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Abstract. We consider an example of tubes of hypersurfaces in Euclidean space
and generalise the tube formula to supercase. By this we assign to a point of the
hypersurface in superspace a rational characteristic function. Does this rational
function appear when we calculate the (-function of an arithmetic variety?

Introduction

I would like to make a remark on relations between tube formula and Dwork
formula for (-function for arithmetic varietes. I have been thinking about this
relation and have discussed it for several years with many colleagues. In particular
I spoke about it in Biatlowieza last summer. Recently a very interesting paper [1]
appeared in the web which touches on a related circle of ideas.

1. Tubes of Hypersurfaces

Recall some simple facts concerning tubes of hypersurfaces in Euclidean space.

Let M be a surface in Euclidean space E"*!. By a tube we shall understand
the set of points in E"*+! that are at distance h from M, h > 0. If M is an
orientable hypersurface (surface of codimension 1), then a direction of normal
vector can be chosen. This defines sign of the distance between a point and the
surface. In such a case the tube of radius h is the disconnected union of two
half-tubes M} and M _;. We consider here only oriented hypersurfaces and later
denote by M}, a half-tube for any 1 € R. The n-dimensional volumes of tubes
and half-tubes are polynomials in A if & is small enough. These formulae can be
traced to Steiner (1840), who derived them for a polygon and a polyhedron. In
1939 Weyl gave general formulae for polynomials expressing volumes of tubes
and half-tubes. The coefficients of these polynomials are integrals of expressions
which are formed from the second quadratic form at n-dimensional surface. For
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