

Geometry and Symmetry in Physics

ISSN 1312-5192

## A DECOUPLED SOLUTION TO THE GENERALIZED EULER DECOMPOSITION PROBLEM IN $\mathbb{R}^3$ AND $\mathbb{R}^{2,1}$

## DANAIL BREZOV, CLEMENTINA MLADENOVA AND IVAÏLO MLADENOV

## Presented by Ivaïlo M. Mladenov

**Abstract.** In this article we suggest a new method, partially based on earlier works of Wohlhart [15], Mladenova and Mladenov [11], Brezov et al [3], that resolves the generalized Euler decomposition problem (about arbitrary axes) using a system of quadratic equations. The main contribution made here is that we manage to decouple this system and express the solutions independently in a compact covariant form. We apply the same technique to the Lorentz group in 2+1 dimensions and discuss certain complications related to the presence of isotropic directions in  $\mathbb{R}^{2,1}$ .

## **Contents**

| 1  | Intr                                                         | oduction                                             | 48       |
|----|--------------------------------------------------------------|------------------------------------------------------|----------|
| 2  | Quaternions and Vector-Parameters  The Decomposition Setting |                                                      | 48<br>52 |
| 3  |                                                              |                                                      |          |
|    | 3.1                                                          | Half-Turns                                           | 53       |
|    | 3.2                                                          | The Case of Two Axes                                 |          |
|    | 3.3                                                          | Signs and Orientation                                | 55       |
|    | 3.4                                                          | Gimbal Lock                                          | 55       |
|    | 3.5                                                          | Two Familiar Examples                                | 56       |
| 4  | The Hyperbolic Case                                          |                                                      | 59       |
|    | 4.1                                                          | Two-Axes Decompositions                              | 60       |
|    | 4.2                                                          | Half-Turns, Time-Reversing Boosts and Locked Gimbals | 61       |
|    | 4.3                                                          | Light Cone Singularities                             | 62       |
|    | 4.4                                                          | Configurations of Axes                               |          |
| 5  | Transition to Moving Frames                                  |                                                      | 68       |
| 6  | Quaternion and split quaternion Decompositions               |                                                      | 69       |
| 7  | Numerical Examples                                           |                                                      | 75       |
|    | Refe                                                         | erences                                              | 77       |
| do | i· 10                                                        | 7546/igsp-33-2014-47-78                              | 47       |