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1. I NTRODUCTION

In [2], J.A. Oguntuase obtained a bound on the following integral inequality

(1.1) u (t) ≤ c +

∫ t

a

f (s)

(
u (s) +

∫ s

a

k (s, σ) u (σ) dσ

)
ds,

for a ≤ σ ≤ s ≤ t ≤ b in the form

(1.2) u (t) ≤ c

[
1 +

∫ t

a

f (s) exp

(∫ s

a

[f (σ) + k (σ, σ)] dσ

)
ds

]
,

under some suitable conditions on the functions and the constantc involved in (1.1) and also
the bound on the inequality of the form (1.1) when the functionu (σ) in the inner integral on
the right side of (1.1) is replaced byup (σ) for 0 ≤ p < 1. In [2], the author tried to obtain the
generalizations of the inequalities in [3] and did not succeed, because of his incorrect proofs.
Indeed, in the proof of Theorem 2.1, the inequality below (2.7) on page 2 and in the proof of
Theorem 2.7, the inequality below (2.19) on page 4 given in [2] are not correct. The aim of
the present paper is to correct the explicit bound obtained in (1.2) and also obtain a bound on
the general version of (1.1). The two independent variable generalisations of the main results,
discrete analogues and some applications are also given.
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2 B.G. PACHPATTE

2. STATEMENT OF RESULTS

In what follows,R denotes the set of real numbers andR+ = [0,∞), N0 = {0, 1, 2, . . . }
are the given subsets ofR. The partial derivatives of a functionv (x, y) , x, y ∈ R with re-
spect tox, y andxy are denoted byD1v (x, y) , D2v (x, y) andD1D2v (x, y) = D2D1v (x, y)
respectively. For the functionsw (m) , z (m, n) , m, n ∈ N0, we define the operators∆, ∆1, ∆2

by

∆w (m) = w (m + 1)− w (m) ,

∆1z (m, n) = z (m + 1, n)− z (m, n) ,

∆2z (m, n) = z (m, n + 1)− z (m, n)

respectively and
∆2∆1z (m, n) = ∆2 (∆1z (m, n)) .

We denote by

G1 =
{
(t, s) ∈ R2

+ : 0 ≤ s ≤ t < ∞
}

,

G2 =
{
(x, y, s, t) ∈ R4

+ : 0 ≤ s ≤ x < ∞, 0 ≤ t ≤ y < ∞
}

,

H1 =
{
(m,n) ∈ N2

0 : 0 ≤ n ≤ m < ∞
}

,

H2 =
{
(x, y, m, n) ∈ N4

0 : 0 ≤ m ≤ x < ∞, 0 ≤ n ≤ y < ∞
}

.

Let C (G, H) denote the class of continuous functions fromG to H. We use the usual conven-
tions that the empty sums and products are taken to be0 and1 respectively. Throughout, all the
functions which appear in the inequalities are assumed to be real-valued and all the integrals,
sums and products involved exist on the respective domains of their definitions.

Our main results on integral inequalities are established in the following theorems.

Theorem 2.1.Letu (t) , f (t) , a (t) ∈ C (R+, R+) , k (t, s) , D1k (t, s) ∈ C (G1, R+) andc be
a nonnegative constant.

(a1) If

(2.1) u (t) ≤ c +

∫ t

0

f (s)

[
u (s) +

∫ s

0

k (s, σ) u (σ) dσ

]
ds,

for t ∈ R+, then

(2.2) u (t) ≤ c

[
1 +

∫ t

0

f (s) exp

(∫ s

0

[f (σ) + A (σ)] dσ

)
ds

]
,

for t ∈ R+, where

(2.3) A (t) = k (t, t) +

∫ t

0

D1k (t, τ) dτ,

for t ∈ R+.
(a2) If

(2.4) u (t) ≤ a (t) +

∫ t

0

f (s)

[
u (s) +

∫ s

0

k (s, σ) u (σ) dσ

]
ds,

for t ∈ R+, then

(2.5) u (t) ≤ a (t) + e (t)

[
1 +

∫ t

0

f (s) exp

(∫ s

0

[f (σ) + A (σ)] dσ

)
ds

]
,
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BOUNDS ONCERTAIN INTEGRAL INEQUALITIES 3

for t ∈ R+, where

(2.6) e (t) =

∫ t

0

f (s)

[
a (s) +

∫ s

0

k (s, σ) a (σ) dσ

]
ds,

for t ∈ R+, andA (t) is defined by (2.3).

Remark 2.2. We note that the bound obtained in (2.2) is the corrected version of the bound
given in (1.2) and the inequality established in(a2) is a further generalization of the inequality
given in(a1) . In the special case whenk (t, s) = k (s) , the inequality given in(a1) reduces to
the inequality established earlier by Pachpatte in [3, Theorem 1] (see, also [4, Theorem 1.7.1,
p. 33]).

The following theorem deals with two independent variable versions of the inequalities es-
tablished in Theorem 2.1 which can be used in certain situations.

Theorem 2.3. Let u (x, y) , f (x, y) , a (x, y) ∈ C
(
R2

+, R+

)
, k (x, y, s, t) , D1k (x, y, s, t) ,

D2k (x, y, s, t) , D1D2k (x, y, s, t) ∈ C (G2, R+) andc be a nonnegative constant.

(b1) If

(2.7) u (x, y) ≤ c +

∫ x

0

∫ y

0

f (s, t)

[
u (s, t) +

∫ s

0

∫ t

0

k (s, t, σ, ξ) u (σ, ξ) dξdσ

]
dtds,

for x, y ∈ R+, then

(2.8) u (x, y) ≤ c

[
1 +

∫ x

0

∫ y

0

f (s, t) exp

(∫ s

0

∫ t

0

[f (σ, ξ) + A (σ, ξ)] dξdσ

)
dtds

]
,

for x, y ∈ R+, where

(2.9) A (x, y) = k (x, y, x, y) +

∫ x

0

D1k (x, y, τ, y) dτ

+

∫ y

0

D2k (x, y, x, η) dη +

∫ x

0

∫ y

0

D1D2k (x, y, τ, η) dηdτ,

for x, y ∈ R+.
(b2) If

(2.10) u (x, y) ≤ a (x, y)+

∫ x

0

∫ y

0

f (s, t)

[
u (s, t) +

∫ s

0

∫ t

0

k (s, t, σ, ξ) u (σ, ξ) dξdσ

]
dtds,

for x, y ∈ R+, then

(2.11) u (x, y) ≤ a (x, y) + e (x, y)

[
1 +

∫ x

0

∫ y

0

f (s, t)

× exp

(∫ s

0

∫ t

0

[f (σ, ξ) + A (σ, ξ)] dξdσ

)
dtds

]
,

for x, y ∈ R+, where

(2.12) e (x, y) =

∫ x

0

∫ y

0

f (s, t)

[
a (s, t) +

∫ s

0

∫ t

0

k (s, t, σ, ξ) a (σ, ξ) dξdσ

]
dtds,

for x, y ∈ R+ andA (x, y) is defined by (2.9).

Remark 2.4. By taking k (x, y, s, t) = k (s, t) , the inequality given in(b1) reduces to the
inequality given in [4, Remark 4.4.1] and the inequality in(b2) can be considered as a further
generalization of the inequality given in [4, Theorem 4.4.2].
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4 B.G. PACHPATTE

The discrete analogues of the inequalities in Theorems 2.1 and 2.3 are given in the following
theorems.

Theorem 2.5.Letu (n) , f (n) , a (n) be nonnegative functions defined onN0, k (n, s) , ∆1k (n, s) ,
0 ≤ s ≤ n < ∞, n, s ∈ N0 be nonnegative functions andc be a nonnegative constant.

(c1) If

(2.13) u (n) ≤ c +
n−1∑
s=0

f (s)

[
u (s) +

s−1∑
σ=0

k (s, σ) u (σ)

]
,

for n ∈ N0, then

(2.14) u (n) ≤ c

[
1 +

n−1∑
s=0

f (s)
s−1∏
σ=0

[1 + f (σ) + B (σ)]

]
,

for n ∈ N0, where

(2.15) B (n) = k (n + 1, n)
n−1∑
τ=0

∆1k (n, τ) ,

for n ∈ N0.
(c2) If

(2.16) u (n) ≤ a (n) +
n−1∑
s=0

f (s)

[
u (s) +

s−1∑
σ=0

k (s, σ) u (σ)

]
,

for n ∈ N0, then

(2.17) u (n) ≤ a (n) + E (n)

[
1 +

n−1∑
s=0

f (s)
s−1∏
σ=0

[1 + f (σ) + B (σ)]

]
,

for n ∈ N0, where

(2.18) E (n) =
n−1∑
s=0

f (s)

[
a (s) +

s−1∑
σ=0

k (s, σ) a (σ)

]
,

for n ∈ N0 andB (n) is defined by (2.15).

Theorem 2.6. Let u (x, y) , f (x, y) , a (x, y) , k (x, y, s, t) , ∆1k (x, y, s, t) , ∆2k (x, y, s, t) ,
∆1∆2k (x, y, s, t) be nonnegative functions for0 ≤ s ≤ x, 0 ≤ t ≤ y, s, x, t, y in N0 andc be
a nonnegative constant

(d1) If

(2.19) u (x, y) ≤ c +
x−1∑
s=0

y−1∑
t=0

f (s, t)

[
u (s, t) +

s−1∑
m=0

t−1∑
n=0

k (s, t,m, n) u (m, n)

]
,

for x, y ∈ N0, then

(2.20) u (x, y) ≤ c

[
1 +

x−1∑
s=0

y−1∑
t=0

f (s, t)
s−1∏
m=0

[
1 +

t−1∑
n=0

[f (m, n) + B (m,n)]

]]
,
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BOUNDS ONCERTAIN INTEGRAL INEQUALITIES 5

for x, y ∈ N0, where

(2.21) B (x, y) = k (x + 1, y + 1, x, y) +
x−1∑
σ=0

∆1k (x, y + 1, σ, y)

+

y−1∑
τ=0

∆2k (x + 1, y, x, τ) +
x−1∑
σ=0

y−1∑
τ=0

∆2∆1k (x, y, σ, τ) ,

for x, y ∈ N0.
(d2) If

(2.22) u (x, y) ≤ a (x, y) +
x−1∑
s=0

y−1∑
t=0

f (s, t)

[
u (s, t) +

s−1∑
m=0

t−1∑
n=0

k (s, t, m, n) u (m, n)

]
,

for x, y ∈ N0, then

(2.23) u (x, y) ≤ a (x, y) + E (x, y)

[
1 +

x−1∑
s=0

y−1∑
t=0

f (s, t)

×
s−1∏
m=0

[
1 +

t−1∑
n=0

[f (m,n) + B (m, n)]

]]
,

for x, y ∈ N0, where

(2.24) E (x, y) =
x−1∑
s=0

y−1∑
t=0

f (s, t)

[
a (s, t) +

s−1∑
m=0

t−1∑
n=0

k (s, t, m, n) a (m, n)

]
,

for x, y ∈ N0 andB (x, y) is defined by (2.21).

3. PROOFS OF THEOREMS 2.1, 2.3, 2.5AND 2.6

Proof of Theorem 2.1.(a1) Define a functionz (t) by the right hand side of (2.1). Thenz (0) =
c, u (t) ≤ z (t) and

z′ (t) = f (t)

[
u (t) +

∫ t

0

k (t, σ) u (σ) dσ

]
(3.1)

≤ f (t)

[
z (t) +

∫ t

0

k (t, σ) z (σ) dσ

]
.

Define a functionv (t) by

(3.2) v (t) = z (t) +

∫ t

0

k (t, σ) z (σ) dσ.
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6 B.G. PACHPATTE

Then v (0) = z (0) = c, z (t) ≤ v (t) , z′ (t) ≤ f (t) v (t) and v (t) is nondecreasing int,
t ∈ R+, we have

v′ (t) = z′ (t) + k (t, t) z (t) +

∫ t

0

D1k (t, σ) z (σ) dσ

≤ f (t) v (t) + k (t, t) v (t) +

∫ t

0

D1k (t, σ) v (σ) dσ

≤
[
f (t) + k (t, t) +

∫ t

0

D1k (t, σ) dσ

]
v (t)

= [f (t) + A (t)] v (t) ,

implying

(3.3) v (t) ≤ c exp

(∫ s

0

[f (σ) + A (σ)] dσ

)
,

whereA (t) is defined by (2.3). Using (3.3) in (3.1) and integrating the resulting inequality from
0 to t, t ∈ R+, we get

(3.4) z (t) ≤ c

[
1 +

∫ t

0

f (s) exp

(∫ s

0

[f (σ) + A (σ)] dσ

)
ds

]
.

The desired inequality in (2.2) follows by using (3.4) inu (t) ≤ z (t) .

(a2) Define a functionz (t) by

(3.5) z (t) =

∫ t

0

f (s)

[
u (s) +

∫ s

0

k (s, σ) u (σ) dσ

]
ds.

Then from (2.4),u (t) ≤ a (t) + z (t) and using this in (3.5), we get

z (t) ≤
∫ t

0

f (s)

[
a (s) + z (s) +

∫ s

0

k (s, σ) (a (σ) + z (σ)) dσ

]
ds(3.6)

= e (t) +

∫ t

0

f (s)

[
z (s) +

∫ s

0

k (s, σ) z (σ) dσ

]
ds,

wheree (t) is defined by (2.6). Clearlye (t) is nonnegative, continuous and nondecreasing int,
t ∈ R+. First, we assume thate (t) > 0 for t ∈ R+. From (3.6) it is easy to observe that

z (t)

e (t)
≤ 1 +

∫ t

0

f (s)

[
z (s)

e (s)
+

∫ s

0

k (s, σ)
z (σ)

e (σ)
dσ

]
ds.

Now, an application of the inequality in(a1) we have

(3.7)
z (t)

e (t)
≤
[
1 +

∫ t

0

f (s) exp

(∫ s

0

[f (σ) + A (σ)] dσ

)
ds

]
.

The desired inequality in (2.5) follows from (3.7) and the fact thatu (t) ≤ a (t) + z (t) . If
e (t) ≥ 0, we carry out the above procedure withe (t) + ε instead ofe (t) , whereε > 0 is an
arbitrary small constant, and then subsequently pass to the limit asε → 0 to obtain (2.5). �

Remark 3.1. By replacing the functionu (σ) in the inner integral on the right hand side of (2.1)
by up (σ) , 0 ≤ p < 1, and by following the proof of(a1) with suitable modifications, we get
the corrected version of Theorem 2.7 given in [2].
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Proof of Theorem 2.3.(b1) Let c > 0 and define a functionz (x, y) by the right hand side of
(2.7). Thenz (0, y) = z (x, 0) = c, u (x, y) ≤ z (x, y), and

D1D2z (x, y) = f (x, y)

[
u (x, y) +

∫ x

0

∫ y

0

k (x, y, σ, ξ) u (σ, ξ) dξdσ

]
(3.8)

≤ f (x, y)

[
z (x, y) +

∫ x

0

∫ y

0

k (x, y, σ, ξ) z (σ, ξ) dξdσ

]
.

Define a functionv (x, y) by

(3.9) v (x, y) = z (x, y) +

∫ x

0

∫ y

0

k (x, y, σ, ξ) z (σ, ξ) dξdσ.

Then,v (0, y) = z (0, y) = c, v (x, 0) = z (x, 0) = c, z (x, y) ≤ v (x, y) , D1D2z (x, y) ≤
f (x, y) v (x, y) , v (x, y) is nondecreasing forx, y ∈ R+ and

D1D2v (x, y)(3.10)

= D1D2z (x, y) + k (x, y, x, y) z (x, y) +

∫ x

0

D1k (x, y, σ, y) z (σ, y) dσ

+

∫ y

0

D2k (x, y, x, ξ) z (x, ξ) dξ +

∫ x

0

∫ y

0

D1D2k (x, y, σ, ξ) z (σ, ξ) dξdσ

≤ f (x, y) v (x, y) + k (x, y, x, y) v (x, y) +

∫ x

0

D1k (x, y, σ, y) v (σ, y) dσ

+

∫ y

0

D2k (x, y, x, ξ) v (x, ξ) dξ +

∫ x

0

∫ y

0

D1D2k (x, y, σ, ξ) v (σ, ξ) dξdσ

≤ [f (x, y) + A (x, y)] v (x, y) ,

whereA (x, y) is defined by (2.9). Now, by following the proof of Theorem 4.2.1 given in [4],
inequality (3.10) implies

(3.11) v (x, y) ≤ c exp

(∫ x

0

∫ y

0

[f (σ, ξ) + A (σ, ξ)] dξdσ

)
.

Using (3.11) in (3.8) and integrating the resulting inequality first from0 to y and then from0 to
x for x, y ∈ R+, we get

(3.12) z (x, y) ≤ c

[
1 +

∫ x

0

∫ y

0

f (s, t) exp

(∫ s

0

∫ t

0

[f (σ, ξ) + A (σ, ξ)] dξdσ

)
dtds

]
.

Using (3.12) inu (x, y) ≤ z (x, y), we get the required inequality in (2.8). Ifc ≥ 0, we carry
out the above procedure withc + ε instead ofc, whereε > 0 is an arbitrary small constant, and
then subsequently pass to the limit asε → 0 to obtain (2.8).

(b2) The proof can be completed by closely looking at the proofs of(a2) and(b1) given above.
Here we omit the details. �

Proof of Theorem 2.5.(c1) Define a functionz (n) by the right hand side of (2.13), thenz (0) =
c, u (n) ≤ z (n) and

∆z (n) = f (n)

[
u (n) +

n−1∑
σ=0

k (n, σ) u (σ)

]
(3.13)

≤ f (n)

[
z (n) +

n−1∑
σ=0

k (n, σ) z (σ)

]
.
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8 B.G. PACHPATTE

Define a functionv (n) by

(3.14) v (n) = z (n) +
n−1∑
σ=0

k (n, σ) z (σ) .

Thenv (0) = z (0) = c, z (n) ≤ v (n) , ∆z (n) ≤ f (n) v (n) andv (n) is nondecreasing inn,
n ∈ N0, we have

∆v (n) = ∆z (n) +
n∑

σ=0

k (n + 1, σ) z (σ)−
n−1∑
σ=0

k (n, σ) z (σ)(3.15)

= ∆z (n) + k (n + 1, n) z (n) +
n−1∑
σ=0

∆1k (n, σ) z (σ)

≤ [f (n) + B (n)] v (n) ,

whereB (n) is defined by (2.15). The inequality (3.15) implies

(3.16) v (n) ≤ c
n−1∏
σ=0

[1 + f (σ) + B (σ)] .

Using (3.16) in (3.11) we get

(3.17) ∆z (n) ≤ cf (n)
n−1∏
σ=0

[1 + f (σ) + B (σ)] .

The inequality (3.17) implies the estimate

(3.18) z (n) ≤ c

[
1 +

n−1∑
s=0

f (s)
s−1∏
σ=0

[1 + f (σ) + B (σ)]

]
.

Using (3.18) inu (n) ≤ z (n) we get the desired inequality in (2.14).
(c2) The proof of can be completed by closely looking at the proofs of(a2) and (c2) given
above. �

Proof of Theorem 2.6.(d1) and(d2) can be completed by following the proofs of the inequali-
ties given above and closely looking at the proofs of the similar results given in [5]. �

4. APPLICATIONS

In this section, we present some applications of the inequality(b1) in Theorem 2.3 to study
certain properties of solutions of the nonlinear hyperbolic partial integrodifferential equation

(4.1) uxy (x, y) = F

(
x, y, u (x, y) ,

∫ x

0

∫ y

0

h (x, y, σ, ξ, u (σ, ξ)) dξdσ

)
,

with the given initial boundary conditions

(4.2) u (x, 0) = α1 (x) , u (0, y) = α2 (y) , α1 (0) = α2 (0) = 0,

whereu ∈ C
(
R2

+, R
)
, h ∈ C (G2 × R, R) , F ∈ C

(
R2

+ × R2, R
)
.

The following theorem deals with the estimate on the solution of (4.1) – (4.2).
Theorem 4.1.Suppose that

|h (x, y, s, t, u (s, t))| ≤ k (x, y, s, t) |u (s, t)| ,(4.3)

|F (x, y, u, v)| ≤ f (x, y) [|u|+ |v|] ,(4.4)

|α1 (x) + α2 (y)| ≤ c,(4.5)
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wherek, f andc are as defined in Theorem 2.3. Ifu (x, y) , x, y ∈ R+ is any solution of (4.1) –
(4.2), then

(4.6) |u (x, y)| ≤ c

[
1 +

∫ x

0

∫ y

0

f (s, t) exp

(∫ s

0

∫ t

0

[f (σ, ξ) + A (σ, ξ)] dξdσ

)
dtds

]
,

for x, y ∈ R+, whereA (x, y) is defined by (2.9).

Proof. The solutionu (x, y) of (4.1) – (4.2) can be written as

(4.7) u (x, y) = α1 (x) + α2 (y)

+

∫ x

0

∫ y

0

F

(
s, t, u (s, t) ,

∫ s

0

∫ t

0

h (s, t, σ, ξ, u (σ, ξ)) dξdσ

)
dtds.

Using (4.3) – (4.5) in (4.7) we have

(4.8) |u (x, y)| ≤ c +

∫ x

0

∫ y

0

f (s, t)

[
|u (s, t)|

+

(∫ s

0

∫ t

0

k (s, t, σ, ξ) |u (σ, ξ)| dξdσ

)]
dtds.

Now, an application of the inequality(b1) in Theorem 2.3 yields the desired estimate in (4.6).
�

Our next result deals with the uniqueness of the solutions of (4.1) – (4.2).

Theorem 4.2.Suppose that the functionsh, F in (4.1) satisfy the conditions

|h (x, y, s, t, u1)− h (x, y, s, t, u2)| ≤ k (x, y, s, t) |u1 − u2| ,(4.9)

|F (x, y, u1, u2)− F (x, y, v1, v2)| ≤ f (x, y) [|u1 − v1|+ |u2 − v2|] ,(4.10)

wherek andf are as in Theorem 2.3. Then the problem (4.1) – (4.2) has at most one solution
onR2

+.

Proof. Let u1 (x, y) andu2 (x, y) be two solutions of (4.1) – (4.2) onR2
+, then we have

(4.11) u1 (x, y)− u2 (x, y)

=

∫ x

0

∫ y

0

[
F

(
s, t, u1 (s, t) ,

∫ s

0

∫ t

0

h (s, t, σ, ξ, u1 (σ, ξ)) dξdσ

)
− F

(
s, t, u2 (s, t) ,

∫ s

0

∫ t

0

h (s, t, σ, ξ, u2 (σ, ξ)) dξdσ

)]
dtds.

From (4.9), (4.10) and (4.11) we have

(4.12) |u1 (x, y)− u2 (x, y)| ≤
∫ x

0

∫ y

0

f (s, t)

[
|u1 (s, t)− u2 (s, t)|

+

∫ s

0

∫ t

0

k (s, t, σ, ξ) |u1 (σ, ξ)− u2 (σ, ξ)| dξdσ

]
dtds.

As an application of the inequality(b1) in Theorem 2.3 withc = 0 yields|u1 (x, y)− u2 (x, y)| ≤
0. Therefore,u1 (x, y) = u2 (x, y) , i.e., there is at most one solution of (4.1) – (4.2) onR2

+. �
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We note that the inequality(d1) in Theorem 2.6 can be used to obtain the bound and unique-
ness of solutions of the following partial sum-difference equation

(4.13) ∆2∆1z (x, y) = H

(
x, y, z (x, y) ,

x−1∑
m=0

y−1∑
n=0

g (x, y, m, n, z (m, n))

)
,

with the given conditions

(4.14) z (x, 0) = β1 (x) , z (0, y) = β2 (y) , β1 (0) = β2 (0) = 0,

under some suitable conditions on the functions involved in (4.13) – (4.14). For various other
applications of the inequalities similar to that given above, see [4, 5].

In concluding, we note that in another paper [1], Oguntuase has given the upper bounds on
certain integral inequalities involving functions of several variables. However, the results given
in [1] are also not correct. In fact, in the proof of Theorem 2.1, the equality in (2.3) and in the
proof of Theorem 3.1 on page 5, the equality on line 10 (from above) are not correct. For a num-
ber of inequalities involving functions of many independent variables and their applications, see
[4, 5].
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