the edge through which an incoming packet should be routed.
An efficient routing technique for a high-speed network is one that demands lit-
tle “thinking” from the node. Ideally, a node would take an immediate routing
decision (e.g., [4]). In addition, an efficient scheme for high-speed routing would
avoid the use of buffering at intermediate nodes: ideally, a packet would flow
throughout the network without queuing at nodes (e.g., [27]). Indeed, queu-
ing means more delay and also a more complicated strategy from the node’s
standpoint.

A possible solution that addresses the above issues is that of scheduled hot-
potato routing. Here, “scheduled” means that each node routes incoming packets
to outgoing links according to a predetermined schedule, i.e., the identity of
the outgoing link is a function solely of time. This means that the action
taken by the node is immediate, and in particular it does not even need to
look at the packet’s header in order to perform the routing. Moreover, the
routing decision becomes even more simple if we just let one outgoing link be
“active” at every time instant. By “hot-potato” routing we mean that packets
are not queued enroute; rather, an incoming packet is immediately transferred
to a neighboring node, or, if this is impossible, it is discarded. Thus, with
scheduled hot-potato routing we let packets move smoothly and quickly among
nodes, through high-speed links, without encountering intra-nodal queuing, nor
switching delays. Nonetheless, such a strategy demands careful planning, both
of the predetermined schedule and of its actual use, once it has been set.

Hot-potato (also called deflection) routing has been given much attention
in recent years, e.g., [7]–[20], mainly in the area of multiprocessing. Typically,
however, in the above studies, hot-potato routing is applied to regular topologies
and considers the identity (label) of the packet for making its routing decision.
We note that deflection routing solutions are frequently plagued by deadlock and
flow control problems [21]. Scheduled routing has also been the focus of several
studies, e.g. [18]–[24], but these works considered the use of store-and-forward
buffering.

In this work we consider the combination of both principles, namely schedul-
ing and hot-potato routing, in order to achieve an efficient method for routing
in high-speed networks. Modern high-speed networks are oriented towards the
support of long duration sessions. In such networks, a session is set up in ad-
vance, determining both the routes and the rate in which data will subsequently
flow [23]. Because the lifetime of a session is relatively long, there is typically
enough time to gather the data that is necessary to make the routing decision.
Similar ideas to those presented in this paper have been applied to practical pi-
lot networks, e.g., Isochronets [27], in which network bandwidth is time-divided
among routing trees in order to allocate “green-band” paths for traffic destined

J. Naor et al., Scheduled Hot-Potato Routing , JGAA, 2(4) 1–20 (1998) 3

to a common root. However, until now, these ideas were tested only at the
functional level, while the present work is the first to provide formal analysis.

Two typical problems related to routing through pre-established connections
are the design problem and the usage problem. The first is concerned with the
efficient design of the long-term routing plan, once some data on the source-
destination demands is collected. The second is concerned with the best use of
an existing routing plan, for traffic patterns that were not necessarily accounted
for at the time that the routing plan was devised, e.g., low-priority traffic classes.
We note that the usage problem follows the philosophy of the best-effort traffic
class in ATM networks [23].

The present work is an attempt at providing an analytical framework for this
novel method of routing. We establish the problems that should be addressed,
provide optimal solutions to some while proving the intractability of others,
for which efficient heuristics are described and analyzed. Our solution applies
to general topologies and provides bounds on the delivery delay of packets.
Naturally, with such bounds in effect, neither deadlock nor flow control is an
issue. These bounds on the delay also make our scheme particularly adequate
for real-time applications.

Specifically, we address the following problems. First, we consider a network
for which a schedule has been predetermined, and investigate the usage problem,
i.e., how to route a given demand of packets (for various source-destination
pairs), through a pre-established schedule, in the most efficient way. We then
consider the design problem, i.e., planning the best schedule for an expected
demand of packets. We give an optimal solution for the first problem. We show
that the second problem is intractable, even for very simple topologies. We
indicate its tractability in some special cases and present efficient heuristics for
the general case.

2 Model

The network is a directed graph G(V, E), where V is the set of nodes and
E ⊆ V × V is the set of edges, or links. For a node i ∈ V , let INi be the set of
neighbors k such that (k, i) ∈ E, and OUTi be the set of neighbors k such that
(i, k) ∈ E.

We consider a discrete domain of time and a synchronous mode of operation.
It is assumed that transmission delay on all links is of unit time, and refer to a
packet as the amount of data that can be transmitted in a unit of time. Thus,
at most one packet can be carried on a link at any time. A unit of time shall be
referred to as a slot. Furthermore, it is assumed that nodes do not have buffers,
and thus, an incoming packet has to be switched immediately to an outgoing
link.

Considering a time period of P , we define the nodal schedule of a node i,
Si, to be a sequence {ki

0, k
i
1, · · · , ki

τ , · · · , ki
P−1} such that, for 0 ≤ τ ≤ P − 1,

J. Naor et al., Scheduled Hot-Potato Routing , JGAA, 2(4) 1–20 (1998) 4

ki
τ ∈ OUTi, i.e., the nodal schedule of i assigns to each time-slot within [0, P −

1] a single neighbor of node i (routing is discussed next). Note that P is a
given quantity independent of any other network parameter (notably of |V |).
Typically, one can assume that P is at most linear in |V |. Given a nodal schedule
for each node, we define the network schedule S to be the set comprising of all
nodal schedules, i.e., S = {Si|i ∈ V }.

We now discuss the scheduled hot-potato routing for a given network schedule
S. Consider a node i ∈ V and a time-slot t1. If exactly one packet arrives at
i at the beginning of that time-slot, then it is sent (immediately) through link
(i, k), where k = ki

τ ∈ Si, and τ = t mod P . If more than one packet arrives at
the same time, then an arbitrarily chosen (single) packet is routed according to
the schedule, and the rest of the packets are eliminated.

The network should support the flow of traffic between connections (or ses-
sions), each identified by a pair of source and destination nodes. A demand D
of size K on the network is a sequence of (not necessarily different) K source-
destination pairs D = {(s1, d1), (s2, d2), · · · (sK , dK)}; each pair belongs to a
certain connection and designates one packet transmission of that connection.
At times, we denote by pj the packet associated with the j-th pair of D. In
other words, D = {p1, p2, · · · pK}, where pj is a packet to be routed from node
sj to node dj . If, for all j, sj ≡ s then we say that D is a single source demand;
similarly, if for all j dj ≡ d then we say that D is a single destination demand;
if both hold, we say that D is a single-source/single-destination demand. For
ease of presentation we shall assume that each node may be a source of at most
one packet, i.e., si 6= sj for i 6= j (this implies K ≤ |V |). Our results are easily
adapted to handle the more general case, by splitting a source s with Ks packets
into a sequence of Ks independent nodes each connected to s. Denote by MG,D

the diameter of graph G with respect to D, i.e., the maximal minimum-hop
distance among all source-destination pairs of D.

Given a network demand D of size K, a departure plan ∆ is a sequence of
(integer) times ∆ = {δ1, δ2, · · · δK} such that δj is the departure time of packet
pj i.e., pj leaves the source node sj (for the first time) at the beginning of
time-slot δj .

A packet is routed between nodes until it arrives at its destination or it is
eliminated. For given S and D, we say that a departure plan ∆ is proper if all
packets arrive at their destinations, i.e., no eliminations nor livelocks occur. For
S, D and a proper ∆, the arrival time αj of a packet pj is the time at which it
reaches the destination; if the packet does not reach its destination, then we set
αj = ∞. For given S and D, the termination time of a proper departure plan
∆ is the highest value of arrival times (possibly infinity).

We note that, even if pj is the only packet in the network, for a given network
schedule S, there may still be no departure time for pj that would bring it to
its destination. Namely, for every departure time the packet will loop in the

1All times are global relative to some starting time denoted by t = 0.

J. Naor et al., Scheduled Hot-Potato Routing , JGAA, 2(4) 1–20 (1998) 5

network forever. We say that S is feasible for packet pj if there is some finite
time t, such that if pj departs at t, then it arrives at its destination in finite
time; t is said to be a feasible departure time for pj, given S. We say that a
schedule S is feasible for demand D if it is feasible for each packet of D.

¿From the previous description it is not clear how packets are ever removed
from the network. A useful way to view this is to assume that each node has
a link emanating from it that terminates with the end users that are attached
to that node. In other words, for a given node i, the set OUTi contains a link
to the attached end users. Thus, if a packet arrives at node i at time τ , and if
schedule Si indicates that ki

τ is the edge that points to the end user, then we
say that the packet is delivered to its destination. A variation on this approach
is the one described in [4], where, by default, each packet, while being switched
according to the nodal schedule, is also delivered to the end user attached to
every node along the path, and is discarded by those nodes for which it is not
intended (as is done in most LANs).

3 Use of a Given Schedule

In this section we consider the situation in which the network and its schedule
are given and we look for ways to route packets through the network under
various timing circumstances.

The first question is whether a proper departure plan of finite termination
time exists at all. The following lemma gives a necessary and sufficient condition.

Lemma 1 Given a network G, a schedule S and a demand D, there is a proper
departure plan ∆ with finite termination time if and only if S is feasible for D.

Proof: Suppose that S is not feasible for D. Then, there is some packet pj that
will not arrive at its destination, and thus no ∆ can have a finite termination
time.

Conversely, suppose that S is feasible for D. Let D = {p1, p2, · · · pK}. Then
there are times t1, t2, · · · , tj , · · · , tK such that, for 1 ≤ j ≤ K, if pj departs at
tj , and does not encounter any other packet, then it arrives at its destination
within finite time. Denote the (finite) arrival times by α1, α2, · · ·αK .

Denote by P the period of S. We construct a proper departure time as
follows. Let p1 depart at t1. It thus arrives at α1. Let α̂1 = dα1

P e · P , i.e.,
we round up the arrival time of p1 to the nearest end of a period. We set the
departure time of p2 at α̂1 + t2. It is immediate that p2 arrives at α̂1 + α2.
In general, after fixing the departure time of the j-th packet, we calculate its
(finite) arrival time, round it up to the nearest period, and add the value of tj+1;
this determines a feasible departure time for the j + 1-st packet. Since K < ∞,
this construction sets a departure plan that is proper and whose termination
time is finite. 2

J. Naor et al., Scheduled Hot-Potato Routing , JGAA, 2(4) 1–20 (1998) 6

Lemma 2 Given a network G, a schedule S with period P and a demand D, S
is feasible for D iff there is a proper departure plan ∆ whose termination time
is at most

Tmax = 2K · (|V | − 1) · P + 2K (1)

Proof: Suppose that S is feasible for D. Consider a packet pj that leaves its
source sj at a feasible departure time tj , and assume that it is the only packet
traversing the network. Suppose that by time tj +(|V |−1) ·P +1 the packet has
not reached its destination dj . At all times t, tj ≤ t ≤ tj +(|V |−1)·P +1, define
the state of the packet to be the pair (vt

j , τ
t), where vt

j ∈ V is the identity of the
current node and τ t = t mod P . Since there are only (|V |−1)·P different states
for which vt

j 6= dj , there are times θ1, θ2, where tj ≤ θ1 < θ2 ≤ tj+(|V |−1)·P+1,
such that vθ1

j = vθ2
j and τθ1 = τθ2 . Clearly, packet pj returns to node vθ2

j in
times τθ1+i(θ2−θ1), for all integral i ≥ 1, and it does not visit node dj in between
consecutive visits to vθ2

j . This means that pj never reaches its destination (for
any choice of the departure time tj), thus contradicting the feasibility of S with
respect to D. Note that our assumption, that pj traverses the network alone,
does not limit the generality of the contradiction, since a colliding message that
is eliminated never reaches its destination. We conclude that a packet pj that
leaves its source at a feasible departure time tj and traverses the network alone
reaches its destination by time tj + (|V | − 1) ·P + 1. By a similar argument, we
can also conclude that tj ≤ (|V |−1) ·P +1. Thus, by choosing a departure time
δj ≤ ((|V |−1)·P +1)·(2j − 1) for each packet pj , 1 ≤ j ≤ K, we guarantee that
it arrives at its destination no later than at time tj + ((|V | − 1) ·P + 1) · 2j. We
conclude that ∆ = {δ1, δ2, · · · δK} is a proper departure plan whose termination
time is at most 2K · (|V | − 1) · P + 2K.

In the other direction, if there is a proper departure time with finite termi-
nation time, then the schedule S is feasible for the demand D. 2

The above lemma enables us to consider a finite domain of time, whose size
Tmax is polynomial in |V |, K, and P .

It is clear that if packets are allowed to enter the network freely upon arrival,
some of them may be eliminated. In an attempt to maximize throughput, it
would be useful to exert some admission control, i.e., forbid the transmission of
some of the packets so that throughput is enhanced. More formally, consider
the following problem.

Throughput Maximization (TM) Problem: Given a network G, a schedule S,
a demand D, and a departure plan ∆, find a maximal set of packets that can
be delivered to their respective destinations.

To attack this problem, we observe that the dynamic behavior of the network
G with schedule S over a finite domain of time T can be represented by an
equivalent static network, called the Timed-Exploded (TE) version of G. Note
that T is implicitly determined by the other parameters of the TM problem
and is bounded by the value Tmax as computed in Lemma 2. Specifically, a

J. Naor et al., Scheduled Hot-Potato Routing , JGAA, 2(4) 1–20 (1998) 7

time-exploded version TEG,S,T of G and S, and of size T ≤ Tmax, is obtained
in the following way.

The graph TEG,S,T consists of T + 1 “layers” 0, · · · , T , where each contains
|V | nodes, such that there is a 1− 1 correspondence between the nodes of each
layer and the nodes in V ; for each v ∈ V , and 0 ≤ t ≤ T , we denote by vt

the node at level t that corresponds to node v. vt is said to be a descendant
of v. The set of edges of TEG,S,T is defined as follows. First, for each v ∈ V ,
and 1 ≤ t < T , we insert an edge from vt to wt+1, where w is the next node
from v at time t according to schedule S, i.e., w = kv

t . Then, for each packet
pj = (sj , dj) ∈ D we insert an edge from s0

j to s
tj

j , where tj is the departure
time of pj for the departure plan ∆. If tj = 0, then we insert an edge from s0

j

to w1, where w1 is the next node from sj at time 0 according to schedule S.
We remark that the notion of a Timed-Exploded graph was independently

discovered by Symvonis and Tidswell [25]. They use a method which they call
the multistage method and their graphs are called “multistage graphs”.

Consider a path in TEG,S,T that starts at the 0th-level descendant of the
source node in G of some packet pj ∈ D, and ends at a descendant of the
destination node of pj. Such a path in TEG,S,T corresponds to the unique route
in G that conforms to the schedule S, departure plan ∆, and upper bound T
on the arrival time, and is referred to as a relevant path. The graph TEG,S,T

has the additional following properties, that can easily be verified:

• TEG,S,T is the union of at most |V | directed relevant paths.

• Two relevant paths in TEG,S,T that meet at some node vt, continue from
vt together until one of them (or both) reaches its destination. Notice
that two such paths correspond to the routes of two packets that collide
at node v at time t (causing one of them to be eliminated).

Given these properties, solving problem TM amounts to answering the fol-
lowing question: what is the maximum number of disjoint relevant paths in
TEG,S,T?

In order to answer this question, we construct the corresponding (undirected)
path graph of TEG,S,T (PG(TEG,S,T)) as follows. In PG(TEG,S,T), a node
corresponds to every relevant path in TEG,S,T ; there is an edge between every
two nodes that correspond to two (relevant) paths in TEG,S,T that are not
edge-disjoint.

Clearly, finding the maximum number of relevant edge-disjoint paths in
TEG,S,T is equivalent to finding a maximum independent set in PG(TEG,S,T),
i.e., a maximum set of nodes such that any two nodes in the set are not ad-
jacent. In general, both the problem of finding edge disjoint paths (between
various source-destination pairs), and that of finding a maximum independent
set, are known to be NP-Complete [8]. Nonetheless, we now show that in our
case the problems are tractable, since the graph PG(TEG,S,T) is chordal. A
graph is called chordal if every cycle of length 4 or more contains a chord.

J. Naor et al., Scheduled Hot-Potato Routing , JGAA, 2(4) 1–20 (1998) 8

Chordal graphs constitute a graph family for which it is well known [10] that
many NP-complete problems become tractable when restricted to it. In partic-
ular, a maximum independent set can be computed in linear time in a chordal
graph [9, 10].

Lemma 3 PG(TEG,S,T) is a chordal graph.

Proof: To prove the lemma, we must show that PG(TEG,S,T) does not contain
a chordless cycle of length 4 or more. Our proof is based on the following
observation regarding the path graph. If there is an edge between two nodes
π1 and π2 of PG(TEG,S,T), then there exists a time t′ such that the routes
corresponding to π1 and π2 coincide for all t > t′ (until the end of the shorter
route).

Assume, to the contrary, that there exists a chordless cycle of length four
whose vertices (numbered clockwise) are π1, π2, π3, π4. By the above observa-
tion, there exist times t1, t2, t3, t4, one for each edge on the cycle, such that
from that time on, the two paths (corresponding to the two vertices on the
edge) coincide. Assume, without loss of generality, that t1, denoting the coinci-
dence time of π1 and π2, is the earliest of them. Since π3 coincides with π2 (at
t2 > t1), and does not coincide with π1, we conclude that π1 terminates before
t2. Consider now π4. It coincides with π1 at t4, and thus t1 < t4 < t2, which
implies that π4 coincides with π2, contrary to the assumption.

In a similar manner, it can be shown that the property holds for cycles of
length larger than four. 2

Theorem 1 Problem TM can be solved by an O(|V | · T) algorithm.

Proof: Since TEG,S,T is the union of at most |V | directed relevant paths, the
graph PG(TEG,S,T) contains at most |V | vertices. Every relevant path can
intersect at most T other relevant paths (based on its time of departure), or
at most |V | relevant paths (based on the number of vertices). In other words,
every relevant path can intersect at most min{|V |, T } other relevant paths,
so that the number of edges in PG(TEG,S,T) is at most O(min{|V |2, |V |T }).
Therefore, PG(TEG,S,T) can be constructed in O(min{|V |2, |V |T }) time. A
maximum independent set in PG(TEG,S,T) can be computed in linear time,
i.e., in O(min{|V |2, |V |T }) time, yielding the theorem. 2

Since T ≤ Tmax = O(K · |V | · P) and K = O(|V |), we conclude that the
above solution is polynomial in |V | and P .

A natural question that arises in this context is that of finding a better use
of a given schedule, i.e., assuming all packets in D are available at time t = 0,
when should each depart. More formally:

Schedule Usage (SU) Problem: Given a network G, a network schedule S,
and a demand D, find a proper departure plan ∆ of minimum termination time.

The decision version of Problem SU is defined as follows. Given a network
G, a network schedule S, and a demand D, does there exist a proper departure

J. Naor et al., Scheduled Hot-Potato Routing , JGAA, 2(4) 1–20 (1998) 9

plan ∆ which terminates in time τ? Unfortunately, this problem is intractable.
This can be proven using a reduction from 3-SAT. We outline the reduction.

Consider a 3-SAT instance with variables x1, . . . , xn and clauses C1, .., Cm.
We construct a graph where we associate a source-sink pair with each variable
and each clause. In addition, we have a node z such that each source has a
direct edge to z. Let the source (sink) associated with variable xi be denoted
by sxi (txi), and let the source (sink) associated with clause Cj be denoted by
sCj (tCj). Source sxi has two outgoing edges, exi and ex̄i, (in addition to the
edge going to z), where each starts a path ending at sink txi . The schedule is
such that a packet is routed through exi (ex̄i) at time-slot 2i − 1 (2i). At all
other time-slots, a packet is routed to z. The idea is that if the packet of sxi

is routed through edge exi , the variable xi is set to “true”, else if it is routed
through edge ex̄i , then variable xi is set to “false”.

Let clause Cj contain literals xj1 , xj2 , and xj3 . For simplicity of presentation,
we assume here that all three literals of Cj are positive. Each source sCj has
three outgoing edges, ej

1, ej
2, and ej

3 (in addition to the edge going to z), where
each starts a path ending at sink tCj . The schedule is such that a packet is
routed through ej

1 (ej
2, ej

3) at time-slot 2j1 − 1 (2j2 − 1, 2j3 − 1). At all other
time-slots, a packet is routed to z. The idea is that a packet leaving sCj at time-
slot 2jk − 1 (k = 1, 2, 3) collides with a packet leaving source sxjk

at time-slot
2jk, i.e., through the edge associated with the setting of xjk

to “false”. This
can be easily achieved for all clauses by adding dummy nodes and edges, such
that paths would intersect at the desired time-slots.

It is not hard to verify that by choosing a large enough period (yet linear in
n+m), there is a proper departure plan that terminates in less than one period,
if and only if there is a satisfying assignment to the 3-SAT instance.

Given that Problem SU is intractable, we describe the following heuristic
algorithm (Algorithm HSU) to find a good departure plan, which is based on
a greedy approach. The main idea is to start at time t = 0, and schedule the
maximal number of departures for that time. We then attempt to schedule the
maximal number of departures for each successive time slot, using a residual
time exploded graph, to avoid elimination by previously scheduled packets. We
note that a similar heuristic was used by Symvonis and Tidswell [25].

Algorithm HSU:

1. Initialization: D′ = D, TE′ = TEG,S,Tmax, t = 0.

2. Solve problem TM for D′, TE′ and a departure plan ∆′ such that tj = t

for all packets pj ∈ D′. Let D̂ be the resulting maximal set.

3. Set δj = t for all packets pj ∈ D̂.

4. Remove from TE′ all the edges of paths that correspond to the packets of
D̂.

J. Naor et al., Scheduled Hot-Potato Routing , JGAA, 2(4) 1–20 (1998) 10

5. Set D′ = D′\D̂; t = t + 1.

6. If D′ 6= ∅ then repeat Step 2, otherwise Stop: the departure plan is

∆ = {δ1, . . . , δK}.
Algorithm HSU terminates in at most Tmax iterations, since at each iteration,

at least one path is selected and scheduled individually (Lemma 2 guarantees
that even if the packets are routed one-by-one, the number of iterations is at
most Tmax). Note also that algorithm HSU is not restricted to a single packet
per source; it will also work if D includes a separate element for each (duplicate)
packet.

4 Designing an Optimal Schedule

In this section we consider the complementary problem to that considered in
the previous section, namely, how to design a schedule rather than use a given
one.

Given demand D and schedule S, call the termination time, corresponding to
the solution of Problem SU , the optimal termination time of S with respect to
D. We refer to the optimal termination time for D as the minimum, among all
optimal termination times, taken over all possible schedules. A schedule S that
induces an optimal termination time (with respect to D) is called an optimal
schedule. Note that by Lemma 2, the optimal termination time is bounded by
equation (1).
We are now ready to present our problem formally:

Schedule Design (SD) Problem: Given a network G and a demand D, find
an optimal schedule with respect to D.

In other words, our aim is to find a schedule, with respect to demand D, that
achieves the best possible termination time (through the solution of problem
SU). Due to the finiteness of the optimal termination time (see equation (1)),
problem SD can be transformed into the following decision problem.

T -constrained Schedule Design (TSD) Problem: Given a network G and a
demand D, is there a schedule S for which there is a departure plan ∆ with
termination time at most T ?
We note that Problem SD can be optimally solved via Problem TSD, by per-
forming a binary search over the feasible range of T .

4.1 Intractability

Unfortunately, problem TSD (and thus also problem SD) is intractable, as
shown by the following theorem.

Theorem 2 Problem TSD is NP-Hard.

J. Naor et al., Scheduled Hot-Potato Routing , JGAA, 2(4) 1–20 (1998) 11

Proof: We prove the theorem by a reduction to the 3SAT problem, which is
known to be NP-Complete [8]. We adapt Karp’s proof [16] for the intractability
of the Disjoint Paths Problem. Consider a version of the 3SAT problem, where
each literal appears exactly κ times for some constant κ. This is the κ-3SAT
problem which is known to be NP-Complete [14]. We show how to transform,
in polynomial time, an instance of κ-3SAT into an equivalent instance of TSD.
The source-destination pairs in the constructed problem will be in one-to-one
correspondence with the clauses in κ-3SAT, i.e., pair (si, di) will correspond to
clause Ci.

The graph G of TSD is obtained by joining together a number of subgraphs,
each corresponding to a variable. If variable A occurs in clauses i1, i2, · · · iκ, and
Ā occurs in j1, j2, · · · jκ, then the subgraph corresponding to A is as shown in
Figure 1 (for simplicity, the figure is for κ = 3). I.e., for 1 ≤ l ≤ κ, the
“column” of sjl

meets the “row” of Sil
on the leftmost node, then it meets the

row of Sil mod κ+1 on the next to the leftmost node, and so on, until at last it
meets the row of sil mod κ−1 on the rightmost node. (If l mod κ = 1, then it meets
the row of siκ on the rightmost node.) The overall graph is simply obtained by
identifying, as a single node, all the occurrences of each si (or di) in the various
subgraphs.

@
@

@@�
�
�
�
�
�
��@

@
@

@
@@

l

lll

l

l l

l l l

llll
@

@
@

@
@

@
@@

l

@
@

@
@

@@�
�
�
�
�
�
��@

@
@@

Figure 1: Reduction from 3SAT to TSD

For the above graph G, consider the TSD problem for which each (si, di)
corresponds to a source-destination pair, and T = κ+1. It is easy to verify that,
for this TSD problem to have an affirmative answer, all packets must depart at
t = 0. Moreover, it is immediate that routing a packet through a row eliminates

J. Naor et al., Scheduled Hot-Potato Routing , JGAA, 2(4) 1–20 (1998) 12

the possibility of routing packets in any of the columns of the corresponding
subgraph, and vice-versa. Thus, the given conjunctive normal form (of κ-3SAT)
is satisfiable, if and only if the TSD problem has a positive answer: if variable
x is assigned “true”, select the horizontal paths in the subgraph for x, otherwise
select the vertical paths. Thus, if either x or x̄ occur in clause Ci and x is true
in the assignment, then si and di will be joined in the subgraph for x. In the
other direction, it is straightforward that an affirmative answer for the TSD
problem implies the satisfiability of the corresponding κ-3SAT problem. Thus,
we established a reduction of κ-3SAT to TSD. Since TSD is clearly in NP,
this problem is NP-Hard. 2

Consider a network topology in which nodes are arranged on a line, such
that each pair of adjacent nodes is connected by a bidirectional edge. Let D be
such that traffic flows in both ways, i.e., some destinations are located to the
right of their sources, while others are located to the left. Dinitz has shown [6]
that even in this setting problem SD is intractable.

We note, though, that a simple but efficient heuristic exists for the linear
topology: first, all sources that have destinations to their right send (at time
0) their packets. Once these packets arrive, the other sources send (all at once)
their packets. It is clear that by using this heuristic packets never collide and
the termination time is at most twice that of the optimal termination time.

4.2 Tractable Special Cases

Consider the single destination case, i.e., where all packets have the same desti-
nation. Then, problem TSD can be solved in polynomial time in the following
way. We construct TEG,T similar to the construction of TEG,S,T , as follows. As
in graph TEG,S,T , TEG,T consists of T +1 “layers” 0, · · · , T , where each contains
|V | nodes, such that there is a 1 : 1 correspondence between the nodes of each
layer and nodes in V . The edge set of TEG,T is defined differently. Let v, w be
vertices in G; there is an edge between every two nodes vt, wt+1 ∈ TEG,T , for
0 ≤ t ≤ T − 1, iff (v, w) ∈ E.

Thus, for every path in TEG,T , a schedule S can be chosen, such that this
path can be realized as a relevant path. Notice, however, that there exists a
schedule that realizes two given paths in TEG,T (as relevant paths), if and only
if the two paths are disjoint. This implies that the problem of satisfying a
given demand D is equivalent to that of finding a set of disjoint paths, from the
sources to the destinations, in the graph TEG,S,T . This problem can be cast as
a {0, 1} multicommodity flow problem in TEG,T , where edges and vertices of
TEG,T are assumed to have unit capacity.

The general discrete multicommodity flow problem is intractable, even in its
{0, 1} version; this is not surprising, since the intractability of TSD was essen-
tially established by adapting Karp’s proof of the intractability of the disjoint
paths problem. However, in the common destination case, the multicommodity

J. Naor et al., Scheduled Hot-Potato Routing , JGAA, 2(4) 1–20 (1998) 13

flow problem can be transformed into a single source/single destination max-
flow problem, by connecting all sources to a (fictitious) common source (usually
referred to as super-source). Hence, for the case of a single destination, TSD
can be solved in polynomial time. A similar argument can be made for the
single source case.

The above implies that SD can also be solved in polynomial time for the case
of a single destination or source. This is achieved by performing a binary search
on the value of T . Since the arrival time of each packet, when transmitted
alone, is bounded by MG,D (the diameter of the graph with respect to D,
see Section 2), it follows that K · MG,D is an upper bound on the value of
T . This increases the complexity of the solution by a multiplicative factor of
O(log(K · MG,D)) = O(log(|V |)).

4.3 Heuristics

Consider first the special case of directed tree networks where edges are directed
from children to parents. The only schedule that can be considered is the trivial
one where each node always chooses its unique outgoing edge. We now devise
a departure plan, which is not necessarily optimal, but for which we can bound
the termination time. This plan will serve us in building a heuristic for general
graph topologies.

If the problem has at all a feasible solution, then the destination of each
source-destination pair must be on the path between the source and the (com-
mon) root of the tree. Consider first a modified problem in which the root of the
tree is the destination for all the packets in D. This is a common destination
problem for which an optimal departure plan can be found. We use this de-
parture plan for our (unmodified) problem, but route the packets only to their
destination (instead of the root). It is not hard to see that this is a feasible
departure plan which we now analyze.

Lemma 4 For common destination directed tree networks (where the destina-
tion is the root of the tree), there is a departure plan whose termination time is
bounded by K + MG,D.

Proof: We claim that departure times can be scheduled such that packets arrive
at the root, one packet per time-slot, after some initialization time which is not
greater than MG,D. We prove this by induction on the number of vertices in the
tree. It clearly holds for a tree containing two vertices. Let r be the root of the
tree, let r1, r2, . . . , r` be its neighbors in the tree, and let T1, . . . , T` be subtrees
such that ri is the root of Ti. For each subtree Ti, we denote by Di the portion
of the demand D originating within Ti. If the destination of a packet is the root
r, then its destination in Di will be ri. By the inductive hypothesis, for each
subtree Ti, there exists a departure plan with the above property. Since the
subtrees interact only in the root r, it is clear that by performing “sequentially”

J. Naor et al., Scheduled Hot-Potato Routing , JGAA, 2(4) 1–20 (1998) 14

the departure plans computed for each of the subtrees, it is possible to obtain a
departure plan in which packets arrive at the root r, one packet per time-slot.
Clearly, in the worst case, the first packet will arrive at r after MG,D time slots.

2

We refer to the algorithm implied by this proof as the Train Algorithm. We
note that the above upper-bound also applies to the inverse case, where edges
are directed from the root to the leaves, and each destination is on a directed
path from the corresponding source. In order to see that, reverse the direction
of edges (so that now the root is a sink on the tree), and reverse the roles of
sources and destinations. We thus have:

Corollary 1 If G is a directed tree, in which the orientation is either towards
the root or away from the root, and if there is a directed path from each source
to each destination, then the Train Algorithm provides a departure plan with
termination time of at most K + MG,D.

Consider now the case of an undirected tree. The problem is that since there
is no single orientation, source-destination pairs may need conflicting orienta-
tions. However, we show how the Train Algorithm can be used in this case such
that termination times are still within a reasonable bound. Similar ideas have
been used in Up/Down Routing [22].

We begin by choosing a node in the above tree, which we refer to as the
separator. (A good way to choose a separator is discussed following Lemma 5).
When the separator is removed, the tree is separated into components where
each is a tree; denote by C1, C2, · · · , Cm these components with the separator
attached to each. Denote by kij (i 6= j) the number of packets whose source
belongs to Ci while its destination belongs to Cj . The total number of inter-
component packets is therefore f =

∑
ij kij . We are interested in bounding

the time required to deliver this intercomponent traffic, which we do using the
following technical lemma.

Lemma 5 The entire intercomponent traffic f for a given set of components
C1, . . . , Cm can be delivered within f + 2MG,D log f time steps.

Proof: Let f1 = f . We partition the components into two sets A1 and B1,
and let n1 be the number of packets to be routed between these two sets. The
partition into A1 and B1 is made such that at least half of the intercomponent
packets flows between them, or, in other words, n1 ≥ f1/2. (The standard 2-
approximation algorithm for the MAX-CUT problem achieves this.) In the first
phase, first direct all the edges in the components of A1 towards the separator,
and the edges in the components of B1 away from the separator, and send all
the packets from A1 to B1. Then, reverse the edge orientation and send all
the packets from B1 to A1. By corollary 1 this operation will take at most
n1 + 2MG,D time steps.

J. Naor et al., Scheduled Hot-Potato Routing , JGAA, 2(4) 1–20 (1998) 15

In the next phase we need to transfer the traffic among components of A1

and among those of B1. The number of packets to be dealt with at this phase
is f2 = f1 − n1 ≤ f1/2. This cannot be done completely in parallel, since the
separator node is common to all of these components, and therefore becomes a
bottleneck. Our approach is to keep the separator as busy as possible. Partition
A1 into two subsets, A2 and B2, in the same manner as before, i.e., such that
at least half of the packets to be routed among the components of A1 is carried
across the boundary between A2 and B2. Similarly divide B1. If n2 denotes the
total amount of this traffic, then n2 ≥ f2/2. In the way described in the proof
of Lemma 4, this phase can be completed in n2 + 2MG,D time steps.

Continuing in this manner, there are at most log f phases, so the entire
process is done within∑

i

(ni + 2MG,D) ≤ f + 2MG,D log f

which completes the proof. 2

We now proceed to provide a good solution for the case of an undirected
tree by a recursive application of the Train Algorithm. It is known that every
tree has a separator, that if removed, separates the tree into components, where
each component is a tree containing at most half of the nodes of the original
tree [17]. In a similar way it can be shown that every tree, some of whose
nodes are sources, has a separator such that if removed, separates the tree into
components, such that each component is a tree containing at most half of the
sources of the original tree. We choose such a node as our separator.

We first send the intercomponent packets in the manner described in Lemma
5 and then apply the whole procedure, recursively, to the (undirected) tree
defined by each component. Note that, in this case, different components do
not share nodes, so the recursion can be applied concurrently to all components,
i.e., packets will be routed concurrently as part of the recursive solution. Call
this scheme the Undirected Train Algorithm.

Lemma 6 The Undirected Train Algorithm guarantees a termination time of

K + 2MG,D log2 K.

Proof: Let Γ(k) be the execution time of the Undirected Train Algorithm for
the given tree topology and for k packets. By Lemma 5 the intercomponent
packets can be delivered within∑

ij

kij + 2MG,D log(
∑
ij

kij) ≤
∑
ij

kij + 2MG,D log k

J. Naor et al., Scheduled Hot-Potato Routing , JGAA, 2(4) 1–20 (1998) 16

Due to the manner in which the separator is chosen, each component has at
most k/2 packets. Hence, the recursive structure of the algorithm gives

Γ(k) ≤ Γ
(

k

2

)
+

∑
i,j

kij + 2MG,D log k

We note that the summation of the term kij in the recursive expression cannot
exceed k. Also, since there are at most log k stages to the recursion, the third
term appears at most log k times. Thus Γ(k) is bounded by k + 2 log2(k)MG,D.
For the entire graph, k = K, which yields the required result. 2

Lemma 7 The Undirected Train Algorithm terminates in O(|V |2 log2 K) steps.

Proof: Consider the selection of a separator as the initiation of a new iteration
of the Undirected Train Algorithm. At the beginning of an iteration, a separator
should be chosen, and this can be done in O(|V |) steps. Next, the number of
intercomponent packets (i.e., the kij ’s), should be computed, consuming O(K)
steps. Next, the iteration breaks, recursively, into O(log K) sub-iterations. At
each sub-iteration a group of O(|V |) components has to be partitioned into two
sets, and it is easy to see that this can be done in O(|V |2) steps. The sub-
iteration concludes by executing the (directed) Train Algorithm on the directed
tree implied by the chosen sets. It is easy to see that an execution of the Train
Algorithm on a directed tree with O(|V |) nodes and packets can be performed
in O(|V |) steps. Thus, each sub-iteration consists of O(|V |2) steps. Since there
are O(log K) sub-iterations in an iteration, we conclude that each iteration
terminates in O(|V |2 log K) steps. Finally, by the recursive structure of the
Undirected Train Algorithm, it has O(log K) iterations, and the result follows.

2

The Undirected Train Algorithm suggests a heuristic algorithm (HSD) for
any general topology: compute a spanning tree Θ for G, and then run the
Undirected Train Algorithm on Θ. This gives us:

Theorem 3 For any graph G and demand D, algorithm HSD terminates in
O(|V |2 log2 K) steps and provides a departure plan whose termination time is
bounded by K + 2|V | log2 K.

Proof: The first claim follows from Lemma 7. The second claim follows from
Lemma 6, since MΘ,D < |V |. 2

We note that, on a general graph, algorithm HSD makes use of only |V |−1
edges. While the above analysis provides a guaranteed performance on gen-
eral graphs, further improvements can be achieved by perturbing the output of
HSD, in an attempt to make use of other, non-tree edges.

J. Naor et al., Scheduled Hot-Potato Routing , JGAA, 2(4) 1–20 (1998) 17

5 Conclusion

In this paper we investigated efficient schemes for high-speed routing, that rely
on techniques of both hot-potato and scheduled routing. Such schemes are ad-
vantageous because they require neither packet buffering nor routing decisions
based on packet contents. Our analysis was carried in two directions. First, we
indicated how routing should be planned after a schedule has been fixed, and
then analyzed the problem of designing an efficient schedule. For some of the
problems, tractable solutions that are optimal have been found. Other prob-
lems were shown to be intractable. For these problems we presented heuristic
solutions. In particular, for the schedule design problem we obtained a recursive
algorithm for which an efficient performance bound has been proved.

Several problems are still left open for further research. Additional versions
of the general problem are the most obvious. Obtaining better heuristics is
another one. For example, the heuristic algorithm presented for the design
problem on a general topology currently achieves a bound of K + 2|V | log2 K.
We would like to improve this bound to that of O(K + MG,D log2 K) which
requires that MΘ,D = O(MG,D). Whether such a spanning tree Θ exists and
whether it can be constructed seem to be non-trivial problems.

Acknowledgement

We would like to thank Efim Dinitz for several useful discussions.

J. Naor et al., Scheduled Hot-Potato Routing , JGAA, 2(4) 1–20 (1998) 18

References

[1] A. Acampora and S. Shah. Multihop lightwave networks: a comparison of
store-and-forward and hot-potato routing. In Proceedings of IEEE INFO-
COM, pages 10–19, 1991.

[2] A. Barnoy, P. Raghavan, B. Schieber, and H. Tamaki. Fast deflection
routing for packets and worms. In Proceedings of the 12th ACM Symposium
on Principles of Distributed Computing, pages 75–86, 1993.

[3] A. Ben-Dor, S. Halevi, and A. Schuster. Potential function analysis of
greedy hot-potato routing. To appear in Mathematical Systems Theory,
1997. Preliminary version in Proceedings of the 13th Symposium on Princi
ples of Distributed Computing, 1994, pages 225–234.

[4] I. Cidon, I. Gopal, and S. Kutten. New models and algorithms for future
networks. In Proceedings of the 7th ACM Symposium on Principles of
Distributed Computing, pages 74–89, 1988.

[5] I. Cidon, S. Kutten, Y. Mansour, and D. Peleg. Greedy packet scheduling.
SIAM Journal on Computing, 24:148–157, 1995.

[6] E. Dinitz. Private communication, May 1993.

[7] U. Feige and P. Raghavan. Exact analysis of hot-potato routing. In Pro-
ceedings of IEEE Symposium on Foundations of Computer Science, pages
553–562, November 1992.

[8] M. Garey and D. Johnson. Computers and Intractability. Freeman, San
Francisco, 1979.

[9] F. Gavril. Algorithms for minimum coloring. Siam J. Computing, 1:180–
187, 1972.

[10] M. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic
Press, New York, 1980.

[11] A. Greenberg and J. Goodman. Sharp approximate models of deflection
routing in mesh networks. In Proceedings of IEEE INFOCOM, pages 307–
318, 1983.

[12] A. Greenberg and B. Hajek. Deflection routing in hypercube networks.
IEEE Transactions on Communications, 40:1070–1081, 1992.

[13] B. Hajek. Bounds on evacuation time for deflection routing. Distributed
Computing, 5:1–6, 1991.

[14] A. Itai. Two-commodity flow. Journal of the ACM, 25:596–611, 1978.

J. Naor et al., Scheduled Hot-Potato Routing , JGAA, 2(4) 1–20 (1998) 19

[15] C. Kaklamanis, D. Krizanc, and S. Rao. Hot potato routing on processor
arrays. In Proceedings of the 5th ACM Symposium on Parallel Algorithms
and Architectures, pages 273–282, 1993.

[16] R. Karp. On the complexity of combinatorial problems. Networks, 5:45–68,
1975.

[17] B. Korte, L. Lovasz, and H. Promel. Paths, Flow, and VLSI-Layout.
Springer-Verlag, Berlin New-York, 1990.

[18] Y. Mansour and B. Patt-Shamir. Greedy packet scheduling on shortest
paths. Journal of Algorithms, 14:449–465, 1993.

[19] N. Maxemchuck. Comparison of deflection and store and forward tech-
niques in the manhattan street and shuffle exchange networks. In Proceed-
ings of IEEE INFOCOM, pages 800–809, 1989.

[20] I. Newman and A. Schuster. Hot-potato algorithms for permutation rout-
ing. IEEE Transactions on Parallel and Distributed Systems, 6(11):1168–
1176, November 1995.

[21] L. M. Ni and P. K. McKinley. A survey of wormhole routing techniques in
direct networks. IEEE Computer, 26(2):62–75, February 1993.

[22] P. Palnati, E. Leonardi, and M. Gerla. Deadlock-free routing in an optical
interconnect for high-speed wormhole routing networks. In Proceedings
of the 1996 International Conference on Parallel and Distributed Systems,
Tokyo, June 1996.

[23] C. Partridge. Gigabit Networking. Addison-Wesley, 1994.

[24] P. Rivera-Vega, R. Varadarajan, and S. Navathe. Scheduling data redis-
tribution in distributed databases. In Proceedings of the 6th International
Conference on Data Engineering, pages 166–173, Los Angeles, February
1990.

[25] A. Symvonis and J. Tidswell. An empirical study of off-line permutation
packet routing on two-dimensional meshes based on the multistage routing
method. IEEE Transactions on Computers, 45(5):619–625, May 1996.

[26] T. Szymanski. An analysis of hot potato routing in a fiber optic packet
switched hypercube. In Proceedings of IEEE INFOCOM, pages 918–925,
1990.

[27] Y. Yemini and D. Florissi. Isochronets: A high-speed network switching
architecture. In Proceedings of IEEE INFOCOM, pages 740–747, 1993.

J. Naor et al., Scheduled Hot-Potato Routing , JGAA, 2(4) 1–20 (1998) 20

[28] Z. Zhang and A. Acampora. Performance analysis of multihop lightwave
networks with hot potato routing and distance age priorities. In Proceedings
of IEEE INFOCOM, pages 1012–1021, 1991.

