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Abstract

We solve the subgraph isomorphism problem in planar graphs in linear
time, for any pattern of constant size. Our results are based on a tech-
nique of partitioning the planar graph into pieces of small tree-width, and
applying dynamic programming within each piece. The same methods
can be used to solve other planar graph problems including connectivity,
diameter, girth, induced subgraph isomorphism, and shortest paths.
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1 Introduction

Subgraph isomorphism is an important and very general form of exact pattern
matching. Subgraph isomorphism is a common generalization of many impor-
tant graph problems including finding Hamiltonian paths, cliques, matchings,
girth, and shortest paths. Variations of subgraph isomorphism have also been
used to model such varied practical problems as molecular structure compar-
ison [2], integrated circuit testing [10], microprogrammed controller optimiza-
tion [26], prior-art avoidance in genetic evolution of circuits [33], analysis of Chi-
nese ideographs [27], robot motion planning [34], semantic network retrieval [36],
and polyhedral object recognition [44].

In the subgraph isomorphism problem, given a “text” G and a “pattern”
H, one must either detect an occurrence of H as a subgraph of G, or list all
occurrences. For certain choices of G and H there can be exponentially many
occurrences, so listing all occurrences can not be solved in subexponential time.
Further, the decision problem is NP-complete. However for any fixed pattern
H with ¢ vertices, both the enumeration and decision problems can easily be
solved in polynomial O(n*) time, and for some patterns an even better bound
might be possible. Thus one is led to the problem of determining the algorithmic
complexity of subgraph isomorphism for a fixed pattern.

Here we consider the special case in which G (and therefore H) are planar
graphs, a restriction naturally occurring in many applications. We show that
for any fixed pattern, planar subgraph isomorphism can be solved in linear
time. Our results extend to some other problems including vertex connectivity,
induced subgraph isomorphism and shortest paths.

Our algorithm uses a graph decomposition method similar to one used by
Baker [6] to approximate various NP-complete problems on planar graphs. Her
method involves removing vertices from the graph leaving a disjoint collection
of subgraphs of small tree-width; in contrast we find a collection of non-disjoint
subgraphs of small tree-width covering the neighborhood of every vertex.

We assume throughout that all planar graphs are simple, so that the number
of edges is at most O(n); this simplifies our time bounds as we need not include
the dependence on this number. The only problems for which this assumption
makes a difference are induced subgraph isomorphism, h-clustering, and edge
connectivity; for those, one can assume without loss of generality that the graph
has bounded edge multiplicity, so again m = O(n).

2 New Results

We prove the following results. The time dependence on H is omitted from
these bounds. In general it is exponential (necessarily so, unless P=NP, since
planar subgraph isomorphism is NP-complete) but see Theorem 3 for situations
in which it can be improved.

e We can test whether any fixed pattern H is a subgraph of a planar graph G,
or count the number of occurrences of H as a subgraph of G, in time O(n).
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o If connected pattern H has k occurrences as a subgraph of a planar graph
G, we can list all occurrences in time O(n + k). If H is 3-connected, then
k = 0O(n) [16], and we can list all occurrences in time O(n).

e We can count the number of induced subgraphs of a planar graph G iso-
morphic to any fixed connected pattern H in time O(n), and if there are
k occurrences we can list them in time O(n + k).

e For any planar graph G for which we know a constant bound on the
diameter, we can compute the exact diameter in time O(n).

e For any constant h we can solve the h-clustering and connected h-cluster-
ing problems [30] in planar graphs in time O(n).

e For any planar graph G for which we know a constant bound on the girth,
we can compute the exact girth in time O(n). The same bound holds if
instead of girth we ask for the shortest separating cycle or for the shortest
nonfacial cycle in a given plane embedding of the graph.

e For any planar graph G, we can compute the vertex connectivity and
edge connectivity of G in time O(n). (For planar multigraphs, we can test
k-edge-connectivity for any fixed k in time O(n).)

e For any planar graph G and any constant ¢, we construct in time O(n) a
linear-space routing data structure which can test for any pair of vertices
whether their distance is at most ¢, and if so find a shortest path between
them, in time O(logn).

3 Related Work

For general subgraph isomorphism, nothing better than the naive exponential
O(n!f1) bound is known. Plehn and Voigt [41] give an algorithm for subgraph
isomorphism which in planar graphs takes time |H |O(IH I)nO(\/ﬁ) (since im-
proved by Alon et al. [1] to 20(|H|)no(\/m)), but this is still much larger than
the linear bound we achieve.

Several papers have studied planar subgraph isomorphism with restricted
patterns. It has long been known that if the pattern H is either K3 or Ky, then
there can be at most O(n) instances of H as a subgraph of a planar graph G,
and that these instances can be listed in linear time [7, 28, 40], a fact which
has been used in algorithms to test connectivity [35], to approximate maximum
independent sets [7], and to test inscribability [14]. Linear time and instance
bounds for K3 and K4 can be shown to follow solely from the sparsity properties
of planar graphs [12, 13], and similar methods also generalize to problems of
finding K o and other complete bipartite subgraphs [12, 17]. Richards [42] gives
O(nlogn) algorithms for finding C5 and Cg subgraphs in planar graphs, and
leaves open the question for larger cycle lengths; Alon et al. [1] gave O(nlogn)
deterministic and O(n) randomized algorithms for larger cycles. In [16], we
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showed how to list all cycles of a given fixed length in outerplanar graphs, in
linear time (see also [37, 38, 39, 45] for similar variants of outerplanar subgraph
isomorphism). We used our outerplanar cycle result to find any wheel of a given
fixed size in planar graphs, in linear time. Itai and Rodeh [28] discuss the
problem of finding the girth of a general graph, or equivalently that of finding
short cycles. The problem of finding cycles in planar graphs was discussed above.
Fellows and Langston [20] discuss the related problem of finding a path or cycle
longer than some given length in a general graph, which they solve in linear
time for a given fixed length bound. The planar dual to the shortest separating
cycle problem has been related by Bayer and Eisenbud [8] to the Clifford index
of certain algebraic curves. Our results here generalize and unify this collection
of previously isolated results, and also give improved dependence on the pattern
size in certain cases.

Recently we were able to characterize the graphs that can occur at most O(n)
times as a subgraph isomorph in an n-vertex planar graph: they are exactly the
3-connected planar graphs [16]. However our proof does not lead to an efficient
algorithm for 3-connected planar subgraph isomorphism. In this paper we use
different techniques which do not depend on high-order connectivity.

Laumond [35] gave a linear time algorithm for finding the vertex connec-
tivity of maximal planar graphs. Eppstein et al. [19] give an O(n) time algo-
rithm for testing k-edge-connectivity for k < 4 and k-vertex-connectivity for
k < 3. For general graphs, testing k-edge-connectivity for fixed k takes time
O(m + nlogn) [25]. 4-vertex-connectivity in general graphs can be tested in
time O(na(n) + m) [29]. However planar graphs can be as much as 5-vertex-
connected, and nothing even close to linear was known for testing planar 5-
connectivity.

Our shortest path data structure combines our methods of bounded tree-
width decomposition with a separator-based divide and conquer technique due
to Frederickson [21]. Obviously all pairs shortest paths can be computed in time
O(nm) after which the queries we describe can be answered in time O(1), but
some faster algorithms are known for approximate planar shortest paths [23, 24,
31]. Our data structure answers shortest path queries exactly, in less prepro-
cessing time than the other known results, but can only find paths of constant
length.

A final note of caution is in order. One should not be confused by the
superficial similarity between the subgraph isomorphism problems posed here
and the graph minor problems studied extensively by Robertson, Seymour, and
others [43]. One can recognize path subgraphs by minor testing, but such tricks
do not work for most other subgraph isomorphism problems. The absence of
a fixed minor imposes severe structural constraints on a graph, whereas this is
much less the case when a fixed subgraph is not present. Although minor testing
can be done in time polynomial in the text graph size, the constant factors are
typically much higher than those for our subgraph isomorphism algorithm.
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{A/FH M}

| {AE,FM} | | {FH KM} |

| {A,D,E,M}| |{H,K,L,M} |

{A,C,D,E}

Figure 1: Tree decomposition of a planar graph.

4 Bounded Tree-Width Subgraph Isomorphism

As a subroutine, we need to perform subgraph isomorphism testing in graphs
of bounded tree-width. This can be done by a standard dynamic programming
technique [9, 46]. The exact statement of the problem we solve is complicated by
the requirement that we count or list each subgraph isomorph exactly once. For
simplicity, we state the bounds for this problem with one parameter measuring
both the tree-width of the text and the size of the pattern.

Definition 1 A tree decomposition of a graph G consists of a tree T, in which
each node N € T has a label L(N) C V(G), such that the set of tree nodes
whose labels contain any particular vertex of G forms a contiguous subtree of T,
and such that any edge of G connects two vertices belonging to the same label
L(N) for at least one node N of T. The width of the tree decomposition is
one less than the size of the largest label set in T. The tree-width of G is the
minimum width of any tree decomposition of G.

We can assume without loss of generality (by splitting high-degree nodes
into multiple nodes with the same label) that each node in T has at most
three neighbors and that there are O(n) nodes in the tree. We will assign
our tree decomposition an arbitrary orientation, by rooting it at one of its
leaves, so that T becomes a binary tree. Figure 1 shows a planar graph, with
a tree decomposition of width three. In fact, the graph shown has no tree
decomposition of width two, so its tree-width is three.

Define the subtree rooted at a node IV to consist of IV and all its descendants.
Each such subtree is associated with an induced subgraph of G, having vertices
contained in labels of nodes in the subtree.
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Figure 2: Partial isomorph of a pentagon in the induced subgraph associated
with node {F, H, K, M }, and corresponding partial isomorph boundary mapping
the pentagon to Gy .

Lemma 1 The subtree rooted at N provides a tree decomposition of the asso-
ciated induced subgraph of G.

Proof: The only property of a tree decomposition that does not follow imme-
diately is the requirement that each edge connect two vertices contained in the
label of some node. Since this is true of G and T, any induced subgraph edge
(u,v) must have {u,v} C L(N’) for some N’, but N’ may not be a descendant
of N. However, if not, u belongs to both L(N') and (by assumption) L(N")
where N is a descendant of N. Therefore, by contiguity, u € L(N), and sim-
ilarly v € L(N), so in this case (u,v) still both belong to the label of at least
one node in the subtree. O

Lemma 2 Assume we are given graph G with n vertices along with a tree de-
composition T of G with width w. Let S be a subset of the vertices of G, and
let H be a fized graph with at most w vertices. Then in time 2°0(Wg®W)n e
can count all isomorphs of H in G that include some verter in S. We can list
all such isomorphs in time 2008 W)y + O(kw), where k denotes the number of
isomorphs and the term kw represents the total output size.

Proof: We perform dynamic programming in tree T. Let a partial isomorph
at a node N of the tree be an isomorphism between an induced subgraph H’
of the pattern H and the induced subgraph of G associated with the subtree
rooted at N.

We let Gy be formed by adding two additional vertices z, y to the subgraph
of G induced by vertex set L(N). We connect each of the two additional vertices
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to all vertices in L(n), and each of the two additional vertices also is given a
self-loop. Then from any partial isomorph at N we can derive a graph homo-
morphism from all of H to G’, which is one-to-one on vertices in L(N), maps the
rest of H' to =, and maps H — H' to y. Let a partial isomorph boundary be such
a map; Figure 2 illustrates a partial isomorph and the corresponding boundary.
Since a partial isomorph boundary consists of a map from a set of at most w
objects to a set of at most w + 3 objects, there are at most w3 = 20(wlogw)
possible partial isomorph boundaries for a given node.

Suppose that node N has children N; and N, We say that two partial
isomorph boundaries B : H +— G’y and By : H — Gy, are consistent if the
following conditions all hold:

e For each vertex v € H, if B(v) € L(Ny) or By(v) € L(N), then B(v) =
Bl(v).

e For each vertex v € H, if B(v) # « then By (v) € L(N) U {y}.
o At least one vertex v € H has B;(v) ¢ L(N) U {y}.

We say that two partial isomorph boundaries By : H — Gy, and By : H — G'y,
form a compatible triple with B if the following conditions both hold:

e B; and By are both consistent with B.
e For each v with B(v) = x, exactly one of By (v) and Ba(v) is equal to y.

For each partial isomorph boundary B : H — G, let X1 (B) be the number
of partial isomorphs which give rise to that boundary, and include a vertex of .S.
Let X5(B) be the number of partial isomorphs which give rise to that boundary,
and do not include a vertex of S. These values can be computed in a bottom-up
fashion as follows:

e If there is no v for which B(v) = x, then all partial isomorphs having
boundary B involve only vertices in L(N), and can be enumerated by
brute force in time 20(wlogw)

e Otherwise, we initialize X;(B) and X3(B) to zero. Then, for each partial
boundary Bj that is consistent with B, and such that there is no v with
B(v) = z and By (v) = y, we increment X;(B) by X;(B1) and increment
X2(B) by X5(Bi). Finally, for each compatible triple B, By, By we incre-
ment Xl(B) by Xl(Bl) . Xl(BQ) + Xl(Bl) . XQ(BQ) + XQ(Bl) . Xl(BQ)
and increment Xo(B) by Xo(B1) - Xo(Bs).

The total time for testing all triples for compatibility and performing the
above computation is O(w3(w+3)+1 = 90(wlogw)

At the root node of the tree, we compute the number of isomorphs involving
S simply by summing the values X5(B) over all partial isomorph boundaries
for which B(v) # y for all v. O
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Lemma 3 Assume we are given graph G with n vertices along with a tree de-
composition T of G with width w. Let S be a subset of the vertices of G, and
let H be a fized graph with at most w vertices. Then we can list all isomorphs
of H in G that include some vertex in S in time 2008y + O(kw), where
k denotes the number of isomorphs and the term kw represents the total output
size.

Proof: We first follow the above dynamic programming procedure, to compute
the values X; and X5 for each partial isomorph boundary. We then compute
top-down in the tree the set of pairs (B, X) where B is a partial isomorph
boundary and X is either X; or X, such that the value X(B) contributes to
the final count of subgraph isomorphs. These pairs can be identified as the ones
such that X (B) was included in the computation of some pair higher in the tree
that has been previously identified as contributing to the total, and that caused
a nonzero increment in this computation. Finally, we compute bottom-up again,
listing for each contributing pair (B, X)) the partial subgraph isomorphs counted
in the value X (B). This step can be performed by mimicking the initial com-
putation of X (B) described in the previous lemma, restricted to the boundaries
known to contribute to the overall total, replacing each increment by a concate-
nation of lists, and replacing each multiplication with the construction of partial
isomorphs from a Cartesian product of two previously-computed lists.

The number of steps for this computation is proportional to the number of
steps in the previous algorithm, together with the added time for each combi-
nation of a pair of partial isomorphs. Each such combination can be charged
to a subgraph isomorph included in the output, and each output isomorph is
formed by a binary tree of combinations that takes O(w) time to perform, so
the total added time is O(kw). O

The same dynamic programming techniques also lead to similar results for
counting or listing induced subgraphs isomorphic to H. To do this, we need only
modify the algorithms above to restrict attention to partial isomorph boundaries
B : H — G’y in which all edges between vertices of L(N) are covered by the
image of some edge in H.

5 Neighborhood Covers

We have seen above that we can perform subgraph isomorphism quickly in
graphs of bounded tree-width. The connection with planar graphs is the follow-
ing:

Lemma 4 (Baker [6]) Let planar graph G have a rooted spanning tree T in
which the longest path has length €. Then a tree decomposition of G with width
at most 3¢ can be found in time O(fn).

Proof: Without loss of generality (by adding edges if necessary) we can assume
G is embedded in the plane with all faces triangles (including the outer face).
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{ABCG}

Figure 3: Triangulated planar graph, with depth two tree T rooted at A (shown
by heavy solid lines), and tree decomposition with nodes corresponding to faces
of the graph and edges complementary to 7.

Form a tree with one node per triangle, and an edge connecting any two nodes
whenever the corresponding triangles share an edge that is not in 7' (Figure 3).
Label each node with the set of vertices on the paths connecting each corner
of the triangle to the root of the tree. Then each edge’s endpoints are part of
some label set (namely, the sets of the two triangles containing the edge), and
the labels containing any vertex form a contiguous subtree (namely, the path
of triangles connecting the two triangles containing the edge from the vertex
to its parent, and any other triangles enclosed in the embedding by this path).
Therefore, this gives us a tree decomposition of G. The number of nodes in any
label set is at most 3¢ + 1, so the width of the decomposition is at most 3¢. O

In particular, any planar graph with diameter D has tree-width O(D).

If an isomorph of a connected pattern H uses vertex v in G, it is contained
in the portion of G within distance |H| of v. By Lemma 4 this |H |-neighborhood
of v has tree-width at most 3|H|. Therefore we can cover G by the collection
of all such neighborhoods, and use Lemma 3 to find the copies of H within
each neighborhood. However such a cover is not efficient: the total size of all
subgraphs is O(n?), so this would give us a subgraph isomorphism algorithm
with quadratic runtime. We speed this up to linear by using more efficient
covers.

Awerbuch et al. [3, 5] have introduced the very similar concept of a neigh-
borhood cover, which is a covering of a graph by a collection of subgraphs, with
the properties that the neighborhood of every vertex is contained in some sub-
graph, and that every subgraph has small diameter. They showed that for any
(possibly nonplanar) graph, and any given value w, there is a w-neighborhood
cover in which the diameter of each subgraph is O(wlogn), and in which the
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total size of all subgraphs is O(mlogn); such a cover can be computed in time
O(mlogn + nlog?n) [4]. Because of Lemma 4, such a neighborhood cover is
also almost exactly what we want to speed up our subgraph isomorphism algo-
rithm. However there are two problems. First, the size and construction time
of neighborhood covers are higher than we want (albeit only by polylogarithmic
factors). Second, and more importantly, the diameter of each subgraph is loga-
rithmic, so we are unable to use dynamic programming directly in the subgraphs
of the cover. We would instead be forced to use some additional techniques such
as separator-based divide and conquer, introducing more unwanted logarithmic
factors.

Instead, we use a technique similar to that of Baker [6] to form a cover that
has the properties we want directly: any connected w-vertex subgraph of G is
included in some member of the cover, and each vertex of GG is included in few
members of the cover (so the total size of the cover is O(n)). Unlike the tech-
niques cited above, the diameter of the subgraphs will not be bounded, however
we will still be able to use Lemma 4 on an auxiliary graph to show that each
covering subgraph has tree-width O(w). Because of the exponential dependence
of our overall algorithms on the tree-width of the covering subgraphs, we con-
centrate our efforts on reducing this width as much as possible, at the expense
of increasing the total size of the cover by an O(w) factor over the minimum
possible.

Lemma 5 Let G be a planar graph, and w be a given integer parameter. Then
we can find a collection of subgraphs G; and a partition of the vertices of G into
subsets S; with the following properties:

e FEvery vertex of G is included in at most w subgraphs G .

e We can find a tree decomposition of each subgraph G; with tree-width at
most 3w — 1.

e If H is a connected w-vertex subgraph of G, and i is the smallest value
for which H NS; is nonempty, then H is a subgraph of G; but is not a
subgraph of any G; with j > 1.

e The total time for performing the partition and computing the tree decom-
positions is O(w?n).

Proof: We choose an arbitrary starting vertex vy, and let S; consist of the
vertices at distance 7 from vy. We then let G; be the graph induced by the
vertex set Uz.z.u_l S;, as shown in Figure 4. Clearly, the sets S; form a partition
of the vertices of G, and each vertex is in at most w subgraphs G;.

Then for ¢ = 0, G; consists of the vertices at distance at most w — 1 from
Vg, SO by applying Lemma 4 to its breadth first spanning tree we can find a
tree decomposition with width at most 3(w — 1). To show that each G; with
i > 0 has low tree-width, form an auxiliary graph G} from G by collapsing into
a single supervertex all the vertices at distance less than ¢ from vy, and deleting
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Figure 4: Planar graph with breadth first spanning tree (heavy edges), partition
into layers S;, subgraph G; (for w = 3, ¢ = 5), and minor G} (with large
supervertex and contracted breadth first spanning tree).

all the vertices with distance at least i +w. G} is a minor of the planar graph G
and is therefore also planar. Then similarly collapsing a breadth first spanning
tree of G gives a spanning tree of G} with depth at most w, so G} has a tree
decomposition with width at most 3w, in which each node of the decomposition
includes the collapsed supervertex in its label. G; is formed by deleting this
supervertex from G, so we can form a tree decomposition of G; with width at
most 3w — 1 by removing the supervertex from the decomposition of G5.

Next, we need to show that any connected subgraph H of G with |H| < w
is contained in G;, where ¢ is the smallest value such that H N S; # 0. But G;
is formed from G simply by removing the sets S; where j <ior j > i+ w. No
S; with j < 4 can contain a vertex of H, or else ¢ would have been smaller. And
no S; with j > ¢ 4+ w can contain a vertex v of H, or else we could find a path
of length at most ¢ + w — 1 from vy to v by concatenating a path in H from
some vertex v; € S; N H to v (which has length at most |H| — 1 < w — 1) with
the breadth first tree path from vy to v; (which has length 4), contradicting the
placement of v in S;. Therefore, none of the vertices that were deleted from G
can belong to H, so H remains a subgraph of G;.

Finally, the condition that H can not be a subgraph for G; where j > i is
clearly true, since no such G; can include any vertex of S;.

The time bound is dominated by the time to perform the tree decompositions
on the graphs G}, which by Lemma 4 is Y, O(wG;) = wO(}_ G;) = w(wn). O
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6 The Subgraph Isomorphism Algorithm
We first describe the result for the special case of connected patterns.

Theorem 1 We can count the isomorphs or induced isomorphs of a given con-
nected pattern H, having w vertices, in a planar text graph G with n vertices,
in time 20108 W)y If there are k such isomorphs we can list them all in time
20(wlogw)y 4 O(wk).

Proof: The algorithm consists of the following steps:

1. Apply the method of Lemma 5 to find a partition of the vertices into sets
S; associated with graphs G; having low width tree decompositions.

2. For each ¢ > 0, count or list the subgraph isomorphs of H in G; that involve
at least one vertex of 5;, using the algorithm of Lemma 2 or Lemma 3
respectively.

3. Sum all the counts or concatenate the lists, to get a count or list of the
isomorphs in G.

By Lemma 5, each isomorph of H in G occurs in exactly one way as an isomorph
in H; that involves at least one vertex of S;, so the algorithm produces the
correct total count or list. The time for the first step is O(w?n), and the time
for the last step is O(n), both dominated by the time for the second step which
is 3 20wlogw)|Gul 4 O(k;w), where the 20(w198w) factor arises by plugging the
3w — 1 treewidth bound of Lemma 5 into the analysis in Lemmas 2 and 3.
This can be simplified to 20 s W) (37 |G4]) + O kjw) = 20w esw) . O(wn) 4
O(kw) = 20Wlogw)y + O(kw). O

The method so far requires that the pattern be connected. We now describe
a general method for handling disconnected patterns. The technique will let
us count the number of matching patterns, after which some sort of separator-
based divide and conquer can likely be used to find an instance of a matching
pattern, but we have been unable to extend this technique to the problem of
listing all subgraph isomorphs of a disconnected pattern.

Theorem 2 We can count the isomorphs of any (possibly disconnected) pattern

H having at most w of vertices, in a planar text graph G with n vertices, in time
20('w log 'w)n'

Proof: Let #¢(H) denote the number of isomorphs of H in G. Rather than
counting the isomorphs of a single pattern, we count the isomorphs of all planar
graphs having at most w vertices. There are only 2°(*) such graphs [47], so
this factor does not change the overall form of our time bound. We order these
graphs by the number of connected components, so that when we are processing
a particular graph H we can assume we already know the values of #¢(H') for
every H' with fewer components.
Our algorithm them performs the following steps on each graph H:
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1. If H is connected, compute #¢(H) using the algorithm of Theorem 1.

2. Otherwise, let H be the disjoint union of two subgraphs H' and H", and
let #q(H) = #¢(H') - #c(H") = > ki#c(H;), where the sum is over all
graphs H; with fewer components than H, and k; denotes the number of
different ways H; can be formed as the union of H; and Hs.

The product #¢(H') - #c(H") counts the number of ways of mapping H
into G such that both H' and H" are isomorphically mapped but their instances
may overlap. The term Y k;#¢(H;) corrects for these overlaps by subtracting
the number of overlapped occurrences of each possible type.

The coefficients k; may be computed by brute force enumeration of all pos-
sible ways of marking a vertex of H; as coming from H’, H”, or both, combined
with a planar graph isomorphism algorithm, in time 2°(*). Therefore, the over-
all time taken in the second step of the algorithm is 2°(*) independent of n,
and the total time is dominated by the first step, in which we apply Theorem 1
to 29(*) connected graphs, taking time 20(wlegw)y, O

7 Further Improvements

For certain patterns, such as the wheels, our results can be further improved
to reduce the time dependence on |H|. Let diam(H) denote the diameter of H
(i.e., the longest distance between any two nodes), and let K,(H) denote the
maximum number of connected components that can be formed by removing
at most = nodes from H. Note that if the diameter diam(H) is small, we can
use that value instead of |H| in our neighborhood cover of G, reducing the
tree-width of the subgraphs G; to O(diam(H)).

Lemma 6 Let H be a given pattern graph, and N be a node of a tree decompo-
sition of graph G. Then there are at most 2512 (H)FILIN)log(HI+1) g frerent
possible partial isomorph boundaries B : H — G’y (as defined in the proof of
Lemma 2).

Proof: The map B can be defined by specifying which (if any) vertex of H
maps to each vertex in L(N) (using log(|H| + 1) bits per vertex of L(N) to
specify this information) and also specifying which of the remaining vertices in
H map to the vertex x in G’y and which ones map to the vertex y. However, it
is not possible for the boundary to come from an actual subgraph isomorphism
unless each connected component of H \ B~!(L(N)) is mapped consistently
either to = or to y, since any path from x to y must pass through a vertex of
L(N). So, to finish specifying the boundary, we need only add this single bit of
information per component of H \ B~1(L(N)), and by definition there are at
most K|z(ny|(H) such components. O

As a consequence, the analysis in Lemma 2 can be tightened to show that
the dynamic program takes time 20Koiamm) (H)+diam(H) log [H]),



D. Eppstein, Planar Subgraph Isomorphism, JGAA, 3(3) 1-27 (1999) 14

Lemma 7 Suppose that planar graph H is Hamiltonian, or is 3-connected, or
is connected and has bounded degree. Then for any set S of vertices of H, H—S
has O(]S]) connected components.

Proof: For Hamiltonian graphs and bounded degree graphs this is straightfor-
ward. For 3-connected graphs, assume without loss of generality that no edge
can be added to H connecting two vertices in S; then each component of H — S
must occupy a distinct face in the planar embedding of .S induced by the unique
embedding of H. O

Theorem 3 If a given pattern H is Hamiltonian, 3-connected, or connected of
bounded degree, we can count the isomorphs of H in a planar text graph G with
n vertices in time 20(diam(H)log |H|)p

Proof: The proof consists simply of plugging the improved analysis of Lemma 6
into the algorithm of Theorem 1. O

For instance we can count the isomorphs of a wheel Wj in a planar text
graph G with n vertices, in time O(nk®™)). In fact in this case it is not difficult
to come up with an O(nk?) algorithm:

Theorem 4 We can count the isomorphs of any wheel Wy in a planar text
graph G with n vertices in time O(nk?).

Proof: For each vertex v, we count the number of cycles of length %k in the
neighbors of v. The sum of the sizes of all neighborhoods in G is O(n). Each
neighborhood has treewidth at most 2 by Lemma 4. Any partial isomorphism
of a k-cycle in a node N of this decomposition can only consist of a single path
of at most k£ — 1 vertices, which starts and ends at some two of the at most
three vertices in L(IN) and may or may not involve the third vertex; therefore
we need only keep track of O(k) different partial isomorph boundaries at each
node. A careful analysis of the steps in the algorithm of Lemma 2 then shows
that the most expensive step (finding compatible triples) can be performed in
time O(k?) per node, giving an overall running time of O(k%n). O

8 Variations and Applications

We now describe briefly how to use our subgraph isomorphism algorithm to
solve certain other related graph problems. For instance, we can find the girth
(shortest cycle), or smallest nonfacial cycle (for some particular embedding)
simply by searching for isomorphs of small cycles:

Theorem 5 We can find the girth g of any planar graph G, or find a small-
est nonfacial cycle C for an embedded planar graph, in time 209189y o
20(IC o [C)py respectively.
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Proof: We test for each integer i = 3,4,5... whether there is a cycle (or
nonfacial cycle) of length i. To test if there is a nonfacial cycle, we count the
total number of cycles of length 7 in the graph and subtract the number of faces
of length i. The total time for this procedure is », ., 20(ilogi)py — 20(glog g)p,
For the nonfacial cycle problem, once the length of the cycle is known, we can
find a single such cycle by performing our subgraph isomorph listing algorithm,
stopping once k + 1 cycles are generated, where k = O(n) is the number of faces
of the given length. By radix sorting the list of cycles (in lexicographic order by
their sequences of vertex indices) we can then test in linear time which of the
generated cycles are nonfacial. O

Theorem 6 We can find a shortest separating cycle C in a planar graph, in
time 20(C1081CN

Proof: We describe how to test for the existence of a separating cycle of length
i; the shortest such cycle can then be found by a sequential search similar to
the computation of the girth.

We first modify the construction of the graphs G; in Lemma 5, by including
in G; not only all the vertices in layers S; through S;y,,—1 but also a single
supervertex for each connected component of the graph induced by the vertices
in layers S, j > i 4+ w, and a supervertex for the (single) connected component
of the vertices in layers S;, 7 < ¢. Then a cycle that uses only vertices in layers
S; through S;1,,—1 (and does not use any of the supervertices) is separating in
the modified G; if and only if the corresponding cycle is separating in G. Note
that the added supervertices only add one level to the breadth first search tree
of G; and hence the tree-width is still O(w).

Then we need merely modify the dynamic program of Lemma 2, to use a
definition of a partial isomorph boundary that, in addition to the map B :
H — Gy, specifies which of the remaining unmapped vertices of G’y are in
each of the two subsets of G separated by the cycle, enforcing the requirement
that no vertex in one subset be adjacent to a vertex in the other subset. This
modification multiplies the number of boundaries by 2°(*)_ but this increase is
swamped by the 20(¥198%) terms from our previous analysis. O

We next consider the application of our techniques to certain graph clustering
problems.

Definition 2 (Keil and Brecht [30]) The h-clustering problem is that of ap-
prozimating the mazimum clique by finding a set of h vertices inducing as many
edges as possible. The connected h-clustering problem adds the restriction that
the induced subgraph be connected.

Keil and Brecht [30] study these problems, and show that even though cliques
are easy to find in planar graphs [40], the connected h-clustering problem is NP-
complete for planar graphs. See [32] for approximate h-clustering algorithms in
general graphs.
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Figure 5: An embedded planar graph G, the vertex connectivity substitute
graph G’ (with edges drawn as heavy curves), and the edge connectivity substi-
tute graph G”.

Theorem 7 For any h we can solve the planar h-clustering and connected h-
clustering problems in time 20108 M)

Proof: We simply to test subgraph isomorphism for all possible planar graphs
on h vertices, and return the subgraph isomorph with the most edges. O

We now describe two applications to connectivity that, unlike the previ-
ous applications, are linear without an exponential dependence on a separate
parameter.

The vertex connectivity of G is the minimum number of vertices such that
their deletion leaves a disconnected subgraph. Since every planar graph has a
vertex of degree at most five, the vertex connectivity is at most five. We now
use a method of Nishizeki (personal communication) to transform the vertex
connectivity problem into one of finding short cycles, similar to those discussed
at the start of this section. We choose some plane embedding of GG, and construct
a new graph G’ having n + f vertices: the n original vertices of G and f new
face-vertices corresponding to the faces of G. We place an edge in G’ between an
original vertex and a face-vertex whenever the corresponding vertex and face are
incident in G. Then G’ is a bipartite plane-embedded graph. This construction
is illustrated in the center of Figure 5.

Lemma 8 Any minimal set S C G of vertices the deletion of which would
disconnect G corresponds to a cycle C C G’ of the same original vertices and
an equal number of face-vertices in G', such that G'\C has at least two connected
components each containing at least one original vertex. Conversely if C' is any
cycle such that G’ \ C has at least two connected components each containing at
least one original vertex, then the original vertices in C' form a cutset in G.
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Proof: Let A be a connected component of G \ S, let G4 be formed from G
by contracting A into a supervertex, and let S’ be the set of faces and vertices
adjacent to the contracted supervertex. Then (since it is just the neighborhood
of a vertex) S’ has the structure of a cycle in G’, and separates A from G\ {AUS}.
If S is minimal, then it must consist of exactly the original vertices in S’. The
converse is immediate, since no edge in the embedding of G can cross a face or
vertex in C. O

Theorem 8 We can compute the vertex connectivity of a planar graph in O(n)
time.

Proof: We can assume without loss of generality that G is two-connected, so
the graph G’ described in Lemma 8 has no multiple adjacencies. We form G’
as above and find the shortest cycle in G’ that separates two original vertices.
As with the shortest separating cycle problem (Theorem 6) this can be done by
a slight modification to our dynamic programming method that decorates the
dynamic programming states with O(1) bits of additional information regarding
the separated vertices. Since any planar graph has a vertex of degree at most
five by Euler’s formula, the shortest cycle in G’ must have length at most ten,
so the algorithm takes time O(n). O

The edge connectivity of a graph is similarly defined as the minimum number
of edges the removal of which disconnects the graph. For simple graphs, this
can again be at most five but for multigraphs it can be higher.

Theorem 9 We can compute the edge connectivity of a simple planar graph in
O(n) time.

Proof: Assume without loss of generality that G is two-edge-connected. Em-
bed G, and form a graph G” by subdividing each edge of G' and connecting
the resulting subdivision points to new vertices in each adjacent face; this con-
struction is illustrated in the right of Figure 5. Then G” is a planar graph
with n original vertices, e edge-vertices on each edge of G, and f face-vertices
in each face of G, so its total complexity is O(n). By the assumption of two-
edge-connectivity, G’ is simple. One can use an argument similar to the one
in Lemma 8, in which we delete a cutset from G, contract a connected com-
ponent, and examine the neighborhood in G of the contracted supervertex, to
show that G is k-edge-connected iff there is no cycle of fewer than 2k edge- and
face-vertices in G, which separates two original vertices. As before, the degree
bound on a planar graph imposes a limit of ten on the length of the shortest
such cycle, and as before this cycle can be found by a minor modification to our
dynamic programming algorithm. O

The same methods extend easily enough to multigraphs, but now the edge
connectivity can not be bounded a priori, so we need to include the connectivity
in our time bound.

Theorem 10 For any fixed k, we can test k-edge-connectivity of a planar multi-
graph in time 20(k1ogk)
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Proof: Without loss of generality, the multiplicity of any edge is at most k, as
higher multiplicities can not improve the overall connectivity. After the edge
subdivision step in the construction of G”, the resulting graph is a simple planar
graph with O(kn) vertices, after which we can proceed as in the remainder of
Theorem 9. O

9 Shortest Path Data Structure

We next describe a technique for finding shortest paths in planar graphs. Let a
parameter ¢ be given (typically, a fixed constant). We wish to test, for any two
vertices u and v, whether there is a path from u to v of distance at most ¢, and
if so return the shortest such path.

Since we wish to use an amount of space independent of ¢, we need a variant
of Lemma 5 in which the total size of the subgraphs is not so large.

Lemma 9 Let G be a planar graph, and w be a given integer parameter. Then
we can find a collection of subgraphs G; and a partition of the vertices of G into
subsets S; with the following properties:

o Fvery vertex of G is included in at most two subgraphs G;.

o We can find a tree decomposition of each subgraph G; with tree-width
O(w).

e (; contains the £-neighborhood of every vertex in S;.

e The total time for performing the partition and computing the tree decom-
positions is O(wn).

Proof: As in Lemma 5, we compute the distances of each vertex from some
arbitrary starting vertex vg. We then let S; consist of those vertices with dis-
tance at least 27w and at most (2¢ + 2)w — 1 from vy, and we let G; be the
graph induced by the set of vertices with distances at least (2i — 1)w and at
most (2¢ + 3)w — 1 from vg. The proof that these graphs have treewidth O(w)
and that each G; contains the ¢-neighborhood of S; is essentially the same as
that of Lemma 5. O

As before, by introducing dummy nodes, we can assume without loss of
generality that each node in the tree decomposition of G; has at most three
neighbors. We warm up with a data structure for our shortest path queries that
uses more space than necessary, but for which queries are very fast.

Theorem 11 Given a planar graph G, and any value ¢, we can in time and
space O(¢nlogn) build a data structure that can, given a query pair of vertices,
either return the distance between the pair or determine that the distance is
greater than £, in time O({) per query.
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Proof: By performing the decomposition of Lemma 9 we can assume without
loss of generality that we have a tree decomposition T' for G of width O(¥).
As with any tree, we can find a node N the removal of which disconnects T'
into subtrees of size at most |T|/2. Our primary data structure consists of the
distances d(z, z) from each vertex = € G to each vertex z € L(IN), together with
a recursively constructed data structure in each subtree.

To answer a query pair z, y where the two vertices belong to different subtrees
of T, we can simply try each of the O(D) values d(z, z) + d(z, y) where z ranges
over all the members of L(N). To answer a query where the two vertices belong
to the same subtree, we can use the recursively defined structure in that subtree.

It remains to show how we quickly determine which node N is eventually
used to answer each query. To do this, define the level of a node to be the
stage in the recursive subdivision process at which the node was chosen, and
define the superior of a node N to be the node chosen at the next earlier level
in the subtree containing N. The links from a node to its superior define a
tree structure 7" different from the original decomposition tree T. Further,
define the home node of a vertex v to be the node with the earliest level with
v € L(N). Note that, because of the requirements that the labels containing v
are contiguous, the home node is uniquely defined. Then, the node to be used
in answering a query pair z,y is simply the least common ancestor in T” of the
home nodes of z and y. O

To return the actual shortest path, rather than simply the distance between
a pair of nodes, we can store a single-source shortest path tree for each member
of L(N), and return the path in the tree for the member of L(N) giving the
smallest distance.

We next show how to reduce the space to linear, at the expense of increasing
the query time.

Theorem 12 Given a planar graph G, and any value £, we can build a data
structure of size O(€n) that can, given a query pair of vertices, either return the
distance between the pair or determine that the distance is greater than £, in
time O(¢?logn) per query.

Proof: As above, we can assume G has a tree decomposition of width O(¥),
which we assume has the form of a rooted binary tree. Define levels in this tree
and home nodes of vertices as above, except that we terminate the recursive
subdivision process when we reach subtrees with fewer than ¢ nodes (which we
call small subtrees). If the node labels containing a vertex v belong only to
nodes in a small subtree .S, then v does not have a home node, instead we say
that S is v’s home subtree.

Define a pair of nodes in T' to be related if there is no node between them
with an earlier level than both. Then, each node N is related to O(1) nodes at
each level: one node at an earlier level than N, and at most one node in each
later level in each of the at most three subtrees formed by removing N from T
Therefore, there are O(n/f) pairs of related nodes.



D. Eppstein, Planar Subgraph Isomorphism, JGAA, 3(3) 1-27 (1999) 20

Our data structure then consists of the matrix of distances from vertices in
L(N1) to vertices in L(N3), for each pair N1, N2 of related nodes. The space
for this data structure is O(nf). It can either be built as a subset of the data
structure of Theorem 11, in time O(nflogn), or bottom-up (using hierarchical
clustering techniques of Frederickson [22] to construct the level structure in
T, and then computing each distance matrix from two previously-computed
distance matrices in time O(¢3)) in total time O(nf?); we omit the details.

To answer a query, we form chains of related pairs connecting the home
nodes (or small subtrees) of the query vertices to their common ancestor in T”.
The levels of the nodes in these two chains becomes earlier at each step towards
the common ancestor, so the total number of pairs in the chain is O(logn). We
then build a graph, in which we include an edge between each pair of vertices
in the labels of a related pair of nodes, labeled with the distance stored in the
matrix for that pair. We also include in that graph the edges of G belonging to
the small subtrees containing the query vertices, if they belong to small subtrees.
The query can then be answered by finding a shortest path in this graph, which
has O(¢logn + £?) vertices and O(¢%logn) edges. O

The following theorem on computing diameter improves the naive O(n?)
bound for all pairs shortest paths when the diameter is small. Note that diam-
eter is not a subgraph isomorphism problem but it succumbs to similar tech-
niques.

Theorem 13 We can compute the diameter D of a planar graph G, in time
O(20(DlogD)n)'

Proof: We begin by performing a breadth first search from an arbitrary vertex.
This will produce a tree of height at most D, so by Lemma 4 we can find a tree
decomposition of width O(D), which as usual we can assume has the form of a
rooted binary tree. We first perform a bottom-up sweep of this tree to compute
for every node N the distances between every pair of vertices in L(N), in the
graph associated with the subtree rooted at N. These O(D?) distances can
be found by combining the distance matrices of the two children of N, in time
O(D?), so this phase takes time O(D3n). We then sweep the decomposition top
down, computing for every node N the distances between every pair of vertices
in L(N), in the whole graph G. The first pass correctly computed these distances
at the root of the tree, and at any other node N the distances can be computed
by combining the distance matrices of the parent of N (previously computed in
the top-down sweep) and its two children (computed in the bottom-up sweep),
again in time O(D?) per node.

We finally sweep through the tree decomposition bottom up, keeping at each
node N a subset S of the vertices seen so far in the subtree rooted at IV, together
with the distances from each member of S to each member of L(N). When we
process a node N, we perform the following steps:

1. Let the set S for node N consist of the union of the corresponding sets S1
and Sy for its children N7 and Na, together with L(N).
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2. Compute the distances from each member of S to each member of L(N),
by combining the previously computed distances to L(Ny) or L(Nz) with
the distances within L(N7) U L(Na).

3. Compute the distance between each pair of nodes z, y where z € S\ L(V)
and y € Sz \ L(N), by testing the distances through all O(D) possible
intermediate nodes in L(N).

4. Radix sort the members of S according to the lexicographic ordering of
their O(D)-tuples of distances to L(N), and eliminate all but one member
for each distinct tuple.

The value returned as the diameter is then the maximum of the distances from
S to L(IN) computed in the second step, and the distances of pairs z, y comuted
in the third step

If any eliminated member x of a tuple belongs to a diametral pair x, y, where
y is not in the subgraph associated with N, then the uneliminated member z’
with the same tuple would have the same distance to y, and would form another
diametral pair. Therefore, the algorithm above will correctly find and report a
diametral pair.

The number of distinct O(D)-tuples of integers in the range from 0 to D
is 20(Plog D) "hence this gives a bound on the size of each set S. The time to
compute distances between pairs x, y is O(D) times the square of this quantity,
which is still 20(Plog D) O

10 Other Graph Families

Our results for planar graphs use the assumption of planarity in two ways. First,
in the bound relating tree-width to diameter (Lemma 4), the proof is based on
the existence of a planar embedding of the graph, and in fact there is no similar
bound in general for nonplanar graphs; for instance the complete graph K, has
diameter one but tree-width n — 1. Second, in the cover of G by low-treewidth
subgraphs described in Lemma 5, we needed the fact that planar graphs are
closed under minors to show that the graph G} is planar, allowing us to apply
Lemma 4 to it.

This naturally raises the question, for which other minor-closed graph fami-
lies can we prove a bound relating diameter to tree-width, similar to Lemma 47
Such a result would then let us apply our subgraph isomorphism techniques
unchanged to any such families. In the conference version of this paper [18], we
announced an exact characterization of these families, which are detailed in a
separate journal paper [15] and which we now summarize:

Definition 3 Define a family F of graphs to have the diameter-treewidth prop-
erty if there is some function f(D) such that every graph in F with diameter at
most D has treewidth at most f(D).
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Figure 6: The graph on the left is an apex graph; the topmost vertex is one of
the possible choices for its apex. The graph on the right is not an apex graph.

Definition 4 An apex graph is a graph G such that for some vertex v (the
apex), G\ {v} is planar (Figure 6).

Theorem 14 ([15]) Let F be a minor-closed family of graphs. Then F has
the diameter-treewidth property iff F does not contain all apex graphs.

Corollary 1 Let F be a minor-closed family of graphs, such that some apex
graph is not in F. Let H be a fized graph in F. Then there is a linear time
algorithm for testing whether H is a subgraph of a given graph G € F.

Note that the bound on tree-width from Theorem 14 is much higher than
the linear bound in Lemma 4, so the dependence on |H| of the time bound of
the algorithm implied by Corollary 1 is much greater than in our planar graph
algorithms. However, for certain important minor-closed graph families (such as
bounded genus graphs) we were able to prove a better dependence of tree-width
on diameter [15], leading to less impractical algorithms.

11 Conclusions and Open Problems

We have shown how to solve planar subgraph isomorphism for any pattern in
time O(n). We have also solved certain related problems in similar time bounds.
A number of generalizations of the problem remain open:

e We have shown that we can solve planar subgraph isomorphism even for
disconnected patterns in time O(n). Can we list all occurrences of a
disconnected pattern in time O(n + k)?

e Bui and Peck [11] describe an algorithm for finding the smallest set of
edges partitioning a planar graph into two sets of vertices with specified
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sizes; if the edge set has bounded size their algorithm has cubic running
time. Can we use our methods to find such a partition more quickly?

e It seems possible that the recently discovered randomized coloring tech-
nique of Alon et al. [1] can improve the dependence on the size of the
pattern from 20(w1ogw) 6 20(w) hut only for the decision problem of sub-
graph isomorphism. Can we achieve similar improvements for the counting
and listing versions of the subgraph isomorphism problem?
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