


Geometry and Symmetry in Physics

ISSN 1312-5192

## ON SOLITON EQUATIONS WITH $\mathbb{Z}_h$ AND $\mathbb{D}_h$ REDUCTIONS: CONSERVATION LAWS AND GENERATING OPERATORS

## VLADIMIR S. GERDJIKOV AND ALEXANDAR B. YANOVSKI

## Communicated by Metin Gürses

**Abstract.** The Lax representations for the soliton equations with  $\mathbb{Z}_h$  and  $\mathbb{D}_h$  reductions are analyzed. Their recursion operators are shown to possess factorization properties due to the grading in the relevant Lie algebra. We show that with each simple Lie algebra one can relate r fundamental recursion operators  $\Lambda_{m_k}$  and a master recursion operator  $\Lambda$  generating NLEEs of MKdV type and their Hamiltonian hierarchies. The Wronskian relations are formulated and shown to provide the tools to understand the inverse scattering method as a generalized Fourier transform. They are also used to analyze the conservation laws of the above mentioned soliton equations.

## **Contents**

| 1                               | Introduction        |                                                             | 58 |
|---------------------------------|---------------------|-------------------------------------------------------------|----|
| 2                               | Prel                | eliminaries                                                 |    |
|                                 | 2.1                 | The Coxeter Automorphism as Cartan Subgroup Element         | 61 |
|                                 | 2.2                 | The Coxeter Automorphism as Weyl Group Element              | 63 |
|                                 | 2.3                 | Mikhailov's Reduction Group                                 | 65 |
| 3                               | Lax Pairs and NLEEs |                                                             | 66 |
|                                 | 3.1                 | The Spectral Properties of the Lax Operator                 | 68 |
|                                 | 3.2                 | The Time Evolution of the Scattering Data                   | 71 |
| 4                               | The                 | Inverse Scattering Problem and the Riemann-Hilbert Problem. | 71 |
| 5                               | The                 | Recursion Operators and the NLEEs                           | 72 |
|                                 | 5.1                 | The Case of $A_r$                                           | 74 |
|                                 | 5.2                 | The Case of $B_r$ and $C_r$                                 | 76 |
| 6                               | The                 | Wronskian Relations and the Effects of Reduction            | 79 |
|                                 | 6.1                 | The Mapping $\mathcal{F}$                                   | 79 |
|                                 | 6.2                 | The Mapping $\delta \mathcal{F}$                            | 81 |
| 7                               | The                 | Conservation Laws and Hamiltonian Structures                | 83 |
| doi: 10.7546/jgsp-31-2013-57-92 |                     |                                                             | 57 |