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ABSTRACT. In this paper we consider trigonometric series with the coefficients fromR+
0 BV S

class. We prove the theorems on belonging to these series to Orlicz space.
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1. I NTRODUCTION

We will study the problems of integrability of formal sine and cosine series

(1.1) g(x) =
∞∑

n=1

λn sinnx,

(1.2) f(x) =
∞∑

n=1

λn cosnx.

First, we will rewrite the classical result of Young, Boas and Heywood for series (1.1) and (1.2)
with monotone coefficients.

Theorem 1.1([1], [2], [11]). Letλn ↓ 0.
If 0 ≤ α < 2, then

g(x)

xα
∈ L(0, π) ⇐⇒

∞∑
n=1

nα−1λn <∞.
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2 S. TIKHONOV

If 0 < α < 1, then

f(x)

xα
∈ L(0, π) ⇐⇒

∞∑
n=1

nα−1λn <∞.

Several generalizations of this theorem have been obtained in the following directions: more
general weighted functionsγ(x) have been considered; also, integrability ofg(x)γ(x) and
f(x)γ(x) of orderp have been examined for different values ofp; finally, more general condi-
tions on coefficients{λn} have been considered.

Igari ([3]) obtained the generalization of Boas-Heywood’s results. The author used the nota-
tion of a slowly oscillating function.

A positive measurable functionS(t) defined on[D; +∞), D > 0 is said to be slowly oscil-
lating if lim

t→∞
S(κt)
S(t)

= 1 holds for allx > 0.

Theorem 1.2([3]). Letλn ↓ 0, p ≥ 1, and letS(t) be a slowly oscillating function.
If −1 < θ < 1, then

gp(x)S
(

1
x

)
xpθ+1

∈ L(0, π) ⇐⇒
∞∑

n=1

npθ+p−1S(n)λp
n <∞.

If −1 < θ < 0, then

fp(x)S
(

1
x

)
xpθ+1

∈ L(0, π) ⇐⇒
∞∑

n=1

npθ+p−1S(n)λp
n <∞.

Vukolova and Dyachenko in [10], considering the Hardy-Littlewood type theorem found the
sufficient conditions of belonging of series (1.1) and (1.2) to the classesLp for p > 0.

Theorem 1.3([10]). Letλn ↓ 0, andp > 0. Then
∞∑

n=1

np−2λp
n <∞ =⇒ ψ(x) ∈ Lp(0, π),

where a functionψ(x) is either af(x) or a g(x).

In the same work it is shown that the converse result does not hold for cosine series.
Leindler ([5]) introduced the following definition. A sequencec := {cn} of positive numbers

tending to zero is of rest bounded variation, or brieflyR+
0 BV S, if it possesses the property

∞∑
n=m

|cn − cn+1| ≤ K(c) cm

for all natural numbersm, whereK(c) is a constant depending only onc. In [5] it was shown
that the classR+

0 BV S was not comparable to the class of quasi-monotone sequences, that is, to
the class of sequencesc = {cn} such thatn−αcn ↓ 0 for someα ≥ 0. Also, in [5] it was proved
that the series (1.1) and (1.2) are uniformly convergent overδ ≤ x ≤ π − δ for any0 < δ < π.
In the same paper the following was proved.

Theorem 1.4([5]). Let{λn} ∈ R+
0 BV S, p ≥ 1, and 1

p
− 1 < θ < 1

p
. Then

ψp(x)

xpθ
∈ L(0, π) ⇐⇒

∞∑
n=1

npθ+p−2λp
n <∞,

where a functionψ(x) is either af(x) or a g(x).
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ON BELONGING TO ORLICZ SPACE 3

Very recently Nemeth [8] has found the sufficient condition of integrability of series (1.1)
with the sequence of coefficients{λn} ∈ R+

0 BV S and with quite general conditions on a
weight function. The author has used the notation of almost monotonic sequences.

A sequenceγ := {γn} of positive terms will be called almost increasing (decreasing) if there
exists constantC := C(γ) ≥ 1 such that

Cγn ≥ γm (γn ≤ Cγm)

holds for anyn ≥ m.
Here and further,C,Ci denote positive constants that are not necessarily the same at each

occurrence.

Theorem 1.5([8]). If {λn} ∈ R+
0 BV S, and the sequenceγ := {γn} such that{γnn

−2+ε} is
almost decreasing for someε > 0, then

∞∑
n=1

γn

n
λn <∞ =⇒ γ(x)g(x) ∈ L(0, π).

Here and in the sequel, a functionγ(x) is defined by the sequenceγ in the following way:
γ
(

π
n

)
:= γn, n ∈ N and there exist positive constantsA andB such thatAγn+1 ≤ γ(x) ≤ Bγn

for x ∈ ( π
n+1

, π
n
).

We will solve the problem of finding of sufficient conditions, for which series (1.1) and (1.2)
belong to the weighted Orlicz spaceL(Φ, γ). In particular, we will obtain sufficient conditions
for series (1.1) and (1.2) to belong to weighted spaceLp

γ.

Definition 1.1. A locally integrable almost everywhere positive functionγ(x) : [0, π] → [0,∞)
is said to be a weight function. LetΦ(t) be a nondecreasing continuous function defined on
[0,∞) such thatΦ(0) = 0 and lim

t→∞
Φ(t) = +∞. For a weightγ(x) the weighted Orlicz space

L(Φ, γ) is defined by (see [9], [12])

(1.3) L(Φ, γ) =

{
h :

∫ π

0

γ(x)Φ(ε |h(x)|)dx <∞ for some ε > 0

}
.

If Φ(x) = xp for 1 ≤ p <∞, when the weighted Orlicz spaceL(Φ, γ) defined by (1.3) is the
usual weighted spaceLp

γ(0, π).
We will denote (see [6]) by4(p, q) (0 ≤ q ≤ p) the set of all nonnegative functionsΦ(x)

defined on[0,∞) such thatΦ(0) = 0 andΦ(x)/xp is nonincreasing andΦ(x)/xq is nonde-
creasing. It is clear that4(p, q) ⊂ 4(p, 0) (0 < q ≤ p). As an example,4(p, 0) contains the
functionΦ(x) = log(1 + x).

2. RESULTS

The following theorems provide the sufficient conditions of belonging off(x) andg(x) to
Orlicz spaces.

Theorem 2.1. Let Φ(x) ∈ 4(p, 0) (0 ≤ p). If {λn} ∈ R+
0 BV S, and sequence{γn} is such

that{γnn
−1+ε} is almost decreasing for someε > 0, then

∞∑
n=1

γn

n2
Φ(nλn) <∞ =⇒ ψ(x) ∈ L(Φ, γ),

where a functionψ(x) is either a sine or cosine series.

For the sine series it is possible to obtain the sufficient condition of its belonging to Orlicz
space with more general conditions on the sequence{γn} but with stronger restrictions on the
functionΦ(x).
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Theorem 2.2. Let Φ(x) ∈ 4(p, q) (0 ≤ q ≤ p). If {λn} ∈ R+
0 BV S, and sequence{γn} is

such that{γnn
−(1+q)+ε} is almost decreasing for someε > 0, then

∞∑
n=1

γn

n2+q
Φ(n2λn) <∞ =⇒ g(x) ∈ L(Φ, γ).

Remark 2.3. If Φ(t) = t, then Theorem 2.2 implies Theorem 1.5, and ifΦ(t) = tp with 0 < p
and{γn = 1, n ∈ N}, then Theorem 2.1 is a generalization of Theorem 1.3. Also, ifΦ(t) = tp

with 1 ≤ p and{γn = nαS(n), n ∈ N} with corresponding conditions onα andS(n), then
Theorems 2.1 and 2.2 imply the sufficiency parts (⇐=) of Theorems 1.2 and 1.4.

3. AUXILIARY RESULTS

Lemma 3.1([4]). If an ≥ 0, λn > 0, and if p ≥ 1, then

∞∑
n=1

λn

(
n∑

ν=1

aν

)p

≤ C

∞∑
n=1

λ1−p
n ap

n

(
∞∑

ν=n

λν

)p

.

Lemma 3.2([6]). LetΦ ∈ 4(p, q) (0 ≤ q ≤ p) andtj ≥ 0, j = 1, 2, . . . , n, n ∈ N. Then

(1): θpΦ (t) ≤ Φ (θt) ≤ θqΦ (t) , 0 ≤ θ ≤ 1, t ≥ 0,

(2): Φ

(
n∑

j=1

tj

)
≤

(
n∑

j=1

Φ
1

p∗ (tj)

)p∗

, p∗ = max(1, p).

Lemma 3.3. LetΦ ∈ 4(p, q) (0 ≤ q ≤ p). If λn > 0, an ≥ 0, and if there exists a constantK
such thataν+j ≤ Kaν holds for all j, ν ∈ N, j ≤ ν, then

∞∑
k=1

λkΦ

(
k∑

ν=1

aν

)
≤ C

∞∑
k=1

Φ (kak)λk

(∑∞
ν=k λν

kλk

)p∗

,

wherep∗ = max(1, p).

Proof. Let ξ be an integer such that2ξ ≤ k < 2ξ+1. Then

k∑
ν=1

aν ≤
ξ−1∑
m=0

2m+1−1∑
ν=2m

aν +
k∑

ν=2ξ

aν ≤ C1

(
ξ−1∑
m=0

2ma2m + 2ξa2ξ

)
≤ C1

ξ∑
m=0

2ma2m .

Lemma 3.2 implies

Φ

(
k∑

ν=1

aν

)
≤ Φ

(
C1

ξ∑
m=0

2ma2m

)

≤ Cp
1Φ

(
ξ∑

m=0

2ma2m

)

≤ C

(
ξ∑

m=0

Φ
1

p∗ (2ma2m)

)p∗

≤ C

(
k∑

m=1

Φ
1

p∗ (mam)

m

)p∗

.
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By Lemma 3.1, we have

∞∑
k=1

λkΦ

(
k∑

ν=1

aν

)
≤ C

∞∑
k=1

λk

(
k∑

m=1

Φ
1

p∗ (mam)

m

)p∗

≤ C
∞∑

k=1

Φ (kak)λk

(∑∞
ν=k λν

kλk

)p∗

.

�

Note that this Lemma was proved in [7] for the case0 < p ≤ 1.

4. PROOFS OF THEOREMS

Proof of Theorem 2.1.Let x ∈ ( π
n+1

, π
n
]. Applying Abel’s transformation we obtain

|f(x)| ≤
n∑

k=1

λk +

∣∣∣∣∣
∞∑

k=n+1

λk cos kx

∣∣∣∣∣ ≤
n∑

k=1

λk +
∞∑

k=n

|(λk − λk+1)Dk(x)| ,

whereDk(x) are the Dirichlet kernels, i.e.

Dk(x) =
1

2
+

k∑
n=1

cosnx, k ∈ N.

Since|Dk(x)| = O
(

1
x

)
andλn ∈ R+

0 BV S, we see that

|f(x)| ≤ C

(
n∑

k=1

λk + n
∞∑

k=n

|λk − λk+1|

)
≤ C

(
n∑

k=1

λk + nλn

)
.

The following estimates for series (1.2) can be obtained in the same way:

|g(x)| ≤
n∑

k=1

λk +

∣∣∣∣∣
∞∑

k=n+1

λk sin kx

∣∣∣∣∣
≤

n∑
k=1

λk +
∞∑

k=n

∣∣∣(λk − λk+1) D̃k(x)
∣∣∣

≤ C

(
n∑

k=1

λk + n

∞∑
k=n

|λk − λk+1|

)

≤ C

(
n∑

k=1

λk + nλn

)
,

whereD̃k(x) are the conjugate Dirichlet kernels, i.e.D̃k(x) :=
∑k

n=1 sinnx, k ∈ N.
Therefore,

|ψ(x)| ≤ C

(
n∑

k=1

λk + nλn

)
,

where a functionψ(x) is either af(x) or ag(x).
One can see that if{λn} ∈ R+

0 BV S, then{λn} is almost decreasing sequence, i.e. there
exists a constantK ≥ 1 such thatλn ≤ Kλk holds for anyk ≤ n. Then

(4.1) |ψ(x)| ≤ C

(
n∑

k=1

λk + λn

n∑
k=1

1

)
≤ C

n∑
k=1

λk.
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We will use (4.1) and the fact that{λk} is almost decreasing sequence; also, we will use Lem-
mas 3.2 and 3.3:∫ π

0

γ(x)Φ (|ψ(x)|) dx ≤
∞∑

n=1

Φ

(
C1

n∑
k=1

λk

)∫ π/n

π/(n+1)

γ(x)dx

≤ Cp
1πB

∞∑
n=1

γn

n2
Φ

(
n∑

k=1

λk

)

≤ C

∞∑
k=1

Φ (kλk)
γk

k2

(
k

γk

∞∑
ν=k

γν

ν2

)p∗

,

wherep∗ = max(1, p). Since there exists a constantε > 0 such that{γnn
−1+ε} is almost

decreasing, then
∞∑

ν=k

γν

ν2
≤ C

γk

k1−ε

∞∑
ν=k

ν−ε−1 ≤ C
γk

k
.

Then ∫ π

0

γ(x)Φ (|ψ(x)|) dx ≤ C
∞∑

k=1

γk

k2
Φ (kλk) .

The proof of Theorem 2.1 is complete. �

Proof of Theorem 2.2.While proving Theorem 2.2 we will follow the idea of the proof of The-
orem 2.1.

Let x ∈ ( π
n+1

, π
n
]. Then

|g(x)| ≤
n∑

k=1

kxλk +

∣∣∣∣∣
∞∑

k=n+1

λk sin kx

∣∣∣∣∣(4.2)

≤
n∑

k=1

kxλk +
∞∑

k=n

∣∣∣(λk − λk+1) D̃k(x)
∣∣∣

≤ C

(
1

n

n∑
k=1

kλk + nλn

)

≤ C

(
1

n

n∑
k=1

kλk +
1

n
λn

n∑
k=1

k

)
≤ C1

1

n

n∑
k=1

kλk.

Using Lemma 3.2, Lemma 3.3 and the estimate (4.2), we can write∫ π

0

γ(x)Φ (|g(x)|) dx ≤
∞∑

n=1

Φ

(
C1

1

n

n∑
k=1

kλk

)∫ π/n

π/(n+1)

γ(x)dx

≤ Cp
1πB

∞∑
n=1

γn

n2+q
Φ

(
n∑

k=1

kλk

)

≤ C2

∞∑
k=1

Φ
(
k2λk

) γk

k2+q

(
k1+q

γk

∞∑
ν=k

γν

ν2+q

)p∗

,

wherep∗ = max(1, p).
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ON BELONGING TO ORLICZ SPACE 7

By the assumption on{γn},∫ π

0

γ(x)Φ (|g(x)|) dx ≤ C
∞∑

k=1

γk

k2+q
Φ
(
k2λk

)
,

and the proof of Theorem 2.2 is complete. �
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