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ABSTRACT. Let f andg be differentiable functions on an interval(a, b), and let the derivative
g′ be positive on(a, b). The main result of the paper implies that, iff(a+) = g(a+) = 0 and
f ′

g′ is increasing on(a, b) , then
f

g
is increasing on(a, b) .
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1. L’H OSPITAL TYPE RULE FOR M ONOTONICITY

Let−∞ ≤ a < b ≤ ∞. Letf andg be differentiable functions on the interval(a, b). Assume
also that the derivativeg′ is nonzero and does not change sign on(a, b); in other words, either
g′ > 0 everywhere on(a, b) or g′ < 0 on (a, b). The following statement reminds one of the
l’Hospital rule for computing limits and turns out to be useful in a number of contexts.

Proposition 1.1. Suppose thatf(a+) = g(a+) = 0 or f(b−) = g(b−) = 0. (Theng is nonzero
and does not change sign on(a, b), sinceg′ is so.)

(1) If
f ′

g′
is increasing on(a, b), then

(
f

g

)′

> 0 on (a, b).

(2) If
f ′

g′
is decreasing on(a, b), then

(
f

g

)′

< 0 on (a, b).

Proof. Assume first thatf(a+) = g(a+) = 0. Assume also that
f ′

g′
is increasing on(a, b), as in

part 1 of the proposition. Fix anyx ∈ (a, b) and consider the function

hx(y) := f ′(x)g(y)− g′(x)f(y), y ∈ (a, b).
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This function is differentiable and hence continuous on(a, b). Moreover, for ally ∈ (a, x),

d

dy
hx(y) = f ′(x)g′(y)− g′(x)f ′(y) = g′(x)g′(y)

(
f ′(x)

g′(x)
− f ′(y)

g′(y)

)
> 0,

becauseg′ is nonzero and does not change sign on(a, b) and
f ′

g′
is increasing on(a, b). Hence,

the functionhx is increasing on(a, x); moreover, being continuous,hx is increasing on(a, x].
Note also thathx (a+) = 0. It follows thathx(x) > 0, and so,(

f

g

)′

(x) =
f ′(x)g(x)− g′(x)f(x)

g(x)2
=

hx(x)

g(x)2
> 0.

This proves part 1 of the proposition under the assumption thatf(a+) = g(a+) = 0. The proof
under the assumption thatf(b−) = g(b−) = 0 is similar; alternatively, one may replace here
f(x) andg(x) for all x ∈ (a, b) by f(a + b− x) andg(a + b− x), respectively. Thus, part 1 is
proved.

Part 2 follows from part 1: replacef by−f . �

Remark 1.2. Instead of the requirement thatf andg be differentiable on(a, b), it would be
enough to assume, for instance, only thatf andg are continuous and both have finite right

derivativesf ′+ andg′+ (or finite left derivativesf ′− andg′−) on (a, b) and then use
f ′+
g′+

(or, respec-

tively,
f ′−
g′−

) in place of
f ′

g′
. In such a case, one would need to use the fact that, if a functionh is

continuous on(a, b) andh′+ > 0 on (a, b) or h′− > 0 on (a, b), thenh is increasing on(a, b); cf.
e.g. Theorem 3.4.4 in [1].

The following corollary is immediate from Proposition 1.1.

Corollary 1.3. Suppose thatf(a+) = g(a+) = 0 or f(b−) = g(b−) = 0.

(1) If
f ′

g′
is increasing on(a, b), then

f

g
is increasing on(a, b).

(2) If
f ′

g′
is decreasing on(a, b), then

f

g
is decreasing on(a, b).

Remark 1.4. The related result that any family of probability distributions with a monotone
likelihood ratio is stochastically monotone is well known in statistics; see e.g. [2] for this and
many other similar statements. For the case whenf andg are probability tail functions, a proof
of Corollary 1.3 may be found in [3]. In fact, essentially the same proof remains valid for the
general setting, at least when the double integrals below exist and possess the usual properties;

we are reproducing that proof now, for the readers’ convenience: iff(a+) = g(a+) = 0,
f ′

g′
is

increasing on(a, b), g′ does not change sign on(a, b), anda < x < y < b, then

f(x) · (g(y)− g(x)) =

∫∫
u∈(a,x)
v∈(x,y)

f ′(u)g′(v) du dv

<

∫∫
u∈(a,x)
v∈(x,y)

g′(u)f ′(v) du dv(1.1)

= g(x) · (f(y)− f(x)) ,
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whencef(x)g(y) < g(x)f(y), and so,
f(x)

g(x)
<

f(y)

g(y)
; inequality (1.1) takes place because

u < v implies
f ′(u)

g′(u)
<

f ′(v)

g′(v)
, and so,f ′(u)g′(v) < g′(u)f ′(v). The proof in the case when one

hasf(b−) = g(b−) = 0 instead off(a+) = g(a+) = 0 is quite similar.

Ideas similar to the ones discussed above were also present, albeit implicitly, in [5].

Remark 1.5. Corollary 1.3 will hold if the terms “increasing” and “decreasing” are replaced
everywhere by “non-decreasing” and “non-increasing”, respectively.

2. APPLICATIONS TO I NFORMATION I NEQUALITIES

In this section, applications of the above l’Hospital type rule to information inequalities are
given. Other applications, as well as extensions and refinements of this rule, will be given in a
series of papers following this one: in [7], extensions to non-monotonic ratios of functions, with
applications to certain probability inequalities arising in bioequivalence studies and to problems
of convexity; in [6], applications to monotonicity of the relative error of a Padé approximation
for the complementary error function; in [8], applications to probability inequalities for sums
of bounded random variables.

With all these applications, apparently we have only “scratched the surface”. Yet, even the
diversity of the cited results suggests that the monotonicity counterparts of the l’Hospital Rule
may have as wide a range of application as the l’Hospital Rule itself.

Consider now the entropy function

H(p, q) := −p ln p− q ln q,

whereq := 1− p andp ∈ (0, 1). In effect, it is a function of one variable, sayp.
Topsøe [9] proved the inequalities

(2.1) ln p · ln q ≤ H(p, q) ≤ ln p · ln q

ln 2

and

(2.2) ln 2 · 4pq ≤ H(p, q) ≤ ln 2 · (4pq)1/ ln 4

for all p ∈ (0, 1) and also showed that these bounds on the entropy are exact; namely, they are
attained whenp ↓ 0 or p = 1/2. Topsøe also indicated promising applications of bounds (2.2)
in statistics. He noticed that the bounds in (2.1) and (2.2), as well as their exactness, would
naturally be obtained from the monotonicity properties stated below, using also the symmetry
of the entropy function:H(p, q) = H(q, p).

Conjecture 2.1. [9] The ratio

r(p) :=
ln p ln q

H(p, q)

is decreasing inp ∈ (0, 1/2], fromr(0+) = 1 to r(1/2) = ln 2.

Conjecture 2.2. [9] The ratio

R(p) :=
ln

(
H(p,q)

ln 2

)
ln (4pq)

is decreasing on(0, 1/2), fromR(0+) = 1 to R

(
1

2
−

)
=

1

ln 4
.

We shall now prove these conjectures, based on Proposition 1.1 of the previous section.
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Proof of Conjecture 2.1.On (0, 1),

r =
f

g
,

wheref(p) := ln p ln q andg(p) := H(p, q). Consider, forp ∈ (0, 1),

r1(p) :=
f ′(p)

g′(p)
=

1
p
ln q − 1

q
ln p

ln q − ln p
; r2(p) :=

f ′′(p)

g′′(p)
=

f2(p)

g2(p)
,

where

f2(p) := −(pq)2f ′′(p) = p2 ln p + q2 ln q + 2pq and g2(p) := −(pq)2g′′(p) = pq;

r3(p) :=
f ′2(p)

g′2(p)
=

2p ln p− 2q ln q + q − p

q − p
; r4(p) :=

f ′′2 (p)

g′′2(p)
= −1− ln pq.

Now we apply Proposition 1.1 repeatedly, four times. First, note thatr4 is decreasing on(0, 1/2)
andf ′2(1/2) = g′2(1/2) = 0; hence,r3 is decreasing on(0, 1/2). This andf2(0+) = g2(0+) =
0 imply that r2 is decreasing on(0, 1/2). This andf ′(1/2) = g′(1/2) = 0 imply that r1 is
decreasing on(0, 1/2). Finally, this andf(0+) = g(0+) = 0 imply that r is decreasing on
(0, 1/2). �

Proof of Conjecture 2.2.On (0, 1/2),

R =
F

G
,

whereF (p) := ln

(
H(p, q)

ln 2

)
andG(p) := ln (4pq). Next,

(2.3)
F ′

G′ =
F1

G1

,

whereF1(p) := ln q − ln p andG1(p) :=

(
1

p
− 1

q

)
H(p, q). Further,

F ′
1

G′
1

=
1

2− r2

, wherer2

is the same as in the proof of Conjecture 2.1, andr2 is decreasing on(0, 1/2), as was shown.

In addition,r2 < 2 on (0, 1). Hence,
F ′

1

G′
1

=
1

2− r2

is decreasing on(0, 1/2). Also, F1(1/2) =

G1(1/2) = 0. Now Proposition 1.1 implies that
F1

G1

is decreasing on(0, 1/2); hence, by (2.3),

F ′

G′ is decreasing on(0, 1/2). It remains to notice thatF (1/2) = G(1/2) = 0 and use once

again Proposition 1.1. �

It might seem surprising that these proofs uncover a connection between the two seemingly
unrelated conjectures – via the ratior2.

Concerning other proofs of Conjecture 2.1, see the final version of [9]. Concerning another
conjecture by Topsøe [9], related to Conjecture 2.2, see [7].
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