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PSEUDO ALGEBRAS AND PSEUDO DOUBLE CATEGORIES

THOMAS M. FIORE

(communicated by Ronald Brown)

Abstract
As an example of the categorical apparatus of pseudo al-

gebras over 2-theories, we show that pseudo algebras over the
2-theory of categories can be viewed as pseudo double catego-
ries with folding or as appropriate 2-functors into bicategories.
Foldings are equivalent to connection pairs, and also to thin
structures if the vertical and horizontal morphisms coincide.
In a sense, the squares of a double category with folding are
determined in a functorial way by the 2-cells of the horizontal
2-category. As a special case, strict 2-algebras with one object
and everything invertible are crossed modules under a group.

1. Introduction

Recent years have seen widespread applications of categorification. The term cat-
egorification refers to a process of turning algebraic notions on sets into algebraic
notions on categories as explained in [6]. Generally speaking, one takes a set-based
algebraic notion, then replaces sets by categories, functions by functors, and equa-
tions by natural isomorphisms which satisfy certain coherence diagrams.

For example, a monoid (group without inverses) is a set-based algebraic concept.
Its categorified notion is a monoidal category, that is a category M equipped with
a functor ⊗ : M ×M //M and a unit which satisfy the monoid axioms up to
coherence isos. These coherence isos must satisfy certain coherence conditions, such
as the familiar pentagon diagram. The commutativity of these diagrams in turn
implies that all diagrams in a certain class commute, as Mac Lane proved in [58].
A familiar example of a monoidal category is the category of complex vector spaces
under the operation of tensor product with unit C.
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Another example of categorification is the notion of a bicategory, which is a cat-
egorification of the algebraic concept of category. In a bicategory the hom-sets are
categories and composition is a functor. Composition is unital and associative up to
coherence isomorphisms which satisfy coherence diagrams like those of a monoidal
category. This similarity is not a coincidence: one-object bicategories are monoidal
categories in the same way that one-object categories are monoids. A familiar ex-
ample of a bicategory consists of rings, bimodules, and bimodule morphisms. Bicat-
egories were introduced in the 1960’s in [9], [10], [35], and [37]. Since then, they
(and their variants) have appeared in diverse areas, such as homotopy theory and
high energy physics.

However, the question arises: what exactly does one mean by “coherence isos
satisfying certain coherence diagrams”? Which coherence isos and which coherence
diagrams does one require? This question already suggests that there may be more
than one way to categorify a given concept, such as category. Indeed, there al-
ready are a dozen or so different definitions of weak n-category, many of which are
described in [23] and [55].

Lawvere theories and 2-theories provide one answer to this question. Lawvere
theories, first introduced in [53], abstractly encode algebraic structure. For most
familiar algebraic structures there is a Lawvere theory. For example, there is a
Lawvere theory of monoids, and algebras over this theory are precisely the monoids.
A Lawvere theory T is simply a category whose objects are 0, 1, 2, . . . such that n is
the product of n copies of 1 with specified projection maps. If T is the theory which
encapsulates a certain algebraic structure, then a set X with that algebraic structure
is an algebra over the theory T . This means that X is equipped with a morphism
Φ : T //End(X) of theories from T to the endomorphism theory on X. To each
abstract word w : n //1 a morphism assigns a function Φ(w) : Xn //X in a
uniform way.

Similarly a category X is a pseudo algebra over a theory T if it is equipped
with a pseudo morphism of theories Φ : T //End(X). To each abstract word
w : n //1 a pseudo morphism assigns a functor Φ(w) : Xn //X . Additionally,
for each operation of theories, there is a coherence isomorphism and for each relation
of theories, there is a coherence diagram which these coherence isomorphisms must
satisfy. This is a well-defined procedure which specifies exactly which coherence
isomorphisms and coherence diagrams are appropriate, no matter if one is interested
in monoids, semi-rings, rings, etc. A pseudo monoid, pseudo semi-ring, or pseudo
ring is simply a pseudo algebra over the appropriate theory. There is a systematic
way to leave out some coherence diagrams to encompass more examples [40].

However, Lawvere theories only axiomatize algebraic structures on a single set.
There is no Lawvere theory of categories, since a category consists of two sets with
composition defined in terms of pullback. For algebraic structures on several sets,
one can use limit theories, sketches, and multi-sorted theories as in [1], [11], or
[12], or schemes of operators as in [47]. In this paper we consider categories as
algebras over a 2-theory. This adds a new ingredient to categorification that we do
not see in the one-object case of Lawvere theories. For example, pseudo algebras
over the 2-theory of categories have an object category I instead of an object set,
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as we shall see.
This version of categorification in terms of pseudo algebras over 2-theories was

introduced in [49], and further developed in [38] and [50], to give a completely
rigorous approach to conformal field theory with n-dimensional modular functor.
Pseudo algebras over the 2-theory of commutative monoids with cancellation make
the symmetric approach to conformal field theory outlined in [71] rigorous. The
notion of 2-theory was the main ingredient for a well-defined procedure of passing
from a strict algebraic structure on a family of sets to a pseudo algebraic structure
on a family of categories, such as the pseudo algebraic structure of disjoint union
and gluing on the class of worldsheets (rigged surfaces). This procedure gave a well-
defined machine for generating the coherence isos and coherence diagrams that were
missing from conformal field theory until that point. Already in 1991, Mac Lane
suggested a study of coherence in the context of conformal field theory in [59]. The
foundations of pseudo algebras over theories and 2-theories were written in [38],
as well as theorems relevant for application to conformal field theory. Among other
things, it was shown that 2-categories of pseudo algebras admit pseudo limits and
bicolimits, and forgetful 2-functors of pseudo algebras admit left biadjoints.

In the present article we apply this version of categorification to the fundamental
algebraic structure of category and compare the resulting concept of pseudo category
to weak double categories and also pseudo functors I //C . One might expect
that a pseudo category would neatly fit into one of the two prevailing approaches to
categorification: enrichment and internalization. This however is not true, a pseudo
category is neither a bicategory, nor a weak double category. Instead we arrive
at an intermediate notion: a pseudo category can be 2-equivalently described as a
weak double category with weak folding or as a bicategory equipped with a pseudo
functor from a 1-category. Our pseudo categories are slightly different from the
pseudo categories in [63], so we will call them pseudo I-categories instead.

We first treat the categorified strict case by reviewing strict categories and double
categories in Section 2 and Section 3, and prove the strict versions of our desired re-
sult in Theorems 4.6, 4.8, and 4.9. Foldings, used in [20], are introduced to facilitate
the 2-equivalence of strict 2-algebras over the 2-theory of categories with underly-
ing category I (I-categories for short) and certain double categories. It turns out
that foldings, which have Ehresmann’s quintets as their motivating example, are
equivalent to Brown and Spencer’s connection pairs, and also thin structures in the
edge-symmetric case, as recounted in Theorem 3.28 (Lemmas 3.24-3.27) and Corol-
lary 3.33. In light of this, Theorem 4.6 is an I-category analogue of the equivalence
in [20] and [73] between small 2-categories and edge-symmetric double categories
with thin structure.

In the case of one object with everything invertible, strict 2-algebras (not nec-
essarily edge symmetric) are equivalent to crossed modules under a group as in
Theorem 5.2 and Theorem 5.13. We generalize Brown and Spencer’s equivalence in
[21] between edge-symmetric double groups with connection pair and crossed mod-
ules. In Theorem 5.15 we prove that double groups (not necessarily edge symmetric)
with folding are 2-equivalent to crossed modules under groups. The paper [19] con-
tains a substantial generalization of [21] by giving an equivalence of ‘core diagrams’
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to double groupoids with certain filling conditions. Double groupoids have recently
found application in the theory of weak Hopf algebras in [4] and [5].

The pseudo double categories of [45] are reviewed in Section 6. We finally prove
in Theorem 7.10 and Theorem 7.11, under the assumption of strict units, the 2-
equivalence of pseudo algebras over the 2-theory of categories (pseudo I-categories
for short), pseudo double categories with folding, and strict 2-functors1 from a
groupoid into a bicategory. The latter two 2-categories remain 2-equivalent even if
I is merely a category.

Theorem 4.9 and Theorem 7.11 may also be considered a special case of Theorem
6.5 of the comparison article [39]. That article relates the commutative-monoid-
with-cancellation approach to conformal field theory in [49] (outlined in [71] in
terms of trace) to the cobordism approach.

2. Strict I-Categories

A category consists of a family of sets with an algebraic structure. Namely, if C is a
category with object set I, then the associated family of sets XA,B := HomC(A,B)
is parametrized by I2. On this family of sets, we have the algebraic structure of
composition and identity. Thus we can view a category as a functor X : I2 //Sets
with certain algebraic operations, where I2 is considered as a discrete category.

From this point of view, a category is an algebra X : I2 //Sets over the 2-
theory of categories. This is the notion that we categorify. In this article we do not
write down the 2-theory of categories, since it suffices to directly define 2-algebras
and pseudo algebras over this 2-theory. The operations are given in terms of the
generating words ◦ and η rather than abstract operations of 2-theories. The under-
lying theory of the 2-theory of categories is the theory of sets. We take the following
description as a definition, and do not need the notion of 2-theory anywhere in this
paper. For a development of 2-theories and their algebras, see the original paper
[49], or the papers [38] and [50].

Definition 2.1. A strict 2-algebra2 over the 2-theory of categories with underlying
category I, called I-category for short, consists of a category I and a strict 2-functor
X : I2 //Cat with strictly 2-natural functors

XB,C ×XA,B
◦ //XA,C

∗
ηB //XB,B

for all A,B, C ∈ I. These functors satisfy the following relations.

1The term “2-functor” means strict 2-functor in this paper. Sometimes we include the word “strict”
for emphasis. When we mean pseudo functor (homomorphism of bicategories), we say so.
2The distinction in this paper between strict 2-algebra and pseudo algebra agrees with usual
2-terminology and pseudo terminology. For example a strict 2-functor is a morphism of strict 2-
categories. A pseudo functor is on the same level as a 2-functor, except a pseudo functor preserves
composition and unit only up to coherent 2-cell isomorphisms. The notion of pseudo 2-algebra
over a theory in [39] is distinct from a pseudo algebra over a theory. It should also be noted that
a 2-theory is not a theory enriched in categories, nor any sort of weakened theory.
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i. The composition ◦ is associative.

(XC,D ×XB,C)×XA,B

◦×1XA,B //

∼=

��

XB,D ×XA,B

◦

))SSSSSSSSSSSSSSSS

XA,D

XC,D × (XB,C ×XA,B)
1XC,D

×◦
// XC,D ×XA,C

◦

55kkkkkkkkkkkkkkkk

ii. For each B ∈ I, the operation ηB is an identity for ◦.

∗ ×XA,B

ηB×1XA,B //

pr2

''OOOOOOOOOOOOOOOOO
XB,B ×XA,B

◦

��
XA,B

XB,C × ∗
1XB,C

×ηB
//

pr1

''OOOOOOOOOOOOOOOOO
XB,C ×XB,B

◦

��
XB,C

We denote the value of ηB on the unique object and morphism of the terminal
category by 1B and i1B

respectively. We denote the identity morphism on an object
f in the category XA,B by if .

The term I-category is an abbreviation of strict 2-algebra over the 2-theory of
categories with underlying category I. The strict morphisms of I-categories and
their 2-cells below are the strict morphisms and 2-cells in the 2-category of strict
2-algebras over the 2-theory of categories with the same underlying groupoid I as
in [38], [49], and [50].

The term I-category agrees with existing usage of the term O-category to mean
a category with the object set O. Indeed, if I is a discrete category (i.e. a set)
and X takes values in Sets, then an I-category is precisely an ordinary category
with object set I. More generally for groupoids I, we will see that I-categories are
“categories with object groupoid I” in a precise sense.

Definition 2.2. A strict morphism F : X //Y of I-categories is a strict 2-
natural transformation F : X +3Y which preserves composition and identity
strictly.

Definition 2.3. A 2-cell σ : F +3G in the 2-category of I-categories is a modifi-
cation σ : F ///o/o/o G compatible with composition and identity. More specifically, a
2-cell σ consists of natural transformations σA,B : FA,B

+3GA,B for all A,B ∈ I
such that

Yj,k(σf
A,B) = σ

Xj,k(f)
C,D

σg
B,C ◦ σf

A,B = σg◦f
A,C

σ1A

A,A = i1A
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for all (j, k) : (A,B) //(C,D) in I2, f ∈ XA,B , and g ∈ XB,C . Here ◦ denotes
the composition functor of the strict 2-algebra, not the composition in the categories
XA,B .

Lemma 2.4. If X : I2 //Cat is an I-category and I is a discrete category, then
X is a strict 2-category with object set I. A morphism between two such I-categories
is simply a strict 2-functor which is the identity on objects. A 2-cell σ : F +3G is
an oplax natural transformation with identity components. If additionally X takes
values in Sets, then X is simply a category with object set I in the usual sense.
A morphism between such I-categories is simply a functor which is the identity on
objects. There is at most a trivial 2-cell between any two such morphisms.

Proof. This is just a matter of definitions. The category of morphisms from A to B
is XA,B . �

An I-category is not an internal category in Cat, nor a Cat-enriched category,
since we have taken as our starting point a different description of category. More
specifically, if one takes as a starting point the definition of category as an object set
C0 and an arrow set C1 along with four maps defining source, target, identity, and
composition satisfying the relevant axioms, then one indeed arrives at the notion of
internal category in Cat as described on pages 267-270 of [60]. An internal category
in Cat is the same as a double category, which is described in an elementary way
in the next section. The choice of starting point is crucial for higher-dimensional
category theory. As seen in [23], equivalent definitions of category lead to quite
different notions of higher category. We will see that the 2-cells of I-categories
correspond to certain vertical natural transformations between double functors.

The notion of I-category lies between the notions of internal category in Cat
and Cat-enriched category, so how far away is an I-category from a 2-category?
The following Lemma shows how to associate to an I-category a strict 2-functor
P : I //C . More importantly, in the presence of the other 2-cell axioms, we ob-
tain a simplification of the requirement that 2-cells σ be modifications in terms of
compatibility with P . The 2-equivalence of I-categories to such strict 2-functors
is Theorem 4.9. We will also apply the following Lemma in the comparison with
double categories with folding in Theorem 4.8.

Lemma 2.5. Suppose I is a groupoid, X and X ′ are strict I-categories, and
F,G : X //X ′ are strict morphisms. We associate to X a 2-category C with
Obj C := Obj I and MorC(A,B) := XA,B. We denote the identity on A in the
category I by 1v

A while we denote the identity on A in C by 1h
A. The identity 2-cell

in C on a morphism f is if . Let P : I //C be the strict 2-functor which is the
identity on objects and

P (j) := Xj−1,1v
C
(1h

C) = X1v
A,j(1h

A)

for morphisms j ∈ I(A,C). Let C′ and P ′ : I //C′ be the 2-category and strict
2-functor associated analogously to X ′. Suppose further we have for each A,B ∈ I
a natural transformation σA,B : FA,B

+3GA,B such that

σg
B,C ◦ σf

A,B = σg◦f
A,C
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σ
1h

A

A,A = i1h
A

for all f ∈ XA,B and g ∈ XB,C . Then the following are equivalent.

i. For all (j, k) : (A,B) //(C,D) in I2 and all f ∈ XA,B we have Yj,k(σf
A,B) =

σ
Xj,k(f)
C,D .

ii. For all j : A //C in I we have σ
P (j)
A,C = iP ′(j).

Proof. The naturality of the identity implies

Xj−1,1v
C
(1h

C) = X1v
A,j(1h

A).

The map P preserves compositions A
j //C

k //E in I because

P (k ◦ j) = X1v
A,k◦j(1h

A)

= X1v
A,k(X1v

A,j(1h
A))

= X1v
A,k(P (j))

= X1v
A,k(1h

C ◦ P (j))

= (X1v
C ,k(1h

C)) ◦ P (j)

= P (k) ◦ P (j)

by the naturality diagram below.

XC,C ×XA,C
◦ //

X1v
C

,k ×X1v
A

,1v
C

��

XA,C

X1v
A

,k

��
XC,E ×XA,C ◦

// XA,E

It is clear that P (1v
A) = X1v

A,1v
A
(1h

A) = 1h
A, so we indeed have a 2-functor P .

For f ∈ XA,B and j ∈ I(A,C), note that f ◦P (j−1) = Xj,1v
B
(f) by the naturality

diagram

XA,B ×XC,A
◦ //

Xj,1v
B
× X1v

C
,j

��

XC,B

X1v
C

,1v
B

��
XC,B ×XC,C ◦

// XC,B

and similarly P (k) ◦ f = X1v
A,k(f) for k ∈ I(B,D). Similar statements hold for

2-cells of C. Thus
Xj,k(f) = P (k) ◦ f ◦ P (j−1)

Xj,k(α) = iP (k) ◦ α ◦ iP (j−1).

We use ◦ to denote the horizontal composition of 2-cells in a 2-category, in addition
to the composition of morphisms.
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Let σA,B be a natural transformation for each A,B ∈ I such that σ is compatible
with composition and identity. Suppose σ satisfies (i). Then

σ
P (j)
A,C = σ

X1v
A

,j(1
h
A)

A,C

= Y1v
A,j(σ

1h
A

A,A)

= Y1v
A,j(i1h

A
)

= iP ′(j)

and (ii) holds.
Suppose σ satisfies (ii). Then

Yj,k(σf
A,B) = iP ′(k) ◦ σf

A,B ◦ iP ′(j−1)

= σ
P (k)
B,D ◦ σf

A,B ◦ σ
P (j−1)
C,A

= σ
P (k)◦f◦P (j−1)
C,D

= σ
Xj,k(f)
C,D

and (i) holds. �

3. Double Categories with Folding

Ehresmann introduced double categories in [35] and [37]. After a long gestation
period, a full theory of double categories is beginning to emerge. Classics in the sub-
ject include [8], [21], [22], [32]-[37], and [57]. For recent work on double categories
and related topics, see [3], [13]-[20], [25]-[31], [44]-[46], [56], and [62]-[65].

We recall double categories and foldings, as well as their morphisms and trans-
formations. Foldings allow us to compare double categories with I-categories in the
next section. In Theorem 3.28 we show that foldings are equivalent to connection
pairs, as a corollary they are also equivalent to thin structures in the edge-symmetric
case.

Definition 3.1. A double category D = (D0, D1) is a category object in the category
of small categories. This means D0 and D1 are categories equipped with functors

D1 ×D0 D1
// D1

s
%%

t

99 D0ηoo

that satisfy the usual axioms of a category. We call the objects and morphisms of
D0 the objects and vertical morphisms of D, and we call the objects and morphisms
of D1 the horizontal morphisms and squares of D.

We can expand this definition as in [51]. A double category D consists of a set
of objects, a set of horizontal morphisms, a set of vertical morphisms, and a set of
squares equipped with various sources, targets, and associative and unital compos-
tions as follows. Objects are denoted with capital Latin letters A,B, . . . , horizontal
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morphisms are denoted with lower-case Latin letters f, g, . . . , vertical morphisms
are denoted with lower-case Latin letters j, k, . . . , and squares are denoted with
lower-case Greek letters α, β, . . . with source and target as indicated below.

A
f // B A

j

��

A
f //

j

��
α

B

k

��
C C g

// D

(1)

In particular, α has vertical source and target f and g, and horizontal source and
target j and k respectively. The objects and vertical morphisms form a category
with composition denoted

j2 ◦ j1 =
[
j1
j2

]
and identities denoted 1v

A. The objects and horizontal morphisms also form a cate-
gory, with composition denoted

f2 ◦ f1 = [f1 f2]

and identities 1h
A. The vertical morphisms and squares form a category under hori-

zontal composition of squares, with horizontal identity squares denoted

A
1h

A //

j

��
ih
j

A

j

��
C

1h
C

// C.

(2)

If α and β are horizontally composable squares, then their composition is denoted

[α β].

The horizontal morphisms and squares form a category under vertical composition
of squares, with vertical identity squares denoted

A
f //

iv
f1v

A

��

B

1v
B

��
A

f
// B.

(3)

If α and β are vertically composable squares, then their composition is denoted[
α
β

]
.

The identity squares are compatible with horizontal and vertical composition.[
ivf1

ivf2

]
= iv[f1 f2]

[
ihj1

ihj2

]
= ih[j1j2

].
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Lastly, the interchange law holds, i.e. in the situation
//

��
α

//

��
β

��//

��
γ

//

��
δ

��// //

(4)

we have [[
α β

][
γ δ

]] =
[[

α
γ

] [
β
δ

]]
and this composition is denoted [

α β
γ δ

]
. (5)

Remark 3.2. A few comments about composition in a double category are in order.
A compatible arrangement is intuitively a pasting diagram of squares in a double
category. It was shown in [30] that if a compatible arrangement has a composite,
then this composite does not depend on the order of composition, although there
may be compatible arrangements in a given double category that do not admit a
composite at all. We show in Corollary 3.29 that all compatible arrangements in
a double category with folding admit a unique composite. We implicitly use this
existence and uniqueness throughout.

Remark 3.3. The assignments j 7→ ihj and f 7→ ivf preserve compositions. Preser-
vation of units follows from the other axioms: an application of the interchange law
to the diagram of identity morphisms

A //

��
iv

1h
A

A //

��
ih
1v

A

A

��
A //

��
ih
1v

A

A //

��
iv

1h
A

A

��
A // A // A

shows that ih1v
A

= iv
1h

A
. We abbreviate this identity square with identity boundary

simply by iA. This proof does not work for pseudo double categories, so ih1v
A

= iv
1h

A

is an axiom in Definition 6.1.

Remark 3.4. As a last comment about composition we remark that double catego-
ries are not required to admit mixed compositions between horizontal and vertical
morphisms. Typically, horizontal and vertical morphisms are different, as Example
6.3 shows.

Definition 3.5. Let D be a double category. Then HD denotes the horizontal 2-
category of D. Its objects are the objects of D, its morphisms are the horizontal
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morphisms of D, and its 2-cells are the squares of D which have vertical identities
on the left and right sides. The underlying 1-category of HD is denoted (HD)0.
The vertical 2-category VD of D and its underlying 1-category (VD)0 are defined
analogously.

Definition 3.6. If D and E are double categories, a double functor F : D //E is
an internal functor in Cat. This consists of functors F0 : D0

//E0 and
F1 : D1

//E1 such that the diagrams

D1 ×D0 D1
//

F1×F0F1

��

D1

F1

��

D0
ηoo

F0

��
E1 ×E0 E1

// E1 E0η
oo

commute. In other words, a double functor consists of functions

Obj D // Obj E

Hor D // Hor E

V er D // V er E

Squares D // Squares E

which preserve all sources, targets, compositions, and units.

Example 3.7. We can obtain double categories from a 2-category C in several
ways. The double category HC has the same objects as C, horizontal morphisms
are the morphisms of C, the vertical morphisms are all trivial, and the squares are
the 2-cells of C. The double category VC is defined similarly, only this time all
horizontal morphisms are trivial. Any 2-functor B //C induces double functors
HB //HC and VB //VC .

Example 3.8. Another double category associated to a 2-category C is Ehres-
mann’s double category QC of quintets of C. Its objects are the objects of C,
horizontal and vertical morphisms are the morphisms of C, and the squares α as
in (1) are the 2-cells α : k ◦ f +3g ◦ j . Any 2-functor B //C induces a double
functor QB //QC . Note that the horizontal 2-category HQC is C. The vertical
2-category VQC is C with the 2-cells reversed. We could just as well have chosen
our quintets to consist of 2-cells g ◦ j +3k ◦ f instead, but then the roles of HQC
and VQC would be switched. In this article we use the former convention because
compatibility with H is important for folding. If I is a 1-category viewed as a 2-
category with only trivial 2-cells, then QI is the double category 2I of commutative
squares in I. A boundary admits a unique square if and only if the boundary is a
commutative square. The double categories QC are edge-symmetric double catego-
ries as in [20] because the horizontal and vertical edge categories coincide.
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Example 3.9. An adjunction in a 2-category C consists of two morphisms
j1 : A //C and j2 : C //A and two 2-cells η : 1C

+3j1 ◦ j2 and
ε : j2 ◦ j1 +31A which satisfy the familiar triangle identities. Here j1 is the right
adjoint and j2 is the left adjoint. The adjunctions in C form a double category AdC
with objects the objects of C, horizontal morphisms the morphism of C, vertical
morphisms the adjunctions in C (with direction given by the right adjoint), and
squares α as in (1) the 2-cells α : k1 ◦ f +3g ◦ j1 . This double category (with
squares reversed) was reviewed in [51] to describe the sense in which mates under
adjunctions are compatible with composition and identity. There is a forgetful dou-
ble functor AdC //QC . A related double category of certain adjoint squares was
introduced and studied in [67] and [68].

We will also have occasion to use double natural transformations. There are two
types: horizontal and vertical.

Definition 3.10. If F,G : D //E are double functors, then a horizontal natural
transformation θ : F +3G as in [45] assigns to each object A a horizontal arrow
θA : FA //GA and assigns to each vertical morphism j a square

FA
θA //

Fj

��

θj

GA

Gj

��
FC

θC
// GC

such that:
i. For all A ∈ D, we have θ1v

A = ivθA,
ii. For composable vertical morphisms j and k,

FA
θA //

F [j
k]

��

θ[j
k]

GA

F [j
k]

��
FE

θE
// GE

=

FA
θA //

Fj

��

θj

GA

Gj

��
FC θC //

Fk

��

θk

GC

Gk

��
FE

θE
// GE,

iii. For all α as in (1),

FA
Ff //

Fj

��

Fα

FB
θB //

Fk

��

θk

GB

Gk

��
FC

Fg
// FC

θC
// GD

=

FA
θA //

Fj

��

θj

GA
Gf //

Gj

��

Gα

GB

Gk

��
FC

θC
// GC

Gg
// GD.
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A horizontal natural transformation is the same as an internal natural transfor-
mation in Cat. We also have vertical natural transformations:

Definition 3.11. If F,G : D //E are double functors, then a vertical natural
transformation σ : F +3G as in [45] assigns to each object A a vertical arrow
σA : FA //GA and assigns to each horizontal morphism f a square

FA

σA

��

Ff //

σf

FB

σB

��
GA

Gf
// GB

such that:
i. For all objects A ∈ D, we have σ1h

A = ihσA,
ii. For all composable horizontal morphisms f and g,

σ[f g] = [σf σg],

iii. For all α as in (1), [
Fα

σg

]
=
[
σf

Gα

]
.

Example 3.12. An oplax natural transformation between 2-functors B //C is
the same as a vertical natural transformation between the induced double functors
HB //HC . The components are necessarily trivial.

To compare I-categories (and more generally pseudo I-categories) with certain
double categories, we extend Brown and Mosa’s notion of folding to non-edge-
symmetric double categories. We prove that a folding is equivalent to a connection
pair in Lemmas 3.24-3.27 and Theorem 3.28. In the case of edge-symmetric double
categories, a connection pair (with trivial holonomy) is the same as a thin structure
as shown in [20], and in higher dimensions in [48]. Edge-symmetric foldings were
used already in [15] to prove that the category of crossed complexes is equivalent
to the category of cubical ω-groupoids, and were generalized to all dimensions in
[2]. More recently, foldings found important applications in [3] and [48]. To define
foldings, we recall Brown and Spencer’s notion of holonomy in [21]:

Definition 3.13. A holonomy for a double category D is a 2-functor (VD)0 //HD
which is the identity on objects. In other words, a holonomy associates to a vertical
morphism a horizontal morphism with the same domain and range in a functorial
way.

Remark 3.14. If a double category is equipped with a holonomy, then we can
define a composition of vertical morphisms j with morphisms and 2-cells of HD by

f ◦ j := f ◦ j

j ◦ g := j ◦ g
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α ◦ j := α ◦ iv
j

j ◦ β := iv
j
◦ β

to obtain morphisms and 2-cells of HD. Here ◦ on the right-hand side desig-
nates horizontal composition of morphisms and 2-cells of the 2-category HD. These
mixed compositions satisfy the obvious axioms: associativity, unitality, and the
usual axioms of left and right whiskering (see [74]). Conversely, a double cate-
gory with a mixed composition satisfying these axioms admits a holonomy defined
by j 7→ 1C ◦ j = j ◦ 1A. These two procedures are inverse, thus holonomies are the
same as such mixed compositions.

Remark 3.15. Given a double category D equipped with a holonomy, or equiva-
lently with mixed composition, one can construct a new double category D′ with
an inclusion holonomy. The objects and vertical 1-categories of D and D′ are the
same, while the set of horizontal morphisms of D′ is the disjoint union of the sets
of horizontal and vertical morphisms of D. Composition of horizontal morphisms
in D′ is the mixed composition, with identities the included vertical identities. The
squares of D′ are the squares of D along with vertical identity squares for the hor-
izontal morphisms of D′ which come from vertical morphisms of D. We equip D′

with a holonomy by including the vertical morphisms, so that the double functor
D′ //D preserves the holonomies. We will apply this construction in Example
6.10 and Example 7.12.

Definition 3.16. A folding on a double category D is a double functor
Λ : D //QHD which is the identity on the horizontal 2-category HD of D and is
faithfully full on squares. More specifically, a folding consists of a holonomy j � //j

and bijections Λf,k
j,g from squares in D with boundary

A
f //

j

��

B

k

��
C g

// D

(6)

to squares in D with boundary

A
[f k] //

1v
A

��

D

1v
D

��
A

[j g]

// D,

(7)

such that:

i. Λ is the identity if j and k are vertical identity morphisms.
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ii. Λ preserves horizontal composition of squares, i.e.

Λ



A
f1 //

j

��

α

B
f2 //

k

��

β

C

`

��
D g1

// E g2
// F


=

A
[f1 f2 `] //

1v
A

��

[iv
f1

Λ(β)]

F

1v
F

��
A [f1 k g2] //

1v
A

��

[Λ(α) iv
g2

]

F

1v
F

��
A

[j g1 g2]

// F.

iii. Λ preserves vertical composition of squares, i.e.

Λ



A

j1

��

f //

α

B

k1

��
C g //

βj2

��

D

k2

��
E

h
// F,



=

A
[f k1 k2] //

1v
A

��

[Λ(α) iv
k2

]

F

1v
E

��
A [j1 g k2] //

[iv
j1

Λ(β)]1v
A

��

F

1v
E

��
A

[j1 j2 h]

// F.

iv. Λ preserves identity squares, i.e.

Λ



A
1h

A //

j

��

ih
j

A

j

��
B

1h
B

// B


=

A
[1h

A j] //

1v
A

��

iv
j

B

1v
B

��
A

[j 1h
B ]

// B.

Definition 3.17. Let D and E be double categories with folding. A morphism of
double categories with folding F : D //E is a double functor such that

F (j) = F (j)

F (ΛD(α)) = ΛE(F (α))

for all vertical morphisms j and squares α in D. This is a double functor F such
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that

D F //

��

E

��
QHD

QHF
// QHE

commutes.

Definition 3.18. Let F,G : D //E be morphisms of double categories with fold-
ing. A horizontal natural transformation θ : F +3G is compatible with folding if
for all vertical morphisms j the following equation holds.

Λ



FA
θA //

Fj

��

θj

GA

Gj

��
FC

θC
// GC


=

FA
[θA Gj] //

1v
F A

��

iv
[θA Gj]

GC

1v
GC

��
FA

[Gj θC]

//// GC

A vertical natural transformation σ : F +3G is compatible with folding if for all
vertical morphisms j the following equation holds.

Λ



FA
Fj //

σA

��

σj

FC

σC

��
GA

Gj

// GC


=

FA
[Fj σC] //

1v
F A

��

iv
[F j σC]

GC

1v
GC

��
FA

[σA Gj]

//// GC

Remark 3.19. The compatibility of a horizontal natural transformation with fold-
ing implies that it is entirely determined by its restriction to the horizontal 2-
category. Even more is true, any 2-natural transformation between the underlying
horizontal 2-functors of two morphisms gives rise to a horizontal natural transfor-
mation compatible with folding, since the compatibility defines θj and the folding
axioms guarantee (ii) and (iii) of Definition 3.10. The analogous remark for vertical
natural transformations does not hold, since compatibility only concerns σj and not
the more general σf .

Definition 3.20. Let D be a double category equipped with two foldings
Λ1,Λ2 : D //QHD . Then a morphism of foldings θ : Λ1

//Λ2 is a horizon-
tal natural transformation

θ : Λ1
+3 Λ2

with identity components. Equivalently, writing j 7→ j for the holonomy of Λ1 and
j 7→ j for the holonomy of Λ2, a morphism of foldings θ assigns to each vertical
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morphism j a square

A

θj

j //

1v
A

��

C

1v
C

��
A

j

// C

(8)

such that:
i. θ preserves identities, i.e. θ1v

A = iA.
ii. θ preserves compositions, i.e. θ

[
j1
j2

]
= [θj1 θj2].

iii. θ is natural, i.e.

A
[f k] //

1v
A

��

Λ1(α)

D

1v
D

��
A [j g] //

1v
A

��

[θj iv
g ]

D

1v
D

��
A

[j g]

// D

=

A
[f k] //

1v
A

��

[iv
f θk]

D

1v
D

��
A [f k] //

1v
A

��

Λ2(α)

D

1v
D

��
A

[j g]

// D.

It may appear that a morphism of foldings is a vertical natural transformation
because of Diagram (8). But this is not so, since θj is a square in the QHD with
trivial horizontal components, and such a square is precisely of the form (8). One
could alternatively interpret (8) to be an oplax natural transformation with iden-
tity components between the 2-functors that constitute the holonomies, though the
naturality of this comparison 2-cell is not equivalent to the full naturality of (iii).

A double category with folding is determined by its vertical 1-catego-ry, its hor-
izontal 2-category, and the holonomy. Vice-a-versa, one can construct a double
category with folding from a 2-category equipped with a 2-functor resembling a
holonomy. This will be made precise in Theorem 4.6, which states the key feature
of foldings: the 2-category of double categories with folding is 2-equivalent to the
2-category of certain 2-functors. The pseudo counterpart of Theorem 4.6 is Theorem
7.9).

The squares of a double category with folding are determined by the 2-cells of the
underlying horizontal 2-category via the folding. A folding horizontalizes a double
category in the sense that it maps a double category to its underlying horizontal
2-category in a functorial way in terms of quintets. Thus, the quintessential example
of a double category with folding is the double category of quintets of a 2-category
as follows.

Example 3.21. Let C be a 2-category and QC the double category of quintets of
C as in Example 3.8. The holonomy is the inclusion of the vertical 1-category C0
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into the horizontal 2-category C, and the folding maps are the identity: the squares
of QC with boundary (6) are by definition the 2-cells in C with boundary (7). In
fact Q is a 2-functor from the 2-category of small 2-categories to the 2-category of
double categories with folding, morphisms, and horizontal natural transformations
compatible with folding. As a special case of QC, the double category 2I of com-
mutative squares in a 1-category I admits a folding. The folding on 2I is unique.
In fact, we’ll see in Theorem 3.30 that foldings are unique up to isomorphism.

Example 3.22. The double category AdC of Example 3.9 admits a canonical
folding: the holonomy sends an adjunction to its right adjoint part. The forgetful
double functor AdC //QC is an example of a morphism of double categories
with folding.

In Section 6 we will extend the notion of folding to pseudo double categories.
The extended notion has more examples, such as the pseudo double categories Rng
and W of bimodules and worldsheets.

Connection pairs on double categories can be found in [20] and [73]. In the
terminology of [46], a connection pair is a functorial choice of a so-called orthogonal
companion for each vertical morphism.

Definition 3.23. A connection pair on a double category consists of a holonomy
j � //j and an assignment of a pair of squares

A
j //

j

��

Γ(j)

C

1v
C

��

A

1v
A

��

1h
A //

Γ′(j)

A

j

��
C

1h
C

// C A
j

// C

to each vertical morphism j such that:

i. Γ and Γ′ preserve identities.

Γ(1v
A) = iA Γ′(1v

A) = iA

ii. Γ and Γ′ preserve compositions, i.e. the transport laws hold.

Γ
([

j1
j2

])
=

j1 //

j1

��

Γ(j1)

j2 //

��

iv
j2

��//

j2

��

ih
j2

j2
//

j2

��

Γ(j2)

��// //
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Γ′
([

j1
j2

])
=

//

��

Γ′(j1)

//

j1

��

ih
j1

j1

��
j1

//

��

iv
j1

//

��

Γ′(j2) j2

��
j1

//
j2

//

(unlabelled arrows are the identities).

iii.

iv
j

=

//

��

Γ′(j)

j //

j

��

Γ(j)

��
j

// //

ihj = ��

//

Γ′(j) j

��
j //

Γ(j)j

�� ��//

(unlabelled arrows are the identities).

We now work towards a proof of Theorem 3.28, which states that the data for
a connection pair is equivalent to the data for a folding. This proof is essentially
a slight generalization of an argument in Section 5 of [20]. The idea goes back to
Spencer in [73] and to the quintets of Ehresmann in [36]. If a double category
admits a folding, then that folding is unique up to isomorphism.

Lemma 3.24. If (Γ,Γ′) is a connection pair on a double category, then

Λf,k
j,g (α) :=

[
Γ′(j) α Γ(k)

]
defines a folding.

Proof. First we show that the holonomy is part of a double functor D //QHD .

i. Follows from Definition 3.23 (i).

ii. In the notation of Definition 3.23, we have

Λ(
[
α β

]
) =

[
Γ′(j) α β Γ(`)

]
=
[

iv1 ivf1
Γ′(k) β Γ(`)

Γ′(j) α Γ(k) ivg2
iv1

]
=
[

ivf1
Λ(β)

Λ(α) ivg2

]
by way of Definition 3.23 (iii).

iii. This proof is similar to the proof just given in (ii).
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iv.
Λ(ihj ) =

[
Γ′(j) ihj Γ(j)

]
=
[
Γ′(j) Γ(j)

]
= iv

j

by Definition 3.23 (iii).

The double functor Λ is surjective on squares, since

f //

��

iv
f

//

��

Γ′(k) k

��
f //

��

k //

δ

��

j

��

j //

Γ(j)

g //

��

iv
g

��//
g

//

maps to δ by the left half of Definition 3.23 (iii). The right half of Definition 3.23
(iii) shows that

f //

��

iv
f

//

��

Γ′(k) k

��

��

//

Γ′(j) j

��

f //

α k

��

k //

Γ(k)

��

j

��

j //

Γ(j)

��

g // //

iv
g

��//
g

//

equals α, so that Λ is injective on squares. �

We now prove the converse to Lemma 3.24:

Lemma 3.25. If Λ is a folding on a double category, then

Γ(j) := (Λj,1
j,1)−1(iv

j
) Γ′(j) := (Λ1,j

1,j
)−1(iv

j
)

defines a connection pair.

Proof. i. Follows because Λ is the identity on squares with identity boundary.
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ii. An application of Λ[j1j2],1

[j1j2
],1 to the right side of the equation for Γ in (ii) of

Definition 3.23 yields the following.

Λ[j1j2],1

[j1j2
],1

([
Γ(j1) iv

j2

ihj2 Γ(j2)

])
= Λ

([[
Γ(j1) iv

j2

]
[
ihj2 Γ(j2)

]
])

=

[j1 j2]
//

��

Λ([Γ(j1) iv
j2

])

��

��

[j1 j2]
//

iv
j1

Λ([ih
j2

Γ(j2)])

��
[j1 j2]

//

=



[
iv
j1

Λ(iv
j2

)
]

[
Λ(Γ(j1)) iv

j2

]
[
iv
j1

Λ(Γ(j2))
]

[
iv
j1

Λ(ihj2)
]


= iv

[j1 j2]

From this we conclude Γ
([

j1
j2

])
=

[
Γ(j1) iv

j2

ihj2 Γ(j2)

]
. A similar argument works

for Γ′.
iii. An application of Λj,1

1,j
to [Γ′(j) Γ(j)] in (iii) of Definition 3.23 yields the

following. [
Γ′(j) Γ(j)

]
= Λj,1

1,j

([
Γ′(j) Γ(j)

])
=
[

Λ(Γ(j))
Λ(Γ′(j))

]
=

[
iv
j

iv
j

]
= iv

j

A similar argument shows
[
Γ′(j)
Γ(j)

]
= ihj .

�

Lemma 3.26. Let (Γ,Γ′) be a connection pair on a double category with associated
folding Λ as in Lemma 3.24. Then the connection pair associated to Λ as in Lemma
3.25 is the connection pair we started with.
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Proof. By Definition 3.23 (iii) we see that

(Λj,1
j,1)(Γ(j)) =

[
Γ′(j) Γ(j) iv1

]
= iv

j

(Λ1,j

1,j
)(Γ′(j)) =

[
iv1 Γ′(j) Γ(j)

]
= iv

j
.

�

Lemma 3.27. Let Λ be a folding on a double category with associated connection
pair (Γ,Γ′) as in Lemma 3.25. Then the folding associated to (Γ,Γ′) as in Lemma
3.24 is the folding we started with.

Proof. The square
[
Γ′(j) α Γ(k)

]
has trivial vertical edges, and is therefore pre-

served by Λ as in (i) of Definition 3.16.[
Γ′(j) α Γ(k)

]
= Λ

([
Γ′(j) α Γ(k)

])
= Λ

([[
Γ′(j) α

]
Γ(k)

])
=

[ [
ivf Λ(Γ(k))

][
Λ(
[
Γ′(j) α

]
)
]]

=


[
ivf iv

k

][
Λ(α)

][
Λ(Γ′(j)) ig

]


=


[
ivf iv

k

][
Λ(α)

][
iv
j

ig
]


= Λ(α).

�

Theorem 3.28. The notions of connection pair and folding on a double category
are equivalent.

Proof. This follows from Lemmas 3.24-3.27. �

Corollary 3.29. Any compatible arrangement in a double category with folding
admits a unique composite.

Proof. We imitate the proof of the edge-symmetric case in [20]. Theorem 4.1 and
Theorem 5.1 in [30] provide a useful criterion for every compatible arrangement
of a double category D to admit a unique composite. Suppose that every square α
as in (1) satisfies the following condition. If either the horizontal source j or the
horizontal target k admits a (vertical) factorization, then that factorization extends
to a vertical factorization

α =
[
α1

α2

]
.
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In this situation, every compatible arrangement of D admits a unique composite.

We claim that any double category D with folding satisfies this criterion. Let
(Γ,Γ′) be the connection pair associated to the folding. If j =

[
j1
j2

]
, then

α =

j1

��

ihj1

f //

α

j1

��
k

��

Γ′(j2) j2

��
j2 //

j2

��

Γ(j2)

g //

ivg

g
//

is a vertical factorization of α extending the factorization of j. A similar proof

works for factorizations of k. �

If a double category admits a folding, then the folding is essentially unique:

Theorem 3.30. Any two foldings on a double category D are isomorphic.

Proof. Suppose (Λ1, j 7→ j) and (Λ2, j 7→ j) are foldings on D with respective associ-
ated connection pairs (Γ1,Γ′1) and (Γ2,Γ′2). We define a morphism
θ : (Λ1, j 7→ j) //(Λ2, j 7→ j) of foldings by θj := Λ2(Γ1(j)). This is natural for
α as in (1) because[

Λ1(α)[
Λ2(Γ1(j)) ivg

]] =
[

iv1 Γ′1(j) α Γ1(k)
Γ′2(j) Γ1(j) ivg iv1

]
=
[
Γ′2(j) α Γ1(k)

]
=
[

iv1 ivf Γ′2(k) Γ1(k)
Γ′2(j) α Γ2(k) iv1

]
=
[[

ivf Λ2(Γ1(k))
]

Λ2(α)

]
.

An inverse to θj is given by θ−1j := Λ2(Γ′1(j)).
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j //

��

θj

��
j //

��

θ−1j

��
j

//

=

j //

��

Λ2(Γ1(j))

��
j //

��

Λ2(Γ
′
1(j))

��
j

//

= Λ2(
[
Γ′1(j) Γ1(j)

]
)

= Λ2(ivj )

= iv
j

The other direction
[
θ−1j
θj

]
= iv

j
follows similarly from[
Γ′1(j)
Γ1(j)

]
= ihj .

�

A related structure on an edge-symmetric double category is a thin structure as
in [20]:

Definition 3.31. Let D be an edge-symmetric double category. Then a thin struc-
ture on D is a double functor

Θ : 2(HD)0 // D

which is the identity on objects and morphisms. Here 2(HD)0 is the double category
of commutative squares of morphisms of D. The squares of D in the image of Θ are
called thin. Clearly, any commutative boundary in D has a unique thin filler and
any composition of thin squares is thin.

Theorem 3.32. (Brown-Mosa in [20]) A thin structure and a connection pair with
trivial holonomy on an edge-symmetric double category determine each other.

Corollary 3.33. The notions of folding with trivial holonomy and thin structure
on an edge-symmetric double category are equivalent.

After introducing double categories, foldings, connection pairs, and thin struc-
tures in this section, we put them to use in an alternate description of I-categories
in the next section.
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4. I-Categories and Double Categories with Folding

Although an I-category is not the same thing as an internal category in Cat, it is
of course a related concept. In this section we show how I-categories are related to
double categories with folding in an explicit and elementary way. Surprisingly, both
notions are equivalent to the simple notion of a strict 2-functor I //C that is
the identity on objects. We introduce three 2-categories X strict,Ystrict,Zstrict and
show that they are 2-equivalent if I is a groupoid. We also prove that Ystrict and
Zstrict remain 2-equivalent even if I is merely a category. Unless stated otherwise,
I denotes a fixed category.

Notation 4.1. Let X strict denote the 2-category of I-categories as defined in Sec-
tion 2. The morphisms in X strict are strict.

Notation 4.2. Let Ystrict denote the 2-category whose objects are double catego-
ries D with folding such that (VD)0 = I. A morphism in Ystrict is a morphism of
double categories with folding which is also the identity on (VD)0.

The 2-cells of Ystrict are vertical natural transformations that are compati-
ble with folding and also have identity components. More precisely, recall that
HD(A,B) denotes the category whose objects are the horizontal morphisms from
A to B in D and whose morphisms are 2-cells of HD with source and target such hori-
zontal morphisms. If F : D //E is a morphism, we denote its
restriction to HD(A,B) by HFA,B : HD(A,B) //HE(FA,FB) = HE(A,B). If
F,G : D //E are morphisms in Ystrict, then a 2-cell σ : F +3G in Ystrict as-
signs to each pair (A,B) ∈ I2 a natural transformation σA,B : HFA,B

+3HGA,B

such that
σj

A,C = iv
j

[ σf
A,B σg

B,C ] = σ
[f g]
A,C

σ
1h

A

A,A = iv1h
A

for all vertical morphisms j : A //C , composable horizontal morphisms f ,g, and
all objects A. With these definitions, Ystrict is a 2-category.

Notation 4.3. Let Zstrict denote the 2-category of 2-categories C with object set
Obj I and equipped with a strict 2-functor P : I //C from the fixed category I
to C which is the identity on objects.

A morphism from P : I //C to P ′ : I //C′ in Zstrict is a strict 2-functor
F : C //C′ such that

I
P //

P ′

""E
EE

EE
EE

EE
EE

EE C

F

��
C′

strictly commutes. We see that any morphism F is the identity on objects.
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If F,G : P //P ′ are morphisms in Zstrict, then a 2-cell σ : F +3G is not a 2-
natural transformation from F to G, but instead consists of natural transformations
σA,B : FA,B

+3GA,B for all A,B ∈ Obj C such that

σ
P (j)
A,C = iP ′(j)

σg
B,C ◦ σf

A,B = σg◦f
A,C

σ
1h

A

A,A = i1h
A

for all j ∈ I(A,C), f ∈ C(A,B), g ∈ C(B,C), and objects A. Here iP ′(j) denotes the
identity 2-cell on the morphism P ′(j) in the 2-category C′. The notation ◦ denotes
the horizontal composition of 2-cells as well as the composition of morphisms.

The 2-category Zstrict is similar to the 2-category of pseudo 2-algebras over a
theory in [39].

Remark 4.4. If I is a discrete category, then the objects and morphisms of X strict,
Ystrict, and Zstrict are simply 2-categories with object set I and 2-functors that are
the identity on objects. The 2-cells are oplax natural transformations with identity
components, which are better viewed as vertical natural transformations with iden-
tity components as in Section 3. We extend this identification to general groupoids
I in Theorem 4.8 and Theorem 4.9 below, and then also to the weak situation in
Theorem 7.10 and Theorem 7.11.

Definition 4.5. A 2-functor F : C //D is a 2-equivalence if there exists a 2-
functor G : D //C and 2-natural isomorphisms 1C ∼= GF and FG ∼= 1D. The
notion of 2-equivalence is the same as equivalence of Cat-enriched categories, i.e. a
2-functor which is surjective on objects up to isomorphism and locally an isomor-
phism of categories.

First we compare Ystrict and Zstrict. This 2-equivalence is the essential feature
of foldings:

Theorem 4.6. Let I be a category. The 2-category Ystrict of double categories
D with folding such that (VD)0 = I is 2-equivalent to the 2-category Zstrict of
strict 2-functors P : I //C that are the identity on objects as in Notation 4.2
and Notation 4.3.

Proof.
We define two strict 2-functors L : Ystrict //Zstrict and M : Zstrict //Ystrict

and show that M is surjective on objects up to isomorphism and locally an isomor-
phism.

From D ∈ Ystrict, we define C := HD and take the functor P : I //C to be the
holonomy, in other words L(D) := P . For a morphism F and a 2-cell σ in Ystrict,
L(F ) := H(F ) and Lσ := σ.

For a strict 2-functor P : I //C in Zstrict, the double category M(P ) has
vertical 1-category I and horizontal 2-category C. The squares α of the form (1)
are 2-cells P (k) ◦ f +3g ◦ P (j) in C. The holonomy is P and the folding bijection
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is the identity. Horizontal and vertical composition of squares, and the respective
units, are defined by the folding axioms in Definition 3.16. For a morphism F in
Zstrict, the double functor M(F ) is the identity on the vertical 1-category and F on
the horizontal 2-category. This in fact also defines F on squares. Lastly M(σ) = σ
for all 2-cells σ in Zstrict.

The 2-functor M is surjective on objects up to isomorphism, since MLD ∼= D for
all D ∈ Ystrict. The vertical 1-categories, horizontal 2-categories, and holonomies of
MLD and D are in fact the same, and the squares correspond under the bijections
Λf,k

j,g .
Lastly, we verify that M is locally an isomorphism. Clearly,

MP,P ′ : Zstrict(P, P ′) //Ystrict(MP,MP ′)

is injective on objects and locally injective. If F ∈ Ystrict(MP,MP ′), thenMLF =
F , and similarly for the morphisms in Ystrict(MP,MP ′). �

Remark 4.7. Theorem 4.6 is an I-category analogue of the equivalence in [20] and
[73] between the category of edge-symmetric double categories with thin structure
and the category of small 2-categories.

Theorem 4.8. Let I be a groupoid. The 2-category X strict of I-catego-ries (strict
2-algebras over the 2-theory of categories with underlying groupoid I) is 2-equivalent
to the 2-category Ystrict of double categories D with folding such that (VD)0 = I as
defined in Notation 4.1 and Notation 4.2.

Proof. We construct a 2-equivalence J : X strict //Ystrict . Suppose X is an ob-
ject of X strict. From the strict 2-functor X : I2 //Cat we define (VJ (X))0 := I

and HJ (X)(A,B) := XA,B . For j as in (1) the holonomy is j := X1v
A,j(1h

A), which
is the same as P in Lemma 2.5. The squares

A

j

��

f //

α

B

k

��
C g

// D

are the morphisms from k◦f to g◦j in XA,D, so that the bijection Λf,k
j,g of Definition

3.16 is the identity map. The horizontal and vertical compositions of squares are
defined by the axioms for Λ in Definition 3.16.

It follows from the definitions that HJ (X) and VJ (X) are 2-catego-ries. The
associativity axioms, identity axioms, and interchange law axiom for composition
of squares of J (X) follow from the analogous axioms for the underlying 2-category
HJ (X) of X by Definition 3.16. In fact, the verifications are formally similar to
the analogous verifications for the double category of quintets of a 2-category. Thus
J (X) is a double category with folding and belongs to Ystrict.

The strict 2-functor J is defined similarly on morphisms. For any morphism
F : X //Y in X strict, then double functor J (F ) is defined as the identity on
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I. On HJ (X)(A,B) it is FA,B , which extends to a definition on squares via Λ. A
naturality argument shows J (F )(k) = J (F )(k), so that J (F ) is a morphism in
Ystrict.

If σ : F +3G is a 2-cell in X strict, then J (σ)A,B is simply σA,B . Since σ is a
modification, we have

Yj,k(σf
A,B) = σ

Xj,k(f)
C,D ,

which implies

σj
A,C = iv

j

by Lemma 2.5. Furthermore, J (σ) is compatible with horizontal composition and
square identity because σ is. This concludes the definition of the strict 2-functor J .

We claim that J is surjective on objects up to isomorphism. Let D be an object
of Ystrict. Then VD(A,B) = I(A,B). For A,B ∈ Obj I, let XA,B be the category
whose objects are horizontal morphisms f : A //B in D and whose morphisms
are the squares of D with left and right vertical morphisms 1v

A and 1v
B respectively.

For f ∈ XA,B , a square α in XA,B , and vertical morphisms j : A //C and
k : B //D , define

Xj,k(f) = [j−1 f k] Xj,k(α) := [i
j−1 α ik].

Then X : I2 //Cat is a clearly a 2-functor by the properties of D, and even an
I-category. Moreover, D is isomorphic to J (X) in Ystrict (squares of D are mapped
to squares of J (X) using ΛD).

The 2-functor J is locally an isomorphism by inspection. Hence J is a 2-
equivalence. �

Next we compare X strict and Zstrict. The result is a strict version of Theorem
5.2 with trivial T in [39] improved from biequivalence to 2-equivalence in Theorem
4.9. It is a corollary of Theorem 4.6 and Theorem 4.8, but we present a direct proof:

Theorem 4.9. Let I be a groupoid. The 2-category X strict of I-catego-ries (strict
2-algebras over the 2-theory of categories with underlying groupoid I) is 2-equivalent
to the 2-category Zstrict of strict 2-functors P : I //C that are the identity on
objects as in Notation 4.1 and Notation 4.3.

Proof. We construct a 2-equivalence K : X strict //Zstrict . For an object
X : I2 //Cat of X , we obtain a strict 2-functor

K(X) = P : I // C

that is the identity on objects as in Lemma 2.5.
We define K compatibly on morphisms and 2-cells. Let F : X //X ′ be a

morphism in X strict, i.e. F is a strict 2-natural transformation from X to X ′ which
preserves composition and identity. We define the 2-functor K(F ) : C //C′ to be
the identity on objects, and as FA,B : XA,B

//X ′
A,B on MorC(A,B) =XA,B .

Then P ′ = K(F ) ◦ P because F is 2-natural and preserves identity morphisms. For
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a 2-cell σ : F +3G in X strict, the natural transformation

K(σ)A,B : K(F )A,B
//K(G)A,B

is simply σA,B . One can easily check that K is a strict 2-functor.
The strict 2-functor K is surjective on objects. If P : I //C is an object of

Zstrict, then XA,B := MorC(A,B) and Xj,k(f) := P (k) ◦ f ◦ P (j−1) defines an
object of X strict which maps to P .

The strict 2-functor K is locally an isomorphism of categories. It is clearly injec-
tive on morphisms and 2-cells. If F is a morphism in Zstrict from K(X) to K(X ′),
then a pre-image is necessarily defined by FA,B := FA,B , the 2-naturality of which
is easily verified:

FXj,k(f) = F (P (k) ◦ f ◦ P (j−1))

= FP (k) ◦ F (f) ◦ FP (j−1)

= P ′(k) ◦ F (f) ◦ P ′(j−1)

= X ′
j,kF (f).

If σ : F +3G is a 2-cell in Zstrict, then a pre-image is defined by σA,B := σA,B .

Since σ
P (j)
A,C = iP ′(j), we know that σ is a modification by Lemma 2.5. The modifi-

cation σ is clearly compatible with composition and identity because σ is.
We conclude that K is a 2-equivalence of 2-categories. �

Remark 4.10. A strict 2-functor P : I //C from a 1-category I to a 2-category
C (with the same object set) that is the identity on objects is a special case
of the notion weak equipment in [75]. There Verity constructs a double bicate-
gory of squares from a weak equipment, which essentially defines our 2-functor
M : Zstrict //Ystrict and a 2-functor Z //Y between the 2-categories de-
fined in Section 7, though the 2-cells are different in present paper. Here we have
constructed 2-equivalences between X and Y as well as between X and Z using
connection pairs and foldings (in the strict and pseudo cases).

In this section we proved the strict version of our desired result: an I-category can
be viewed as a double category with folding or as a 2-functor from a 1-category into
a 2-category. Since foldings are equivalent to connection pairs, and edge-symmetric
double groups with connection pair3 are equivalent to crossed modules, one can
expect that Theorem 4.8 has implications for crossed modules. Indeed, we pursue
this in the next section.

5. 2-Groups, Double Groups, and Crossed Modules

It is often useful to investigate one-object cases of categorical concepts and com-
pare them with more familiar concepts. For example, a one-object category is simply

3Whenever an edge-symmetric double category is equipped with a connection pair, we assume the
holonomy to be trivial.
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a monoid, and a one-object groupoid is a group. In this section, we investigate one-
object I-categories with everything invertible and compare them with other notions
in the literature: crossed modules and double groups.

To see how our comparison of one-object-everything-invertible I-categories will
work, consider 2-groupoids. These are 2-categories in which every morphism and
every 2-cell is invertible. We call a one-object 2-groupoid a 2-group.4 This is the
same as a group object in Cat, or categorical group as in Theorem 5.5. Though the
notion of 2-group is no more familiar than the notion of 2-groupoid, we can compare
it to something familiar. Brown and Spencer proved in [22] (and attribute the result
to Verdier) that categorical groups (and hence 2-groups) are equivalent to crossed
modules. This last concept is much more familiar to topologists than 2-groups.
Whitehead first introduced crossed modules in [76] and proved with Mac Lane that
they model path-connected homotopy 2-types in [61]. The survey [69] contains
an account of the use of crossed modules and their higher-dimensional analogues to
model homotopy types. Recently, 2-groups have been studied in [7]. Our comparison
of one-object I-categories with everything invertible will build on this result of
Brown and Spencer. In fact, Brown and Spencer obtained a 2-equivalence, and we
will in Theorem 5.13 as well.

In addition to the comparison with crossed modules, we also compare with dou-
ble groups. A double groupoid is a double category in which all morphisms and
squares are iso. In particular, squares are required to be isos under both vertical
composition and horizontal composition. In analogy to 2-groups, we shall call a
one-object double groupoid a double group5. Brown and Spencer proved that edge-
symmetric double groups with connection6 are equivalent to crossed modules in
[21]. We extend this to a 2-equivalence between general double groups with folding
and crossed modules under groups in Theorem 5.15. Brown and Higgins showed
in [15] that so-called crossed modules over groupoids (not in the sense of an over
category) are equivalent to edge-symmetric double groupoids with connection. In
[19], Brown and Mackenzie substantially generalized [21] to an equivalence between
locally trivial (not necessarily edge-symmetric) double Lie groupoids and so-called
locally trivial core diagrams. This is an equivalence between double groupoids with
certain filling conditions and core diagrams. Their Theorem 4.2 treats the discrete
case as well. Double groupoids have recently found application in the theory of weak
Hopf algebras in [4] and [5].

In most cases, our 2-cells are the vertical natural transformations. Double cate-
gories provide a good context for the 2-equivalence of categorical groups, 2-groups,
and crossed modules. The 2-natural transformations of 2-groups do not correspond
to the homotopies in the 2-category of crossed modules, instead one needs the ver-
tical transformations. Theorem 5.11 and Theorem 5.15 also hold for the horizontal
natural transformations after adjusting the notion of 2-cell in the 2-category of
crossed modules.

4In this article all 2-groupoids are strict.
5A group object in the category of groups is simply an abelian group by Eckmann-Hilton. Thus
double groups and group objects in the category of groups are not the same.
6The holonomies here are trivial.
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We begin by stating Theorems 4.6, 4.8, and 4.9 in the special case that I is a group
and all morphisms in each structure are invertible. We call these sub-2-categories
X inv,Yinv, and Zinv in Notation 5.1. After recalling 2-groups, categorical groups,
crossed modules, and the proof by Brown and Spencer, we show that Zinv is 2-
equivalent to the 2-category Winv of crossed modules under {e} //I . Therefore
I-categories which have only one object and everything invertible are 2-equivalent
to crossed modules under I. The 2-equivalence of Yinv and Winv says that the 2-
category of double groups D with folding such that (VD)0 = I is 2-equivalent to
the 2-category of crossed modules under I. Lastly we turn to double groups with
folding.

Notation 5.1. In this section, I denotes a one-object groupoid, i.e. a group. Let
X inv denote the 2-category of I-categories X with X∗,∗ a groupoid whose objects
and morphisms are invertible with respect to the 2-algebra composition ◦. Let Yinv

denote the 2-category of double groups D with folding such that (VD)0 = I. Let
Zinv denote the 2-category of strict 2-groups C equipped with a strict 2-functor
P : I //C . Morphisms and 2-cells of the 2-categories X inv,Yinv, and Zinv are as
in the respective categories of Notations 4.1, 4.2, and 4.3.

Theorem 5.2. The 2-categories X inv,Yinv, and Zinv are 2-equivalent.

Proof. The 2-equivalence of X inv,Yinv, and Zinv follows from Theorems 4.6, 4.8,
and 4.9. �

Definition 5.3. A one-object 2-category in which all 1-cells and all 2-cells are
invertible is called a 2-group. We view a 2-group C as a double category with one
object, trivial vertical morphisms, and with horizontal morphisms and squares given
by the 1-cells and 2-cells of C. In other words, we view a 2-group C as HC. A
morphism of 2-groups is a 2-functor. This is the same as a double functor between
the associated double categories. A 2-cell is a vertical natural transformation, not a
2-natural transformation. We denote this 2-category by 2-Gp. It is a sub-2-category
of Cat(Cat)v, the 2-category of double categories, double functors, and vertical
natural transformations.

Definition 5.4. A categorical group is a group object in Cat. This is a category
(X0, X1) equipped with a functor

(X0, X1)× (X0, X1) // (X0, X1)

which strictly satisfies the axioms of a group. A morphism of categorical groups
is a functor compatible with group structure. A 2-cell is a natural transformation
compatible with group structure. We denote the 2-category of group objects in Cat
by Gp(Cat).

Theorem 5.5. The 2-category of categorical groups, morphisms, and 2-cells is
2-equivalent to the 2-category of 2-groups, 2-functors, and vertical natural transfor-
mations.

Proof. The inclusion of Gp into Cat induces an inclusion of 2-categories
Gp(Cat) //Cat(Cat)v . This assigns a categorical group (X0, X1) to the double
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category with one object, no nontrivial vertical morphisms, horizontal morphisms
X0, and squares X1. The horizontal composition is the group operation, and the
vertical composition of squares is composition in the category (X0, X1). Morphisms
and 2-cells of Gp(Cat) are mapped to double functors and vertical natural trans-
formations. Thus Gp(Cat) is contained in 2-Gp. Every 2-group is isomorphic to one
in Gp(Cat), so Gp(Cat) is 2-equivalent to 2-Gp. �

Definition 5.6. A crossed module ∂ : H //G consists of
• groups H and G

• a group homomorphism ∂ : H //G

• a left action of G on H by automorphisms written (g, α) 7→ gα such that:
i. ∂(gα) = g∂(α)g−1 for all α ∈ H and g ∈ G,
ii. ∂(β)α = βαβ−1 for all α, β ∈ H.

Definition 5.7. If (H,G, ∂) and (H ′, G′, ∂′) are crossed modules, then a morphism
(p, q) : (H,G, ∂) //(H ′, G′, ∂′) consists of group homomorphisms p and q such
that the following diagram commutes

H
∂ //

p

��

G

q

��
H ′

∂′
// G′

and p(gα) = q(g)p(α) for all g ∈ G and α ∈ H.

Definition 5.8. If (p1, q1), (p2, q2) : (H,G, ∂) //(H ′, G′, ∂′) are morphisms of
crossed modules, then a homotopy ν : (p1, q1) +3(p2, q2) is a function ν : G //H ′

such that (∂′ν(f))q1(f) = q2(f) and:
i. For all f, g ∈ G and α ∈ H such that ∂(α)f = g, we have

p2(α)ν(f) = ν(g)p1(α),

ii. For all f, g ∈ G, the derivation rule holds:

ν(g) · q1(g)ν(f) = ν(gf).

The vertical composition of homotopies

(p1, q1)
ν1 +3 (p2, q2)

ν2 +3 (p3, q3)

is f � // ν2(f)ν1(f). The horizontal composition of homotopies

(H1, G1, ∂1)

(p1,q1)

$$

(p′1,q′1)

::
(H2, G2, ∂2)ν1

��

(p2,q2)

$$

(p′2,q′2)

::
(H3, G3, ∂3)ν2

��
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is f � // ν2(q′1(f)) · p2(ν1(f)).

Crossed modules, morphisms, and homotopies form a 2-category denoted XMod.
For more on crossed modules as internal categories and their 2-cells, see [24].
Homotopies and derivations for more general crossed modules as needed for a 2-
dimensional notion of holonomy are considered in [17].

Example 5.9. An example of a crossed module is the inclusion of a normal sub-
group H into a group G where the action is conjugation by elements of G. In par-
ticular, {e} //I is a crossed module for any group I. We abbreviate {e} //I
by I.

Example 5.10 (Whitehead). Let (X, A, ∗) be a pair of based spaces. Then the
boundary map ∂ : π2(X, A, ∗) //π1(A, ∗) is a crossed module with action given
by the standard action of the fundamental group. Crossed modules are known
to model pointed path-connected weak homotopy 2-types algebraically. A proof
is sketched in [13].

In preparation for our theorem, we summarize Brown and Spencer’s proof as
recounted in [41]. Brown and Spencer originally showed that categorical groups are
2-equivalent to crossed modules, crossed module morphisms, and homotopies. The 2-
category of categorical groups is 2-equivalent to the 2-category of 2-groups, functors,
and vertical natural transformations. Since we are interested in double groups, we
work with the latter 2-category of 2-groups instead of categorical groups. See [16]
for the analogue of Theorem 5.11 in arbitrary dimensions.

Theorem 5.11 (Brown-Spencer in [22]). The 2-category 2-Gp of 2-groups,
functors, and vertical natural transformations is 2-equivalent to the 2-category XMod
of crossed modules, crossed module morphisms, and homotopies.

Proof. Let C be a 2-group. We obtain a crossed module from C as follows. The group
G consists of the objects of MorC(∗, ∗). In particular, eG is the identity morphism.
The group H consists of 2-cells α in C whose source is eG and ∂ is the target map.

∗

eG

  

∂α

>> ∗α

��

The group G acts on H on the left by conjugation, in other words gα has the form
below.

∗

g−1

  

g−1

>> ∗ig−1

��

eG

  

∂α

>> ∗α

��

g

  

g

>> ∗ig

��

If F : C //C′ is a 2-functor, then we obtain a morphism of crossed modules
by restricting F to G and H. A 2-cell F1

+3F2 in the 2-category of 2-groups is
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a natural transformation

σ : F1|MorC(∗,∗) +3F2|MorC′ (∗,∗)

that is compatible with the horizontal composition of 1- and 2-cells. We obtain a
homotopy ν : G //H ′ by defining ν(g) := σgi(F1g)−1 . Here concatenation denotes
the horizontal composition of 2-cells. The naturality corresponds to (i) and the
compatibility with horizontal composition corresponds to (ii) in Definition 5.8.

Next we describe how to get a 2-group C from a crossed module ∂ : H //G .
The set of morphisms of C is G and the set of 2-cells of C is H o G. The source and
target of the 2-cell (α, g) are g and ∂(α)g respectively. Horizontal composition of
2-cells is given by the group operation in H o G and vertical composition is

(α2, ∂(α1)g1)� (α1, g1) := (α2α1, g1).

The vertical identity is ig := (eH , g) : g +3g .

If (p, q) is a morphism of crossed modules, we obtain a 2-functor C //C′ as q
on 1-cells and (p, q) on 2-cells. A homotopy ν in the 2-category of crossed modules
gives rise to a natural transformation σ : F1|MorC(∗,∗) +3F2|MorC′ (∗,∗) by defin-
ing σg := (ν(g), q1(g)). Further, this natural transformation is a vertical natural
transformation: the derivation rule for homotopies guarantees that σ is compatible
with composition of horizontal morphisms as in Definition 3.11 (ii), since

σgσf = (ν(g), q1(g))(ν(f), q1(f))

= (ν(g) · q1(g)ν(f), q1(g)q1(f))
= (ν(gf), q1(gf))

= σgf .

The composite 2-functor from crossed modules to 2-groups and to crossed mod-
ules back again is 2-naturally isomorphic to the identity. On the other hand, if we
start with a 2-group C, and take the associated crossed module, note that the group
of 2-cells of C (under horizontal composition) is isomorphic to H o G by the map
which sends

∗

g1

  

g2

>> ∗γ

��

to (γig−1
1

, g1). Using this map, one can see that the composite 2-functor from 2-
groups to crossed modules and to 2-groups back again is 2-naturally isomorphic to
the identity. �

Notation 5.12. The objects of the 2-category Winv are crossed modules under
I. These are crossed modules ∂ : H //G equipped with a morphism of crossed
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modules
{e} //

��

I

P

��
H

∂
// G.

Morphisms of Winv are morphisms (p, q) of crossed modules under I, in other words

I
P //

P ′
��@

@@
@@

@@
@ G

q

��
G′

commutes. A 2-cell in Winv is a homotopy ν such that ν(P (j)) = eH′ for all j ∈ I.

Theorem 5.13. The 2-category Winv of crossed modules under I is 2-equivalent
to the 2-category Zinv of 2-groups under I.

Proof. The 2-equivalence from crossed modules to 2-groups in Theorem 5.11 extends
to a 2-equivalence N : Winv //Zinv . A strict 2-functor I //C is the same as
a morphism of crossed modules from I into the crossed module associated to C.
Morphisms of crossed modules under I are the same as morphisms of 2-groups
under I.

We observe that the 2-cells ν : (p1, q1) +3(p2, q2) in Winv are precisely
the 2-cells N (p1, q1) +3N (p2, q2) in Zinv. From Theorem 5.11 we know that the
homotopies (p1, q1) +3(p2, q2) in XMod correspond to the 2-cells
N (p1, q1) +3N (p2, q2) in 2-Gp. It suffices to show that ν(P (j)) = eH′ if and
only if its associated 2-group 2-cell g 7→ σg = (ν(g), q1(g)) satisfies σP (j) = iP ′(j).
But this is the case, since

σP (j) = (ν(P (j)), q1P (j)) = (ν(P (j)), P ′(j))

iP ′(j) = (eH′ , P ′(j)).

Therefore N is a 2-functor that is essentially surjective on objects and locally an
isomorphism, i.e. a 2-equivalence.

Alternatively, one could use the 2-equivalence 2-Gp //XMod and similarly
show that a 2-cell σ in 2-Gp satisfies σP (j) = iP ′(j) if and only if the associated
homotopy ν(g) = σgi(F1g)−1 satisfies ν(P (j)) = eH′ . �

With these notions we can extend Brown and Spencer’s equivalence between
crossed modules and edge-symmetric double groups with connection to the non-
edge-symmetric case. The nontrivial holonomy corresponds to a morphism of crossed
modules from the vertical group into the crossed module associated to the horizontal
2-group. In the rest of this section, we no longer consider fixed I. Our proof builds
on the proof of Theorem 5.11.

Notation 5.14. Let Gp/XMod denote the 2-category of crossed modules under
groups. An object consists of a crossed module (H,G, ∂) and a group I equipped
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with a crossed module morphism

{e} //

��

I

��
H

∂
// G.

A morphism in Gp/XMod is a morphism in the arrow category of crossed
modules. A 2-cell (r1, p1, q1) +3(r2, p2, q2) in Gp/XMod is a homotopy
ν : (p1, q1) +3(p2, q2). Note that all homotopies of crossed module morphisms
I //I ′ are trivial, so we do not include this in the data for a 2-cell in Gp/XMod.

Let DblGpFold denote the 2-category of double groups with folding. The mor-
phisms are morphisms of double categories with folding as in Definition 3.17. The
2-cells F1

+3F2 are vertical natural transformations between the restrictions of
F1 and F2 to the sub-double category with trivial vertical morphisms. We do not
require that the vertical natural transformations are compatible with folding.

The 2-category DblGpFold is like Yinv, except that we allow I to vary and do not
require the 2-cells to be compatible with folding. To extend the equivalence in [21]
between edge-symmetric double groups with connection and crossed modules to a 2-
equivalence, one is forced to take vertical transformations with identity components
as the 2-cells between morphisms of edge-symmetric double groups (2-equivalences
are local isomorphisms). Likewise, in the non-edge-symmetric case of DblGpFold,
the vertical transformations are not required to be compatible with folding: any
vertical transformation in DblGpFold with identity components that is compatible
with folding (as in Definition 3.18) is necessarily trivial.

Our choice of 2-cell in DblGpFold is compatible with the degree 1 part of the
internal hom for cubical ω-groupoids constructed in [16]: an edge-symmetric double
groupoid with connection is a 2-truncated cubical ω-groupoid as defined in [15].
We now extend the equivalence in [21] between edge-symmetric double groups with
connection and crossed modules to the non-edge-symmetric setting and upgrade it
to a 2-equivalence:

Theorem 5.15. The 2-category Gp/XMod of crossed modules under groups is 2-
equivalent to the 2-category DblGpFold of double groups with folding, morphisms,
and vertical transformations.

Proof. We define a 2-equivalence R : DblGpFold //Gp/XMod . For a double
group C with folding, we define I to be the group of vertical morphisms, (H,G, ∂) to
be the crossed module associated to the horizontal 2-group, and the homomorphism
I //G to be the holonomy, so that R(C) = (I,H, G, ∂). If F : C //C′ is a
morphism, then R(F ) is the restriction of F to I,H, and G. If σ is a vertical
transformation F1

+3F2 with identity components, then R(σ) is the homotopy
associated to the restriction of σ to the horizontal 2-group as in Theorem 5.11.

The 2-functor R is surjective on objects up to isomorphism. If (I,H, G, ∂) ∈
Gp/XMod, then we construct the 2-group C associated to the crossed module
(H,G, ∂) as in Theorem 5.11. It has horizontal morphisms G and 2-cells H oG. The

http://jhrs.rmi.acnet.ge


Journal of Homotopy and Related Structures, vol. 2(2), 2007 155

group homomorphism I //G determines a 2-functor I //C . This data deter-
mines a double category C with folding as in Theorem 4.6: the vertical morphisms
are I, the horizontal 2-category is the 2-group C, and the squares are determined by
the 2-cells of the horizontal 2-group by the folding. We see that R(C) ∼= (I, H, G, ∂).

Lastly we verify that the functor

RC,C′ : DblGpFold(C, C′) // Gp/XMod(R(C),R(C′))

is an isomorphism of categories. Two morphisms F1, F2 : C //C′ that coincide
on the vertical 1-category and the horizontal 2-category also coincide on the squares
by the compatibility with folding. Similarly, a morphism (r, p, q) : R(C) //R(C′)
has a pre-image because the folding defines a morphism on general squares from
the horizontal 2-functor associated to (p, q) (as in Theorem 5.11) and the vertical 1-
functor r. Thus RC,C′ is bijective on objects. The 2-cells R(F1) +3R(F2) are the
2-cells between the underlying crossed-module morphisms of R(F1) and R(F2). By
Theorem 5.11, the latter are in bijective correspondence with the vertical transfor-
mations between the restrictions of the double functors F1 and F2 to the sub-double
categories of C and C′ with trivial vertical morphisms. These are precisely the 2-cells
of DblGpFold. Hence RC,C′ is fully faithful and an isomorphism of categories.

The 2-functor R is locally an isomorphism and surjective up to isomorphism on
objects, so that R : DblGpFold //Gp/XMod is a 2-equivalence.

�

Remark 5.16. Theorem 5.11 used vertical transformations as the 2-cells in 2-Gp
and homotopies as the 2-cells in XMod. One could just as well work with horizontal
transformations in 2-Gp to obtain a 2-equivalence. However, the notion of 2-cell in
XMod must be changed appropriately. A 2-cell w : (p1, q1) +3(p2, q2) in this
approach is an element w ∈ G′ such that:

i. wq1(g)w−1 = q2(g) for all g ∈ G,
ii. wp(h) = p′(h) for all h ∈ H.

If we use these 2-cells in Gp/XMod and horizontal transformations compatible with
folding as 2-cells in DblGpFold, then we obtain an analogue of Theorem 5.15. The
proof is very similar, but relies on Remark 3.19 in the discussion of 2-cells. I thank
Simona Paoli for pointing out to me that the two notions of 2-cells correspond to
horizontal and vertical natural transformations.

This concludes our discussion of strict structures.

6. Pseudo Double Categories with Folding

Next we turn our attention to weak structures and work towards pseudo versions
of Theorems 4.6, 4.8, and 4.9. There are various ways of weakening a double category.
Recall that a double category contains two 2-categories, namely its horizontal and
vertical 2-categories as in Definition 3.5. One can weaken either or both of these to
a bicategory, but in many applications only one direction is typically weak. In this
paper, we prefer to make the horizontal 2-category into a horizontal bicategory. This
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corresponds to the passage from category object in Cat to pseudo category object
in Cat. Pseudo double categories, and more generally pseudo category objects, have
been studied in [45], [46], [63], and [75]. Often one can arrange the units of the
horizontal bicategory to be strict. Later we work with strict units.

Definition 6.1. A pseudo double category D consists of a class of objects, a set of
horizontal morphisms, a set of vertical morphisms, and a set of squares with source
and target as in (1). The vertical morphisms are equipped with a composition,
as are the horizontal morphisms. The squares are equipped with a vertical and a
horizontal composition. morphisms and squares also form a category under vertical
composition with identity squares ivf as in (3) which satisfy

[ivf1
ivf2

] = iv[f1 f2]
.

There are also distinguished squares ihj (not necessarily identity) as in (2) which
satisfy [

ihj1

ihj2

]
= ih[j1j2

] and ih1v
A

= iv1h
A
.

The objects, horizontal morphisms, and squares with trivial left and right sides form
a bicategory with coherence iso 2-cells

A
1B◦f //

1v
A

��

λf

B

1v
B

��

A
f◦1A //

1v
A

��

ρf

B

1v
B

��

A
h◦(g◦f) //

1v
A

��

αh,g,f

C

1v
C

��
A

f
// B A

f
// B A

(h◦g)◦f
// C

that satisfy the usual coherence triangle diagram and coherence pentagon diagram
for bicategories as in the original [9], or in the review [54], or in the Appendix to
[39]. These coherence iso 2-cells are also natural for all squares, for example

A
1h

A //

ih
jj

��

A

j

��

f //

β

B

k

��

A
1h

A //

1v
A

��

ρf

A
f // B

1v
B

��
C

1h
C

//

1v
C

��

ρg

C g
// D

1v
D

��

= A

j

��

β

f // B

k

��
C g

// D C g
// D
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and also for

f1 //

��

β

f2 //

��

γ

��

f3 //

δ

��
g1

//
g2

//
g3

//

we have

[
[ β γ ] δ
αg3,g2,g1

]
=
[

αf3,f2,f1

β [ γ δ ]

]
.

Lastly, the interchange law holds as in (4) and (5). For a “one-sort formulation”
of pseudo double category and mention of the subtleties in the following remark,
see [45].

Remark 6.2. The weakening of the horizontal 2-category to a horizontal bicategory
forces other parts of the notion of double category to weaken in a pseudo double
category D. For example, the horizontal composition of squares cannot be strictly
associative if the composition of horizontal morphisms is not strictly associative.
Similarly, the horizontal composition of squares cannot be strictly unital if the
composition of horizontal morphisms is not strictly unital.

If the composition of horizontal morphisms is not strictly unital, then VD is
neither a 2-category nor a bicategory: the vertical composition of 2-cells in VD
(which is the horizontal composition of squares in D) is not closed. However, if we
redefine the vertical composition of 2-cells β and γ in VD to be

1h
//

��

ρ−1
1h

��1h
//

��

β

1h
//

��

γ

��
1h

//

��

ρ1h

1h

//

��
1h

//

then we obtain a 2-category.
If λ and ρ are the vertical identity squares (i.e. the composition of horizontal

morphisms is strictly unital), then ihj is a horizontal identity square by the naturality
of λ and ρ, and hence VD is a 2-category without any alterations. If additionally α
is a vertical identity, then we obtain the usual notion of double category. Whenever
λ and ρ are the vertical identity squares, we say that D has strict units. Note that
for pseudo double categories we must require ih1v

A
= iv

1h
A

even though this equality
follows from the other axioms in the case of strict double categories.

Example 6.3. In the pseudo double category Rng, objects are commutative rings,
horizontal morphisms from A to B are (B,A)-bimodules, vertical morphisms are
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ring homomorphisms, while squares β with boundary as in (1) are group homo-
morphisms β : f //g such that β(bxa) = k(b)β(x)j(a) for all b ∈ B, x ∈ f, and
a ∈ A. Composition of horizontal morphisms is tensor product of bimodules, while
composition of vertical morphisms is ordinary function composition.

Definition 6.4. A pseudo double functor F : D //E consists of maps

Obj D // Obj E

Hor D // Hor E

V er D // V er E

Squares D // Squares E

which preserve all sources and targets and are compatible with compositions and
units in the following sense. The restriction HF to the horizontal bicategory is a
homomorphism7 of bicategories whose coherence isos are natural with respect to all
squares, and further, the restriction of F to the vertical 1-category is an ordinary
functor. Equivalently, F consists of functors F0 : D0

//E0 and F1 : D1
//E1

and natural isomorphisms

D1 ×D0 D1
//

F1×D0F1

��

D1

F1

��
E1 ×E0 E1

//

γ

7?vvvvvvvvvvvvv

vvvvvvvvvvvvv
E1

D0
η //

F0

��

D1

F1

��
E0 η

//

δ

:B}}}}}}}}}}}

}}}}}}}}}}}
E1

whose components are squares with trivial vertical edges, and which satisfy the
usual three coherence diagrams for homomorphisms of bicategories. The naturality
of δ means

FA
1h

F A //

δA

FA

FA F1h
A
//

Fj

��

F (ih
j )

FA

Fj

��
FC

F1h
C

// FC

=

FA
1h

F A //

Fj

��

ih
F j

FA

Fj

��
FC 1h

F C
//

δC

FC

FC
F1h

C

// FC

7A homomorphism of bicategories preserves composition and units up to coherence isos. The
composition coherence iso satisfies a hexagon diagram with the composition coherence isos of the
bicategories, and the unit coherence iso satisfies two square diagrams with the unit coherence isos
of the bicateogries. Some authors call this a pseudo functor.
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for all vertical morphisms j. Thus if δ is trivial, then F preserves horizontal identity
squares. If γ is additionally trivial and D and E are strict, then F is an internal
functor in Cat, in other words a double functor.

Definition 6.5. Let D be a pseudo double category. A pseudo holonomy is a ho-
momorphism of bicategories (VD)0 //HD which is the identity on objects.

Definition 6.6. Let D be a pseudo double category. A pseudo folding on D consists
of a pseudo holonomy j � //j and bijections Λf,k

j,g from squares in D with boundary
as in (6) to squares in D with boundary as in (7) such that (i),(ii), (iii), and (iv) of
Definition 3.16 hold after composing with the coherence iso 2-cells of the horizontal
bicategory and the pseudo holonomy. If the pseudo holonomy of a pseudo folding is
a strict 2-functor, then we say simply folding instead of pseudo folding.

Remark 6.7. One would like to say that a pseudo folding on a pseudo double
category is a pseudo double functor D //QHD , but the quintets of a bicategory
unfortunately do not form a pseudo double category. Instead we write out what
the pseudo functoriality would mean directly: the holonomy 2-functor is replaced
by a homomorphism of bicategories, and composites of squares are preserved after
composing with coherence isos.

Definition 6.8. Let D and E be pseudo double categories with pseudo folding. A
morphism of pseudo double categories with pseudo folding F : D //E is a mor-
phism of pseudo double categories equipped with a coherence iso 2-cell

F (j) // F (j)

of the horizontal bicategory for each vertical morphism j of D such that:

i. the coherence iso 2-cells are compatible with the coherence iso 2-cells of the
pseudo holonomies,

ii. after composing with the relevant coherence iso 2-cells, we have

F (ΛD(α)) = ΛE(F (α))

for all squares α of D.

Example 6.9. Consider the pseudo double category Rng of rings, bimodules,
ring homomorphisms, and squares in Example 6.3. From a ring homomorphism
j : A //C we get a (C,A)-bimodule j by viewing C as a left C-module in the
usual way and as a right A-module via j. We also denote this bimodule by Cj as
in [64], where such base changes are organized into a so-called closed symmetric
bicategory. The map j � //j defines a pseudo holonomy which strictly preserves
units, but preserves compositions only up to a coherence iso 2-cell. For a square

A
M //

j

��
β

B

k

��
C

N
// D

,
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i.e. for a group homomorphism β : M //N such that β(bma) = k(b)β(m)j(a),
define a 2-cell of HRng

Λ(β) : Dk ⊗B M +3 N ⊗C Cj

d⊗m
� // (d · β(m))⊗ 1C .

This is well defined because (d, m) � //d · β(m) is middle B-linear.

(d · b) · β(m) = (dk(b)) · β(m)
= d · (k(b) · β(m))
= d · β(b ·m)

Then Λ is bijective, a pre-image of a 2-cell β′ : Dk ⊗B M +3N ⊗C Cj is given by
β(m) := β′(1D⊗m) under the identification N⊗CCj

∼= Nj . The coherence diagrams
associated with (i),(ii), and (iii) of Definition 3.16 can be verified, and Λ is a pseudo
folding on Rng with pseudo holonomy j � //j . For more on this example in the
context of so-called anchored bicategories, trace maps, and symmetric bicategories,
see [64], [70], and [72].

Example 6.10. The pseudo double category W of worldsheets is relevant to con-
formal field theory, and admits a folding. A worldsheet x is a real, compact, not nec-
essarily connected, two dimensional, smooth manifold with complex structure and
real analytically parametrized boundary components. A boundary component k is
called inbound if the orientation of its parametrization fk : S1 //k with respect
to the orientation on k is the same as the orientation of the identity parametriza-
tion of the boundary of the unit disk. Otherwise k is called outbound. We say that
the inbound components of x are labelled by a finite set A if x is equipped with a
bijection between the set of inbound components and A.

The objects of W are finite sets, the horizontal morphisms from A to B are
worldsheets x whose inbound respectively outbound components are labelled by A
respectively B, the vertical morphisms are bijections of sets. For two finite sets A
and B of the same cardinality, we also include in our horizontal morphisms from A
to B unions of unparametrized circles (a, S1, b) where each a ∈ A and each b ∈ B
appear only once, so we can view such unions as bijections. The circle (a, S1, b)
is viewed as an infinitely thin annulus with inbound component labelled by a and
outbound component labelled by b. For x and y worldsheets, a square

A
x //

j

��
β

B

k

��
C y

// D

consists of a holomorphic diffeomorphism β : x //y which:

i. takes every inbound component of x labelled by a ∈ A to an inbound compo-
nent of y labelled by j(a),
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ii. takes every outbound component of x labelled by b ∈ B to an outbound
component of y labelled by k(b), and

iii. preserves the boundary parametrizations.

For x and y unions of circles, there is a unique square β with boundary as above
if and only if x = y, and j and k are vertical identities. This unique square is
necessarily the identity. There are no other squares in this double category.

The composition of horizontal morphisms is given by gluing of surfaces, and the
horizontal composition of squares is defined analogously. The composition of vertical
morphisms is composition of functions. The strict horizontal unit from A to A is
the union of circles (a, S1, a) for a ∈ A. A strict holonomy is defined by mapping a
function j to the union of circles (a, S1, j(a)).

Actually, this example is an illustration of a pseudo version of Remark 3.14
and Remark 3.15. The worldsheets admit a mixed composition with the bijections
via relabelling. Including the disjoint union of circles also as horizontal morphisms
corresponds to extending D to D′, and this explains our choice of squares. The
holonomy is the inclusion.

A folding Λ is given by simply relabelling the outbound boundary components of
x via k and relabelling the inbound boundary components of y via j: the holomorphic
diffeomorphism stays the same.

This example, along with [52] and [66], suggests that double categories play a
role in the mathematics relating to field theories and high energy physics.

7. Pseudo Algebras and Pseudo Double Categories with Fold-
ing

As we have seen in Theorems 4.6, 4.8, and 4.9, the 2-categories of I-categories,
double categories with folding, and certain strict 2-functors are 2-equivalent if I is
a groupoid, and the latter two remain 2-equivalent even if I is merely a category.
Next we work towards pseudo versions of these theorems, as stated in Theorems
7.9, 7.10, and 7.11. We prove the 2-equivalence of three 2-categories X ,Y, and Z
as introduced8 in Notations 7.5, 7.6, and 7.7. The 2-category X is the 2-category of
pseudo I-categories as defined below, while Y and Z are the 2-categories of certain
pseudo double categories with pseudo folding and certain 2-functors respectively.

Definition 7.1. A pseudo algebra over the 2-theory of categories with underlying
category I, also called a pseudo I-category for short, is a category I and a strict
2-functor X : I2 //Cat with strictly 2-natural functors

XB,C ×XA,B
◦ //XA,C

∗
ηB //XB,B

8For the 2-equivalences with X we assume I is a groupoid.
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for all A,B, C ∈ I and natural isomorphisms

XC,D × (XB,C ×XA,B)
◦×1XA,B //

∼=

��

⇓αA,B,C,D

XB,D ×XA,B

◦

))SSSSSSSSSSSSSSSS

XA,D

(XC,D ×XB,C)×XA,B
1XC,D

×◦
// XC,D ×XA,C

◦

55kkkkkkkkkkkkkkkk

∗ ×XA,B

ηB×1XA,B //

pr2

��

⇓λA,B

XB,B ×XA,B

◦

��
XA,B

1XA,B

// XA,B

XB,C × ∗

⇓ρB,C

1XB,C
×ηB

//

pr1

��

XB,C ×XB,B

◦

��
XB,C

1XB,C

// XB,C

which are the components of modifications and satisfy the usual coherence diagrams
for a bicategory as in the original [9], or in the review [54], or in the Appendix to
[39]. The requirement that α, λ, and ρ be modifications means Xj,m(αh,g,f ) =
αX`,m(h),Xk,`(g),Xj,k(f), Xj,k(λf ) = λXj,k(f), and Xk,`(ρg) = ρXk,`(g) for all

j : A // A′

k : B // B′

` : C // C ′

m : D // D′.

If λ and ρ are identities, we say X has strict units. We denote the value of ηB on the
unique object and morphism of the terminal category by 1B and i1B

respectively.
We denote the identity morphism on an object f in the category XA,B by if .

Definition 7.2. A morphism of pseudo I-categories F : X //Y is a strict 2-
natural transformation F : X +3Y with natural isomorphisms

XB,C ×XA,B

⇑γA,B,C

◦ //

FB,C ×FA,B

��

XA,C

FA,C

��
YB,C × YA,B ◦

// YA,C
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∗
ηX

A //

��

⇑δA

XA,A

FA,A

��
∗

ηY
A

// YA,A

which are the components of modifications and satisfy the usual coherence diagrams
for homomorphisms of bicategories. The requirement that γ and δ be modifications
is equivalent to Yj,`(γg,f ) = γYk,`(g),Yj,k(f) and Yj,j(δA) = δA′ .

Definition 7.3. A 2-cell σ : F +3G in the 2-category of pseudo I-categories
is a modification σ : F ///o/o/o G compatible with composition and identity. More
specifically, a 2-cell σ consists of natural transformations σA,B : FA,B

+3GA,B

for all A,B ∈ I such that

Yj,k(σf
A,B) = σ

Xj,k(f)
C,D

γG
g,f � (σg

B,C ◦ σf
A,B) = σg◦f

A,C � γF
g,f

σ1A

A,A � δF
A = δG

A

for all (j, k) : (A,B) //(C,D) in I2, f ∈ XA,B , g ∈ XB,C , and all objects A
of I. Here � denotes the composition in the categories XA,B and ◦ denotes the
composition functor of pseudo I-categories.

Following the convention introduced in Section 2, we use the term pseudo I-
category to abbreviate pseudo algebra over the 2-theory of categories with underlying
category I. The morphisms and 2-cells above are the morphisms and 2-cells in the 2-
category of pseudo algebras over the 2-theory of categories with underlying category
I as in [38], [49], and [50]. In this section I will denote a fixed category. Whenever
we require I to be a groupoid, we will explicitly say so.

Remark 7.4. If I is a groupoid, units are strict, and F and G are morphisms
of pseudo I-categories that strictly preserve the units, then Remark 2.5 holds. In
particular, the requirement Yj,k(σf

A,B) = σ
Xj,k(f)
C,D on a 2-cell σ can replaced by

σ
P (j)
A,C = iP ′(j).

Notation 7.5. Let X denote the 2-category of pseudo I-categories with strict units.
The morphisms of X are morphisms of pseudo I-categories which preserve the units
strictly.

Notation 7.6. Let Y denote the 2-category of pseudo double categories D with
strict units equipped with a folding (i.e. the holonomy is strict) and such that
(VD)0 = I. We further require that the associativity coherence iso αk,f,` is the
identity for vertical morphisms k and ` and horizontal morphisms f such that
k ◦ f ◦ ` exists.

http://jhrs.rmi.acnet.ge


Journal of Homotopy and Related Structures, vol. 2(2), 2007 164

A morphism in Y is a morphism F of pseudo double categories with folding which
preserves the holonomy and units strictly and is the identity on (VD)0. We further
require that γF

k,f
and γF

f,`
are identities.

A 2-cell σ : F +3G in Y is a vertical natural transformation that is compatible
with folding and has identity components. Less succinctly, a 2-cell assigns to each
pair (A,B) ∈ I2 a natural transformation σA,B : HFA,B

+3HGA,B such that

σj
A,C = iv

j[
[ σf

A,B σg
B,C ]

γG
g,f

]
=

[
γF

g,f

σ
[f g]
A,C

]

σ
1h

A

A,A = i1h
A

for all vertical morphisms j ∈ I(A,C), composable horizontal morphisms f and g,
and all objects A.

Notation 7.7. Another 2-category of interest is the 2-category Z. An object of
Z is a strict 2-functor P : I //C into a bicategory C with strict units which
is the identity on objects. We further require that the associativity coherence iso
αP (k),f,P (`) of the bicategory C is the identity for morphisms k and ` of I such that
P (k) ◦ f ◦ P (`) exists in C. The object set of C is Obj I.

A morphism from P : I //C to P ′ : I //C′ in Z is a homomorphism of
bicategories F : C //C′ which strictly preserves units and such that

I
P //

P ′

""E
EE

EE
EE

EE
EE

EE C

F

��
C′

(9)

strictly commutes. We further require that γF
P (k),f and γF

f,P (`) are identities.
A 2-cell σ : F +3G consists of natural transformations σA,B for all A,B ∈

Obj C such that

σ
P (j)
A,C = iP ′(j)

γG
g,f � (σg

B,C ◦ σf
A,B) = σg◦f

A,C � γF
g,f

σ
1h

A

A,A = i1h
A

for all j ∈ I(A,C), f ∈ C(A,B), g ∈ C(B,C), and all objects A of I. Here � denotes
the vertical composition of 2-cells in a bicategory, while ◦ denotes the horizontal
composition of 2-cells.

Remark 7.8. The requirement that units be strict in a pseudo double category
is not as rigid as it first seems, since this can be arranged in most examples. The
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authors of [45] and [46] also assume that units are strict, and arrange it in most of
their examples.

Theorem 7.9. Let I be a category. The 2-category Y of pseudo double categories
D with strict units equipped with a folding such that (VD)0 = I is 2-equivalent to
the 2-category Z of strict 2-functors I //C into bicategories C with strict units
which are the identity on objects as in Notation 7.6 and Notation 7.7.

Theorem 7.10. Let I be a groupoid. The 2-category X of pseudo I-categories with
strict units (pseudo algebras over the 2-theory of categories with underlying groupoid
I and strict units) is 2-equivalent to the 2-category Y of pseudo double categories D
with strict units equipped with a folding such that (VD)0 = I as defined in Notation
7.5 and Notation 7.6.

Theorem 7.11. Let I be a groupoid. The 2-category X of pseudo I-categories with
strict units (pseudo algebras over the 2-theory of categories with underlying groupoid
I and strict units) is 2-equivalent to the 2-category Z of strict 2-functors I //C
into bicategories C with strict units which are the identity on objects as in Notation
7.5 and Notation 7.7.

We omit the proofs of Theorems 7.9, 7.10, and 7.11 since they are straightforward
but tedious elaborations of the strict Theorems 4.6, 4.8, and 4.9. The strictness
of units for X in X corresponds to the strictness of the holonomy in Y and the
strictness of P : I //C in Z. The fact that morphisms of X strictly preserve
units corresponds to strict preservation of holonomy by morphisms in Y, as well as
the strict preservation of units by morphisms in Z and the strict commutativity of
Diagram (9).

Example 7.12. The pseudo double category Rng in Example 6.9 can be slightly
modified to make it into an object of Y in Theorem 7.9 and Theorem 7.10. First we
require the vertical morphisms to be isomorphisms of rings, then note that bimod-
ules admit a mixed composition with isomorphisms of rings, and apply Remark 3.14
and Remark 3.15. Thus the horizontal morphisms of Rng′iso are bimodules as well as
isomorphisms of rings. A (B,A)-bimodule M is composed with a ring isomorphism
k : B //D to give a (D,A)-bimodule k ◦M with underlying abelian group M by
defining d ·m := k−1(d) ·m. The composition N ◦ j is defined similarly. The squares
of Rng′iso are the squares of Rng with invertible vertical sides, along with vertical
identities of the isomorphisms of rings. The holonomy is then an inclusion and the
horizontal bicategory is strictly unital.

Example 7.13. The pseudo double category W of worldsheets in Example 6.10 is
an object of Y in Theorem 7.9 and Theorem 7.10 with I the category of finite sets
and bijections. The horizontal morphisms are worldsheets as well as bijections.

Theorem 7.14. Analogues of Theorems 7.9, 7.10, and 7.11 hold for weak units
and pseudo foldings, though “2-equivalence” must be replaced by “biequivalence.”
Pseudo I-categories with weak units correspond to pseudo double categories with
weak units and pseudo foldings, which in turn correspond to homomorphisms of
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bicategories P from the groupoid I to a bicategory C with weak units. Morphisms
of pseudo I-categories then correspond to morphisms of pseudo double categories
that preserve the pseudo holonomy up to coherence iso, which in turn correspond to
homomorphisms F of bicategories such that (9) commutes on objects strictly, but
has a coherence iso 2-cell FP (j) ∼= P ′(j) for each morphism j of I.

Proof. Omitted. The proof relies on a construction like L(P ) in the proof of Theo-
rem 6.5 in [39] to remedy

[[` f ] k] 6= [` [f k]]

F ([` f k]) 6= [F (`) F (f) F (k)]

(P (k) ◦ f) ◦ P (`) 6= P (k) ◦ (f ◦ P (`))

F (P (k) ◦ f ◦ P (`)) 6= F (P (k)) ◦ F (f) ◦ F (P (`)).

�

This completes our comparison of strict 2-algebras and pseudo algebras over the
2-theory of categories with variants of double categories and 2-functors I //C .
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[1] Jǐŕı Adámek and Jǐŕı Rosický. Locally presentable and accessible categories,
volume 189 of London Mathematical Society Lecture Note Series. Cambridge
University Press, Cambridge, 1994.

[2] Fahd Ali Al-Agl. Aspects of Multiple Categories. PhD thesis, University of
Wales, 1989.

[3] Fahd Ali Al-Agl, Ronald Brown, and Richard Steiner. Multiple categories: the
equivalence of a globular and a cubical approach. Adv. Math., 170(1):71–118,
2002.

[4] Nicolás Andruskiewitsch and Sonia Natale. Double categories and quantum
groupoids. Publ. Mat. Urug., 10:11–51, 2005.

[5] Nicolás Andruskiewitsch and Sonia Natale. Tensor categories attached to
double groupoids. Adv. Math., 200(2):539–583, 2006.

[6] John C. Baez and James Dolan. Categorification. In Higher category theory
(Evanston, IL, 1997), volume 230 of Contemp. Math., pages 1–36. Amer.
Math. Soc., Providence, RI, 1998.

[7] John C. Baez and Aaron D. Lauda. Higher-dimensional algebra. V. 2-groups.
Theory Appl. Categ., 12:423–491 (electronic), 2004.

[8] Andrée Bastiani and Charles Ehresmann. Multiple functors. I. Limits relative
to double categories. Cahiers Topologie Géom. Différentielle, 15(3):215–292,
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