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ABSTRACT. In this paper, a new system of nonlinear set-valued variational inclusions involving
(H, η)-monotone mappings in Hilbert spaces is introduced and studied. By using the resolvent
operator method associated with(H, η)-monotone mappings, an existence theorem of solutions
for this kind of system of nonlinear set-valued variational inclusion is established and a new
iterative algorithm is suggested and discussed. The results presented in this paper improve and
generalize some recent results in this field.
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1. I NTRODUCTION

Variational inclusions are an important generalization of classical variational inequalities and
thus, have wide applications to many fields including, for example, mechanics, physics, opti-
mization and control, nonlinear programming, economics, and the engineering sciences. For
these reasons, various variational inclusions have been intensively studied in recent years. For
details, we refer the reader to [1] – [21], [23] – [31] and the references therein.

Verma [24, 25] introduced and studied some systems of variational inequalities and developed
some iterative algorithms for approximating the solutions of a system of variational inequali-
ties in Hilbert spaces. Recently, Kim and Kim [21] introduced a new system of generalized
nonlinear mixed variational inequalities and obtained some existence and uniqueness results for
solutions of the system of generalized nonlinear mixed variational inequalities in Hilbert spaces.
Very recently, Fang, Huang and Thompson [9] introduced a system of variational inclusions and
developed a Mann iterative algorithm to approximate the unique solution of the system.

ISSN (electronic): 1443-5756

c© 2006 Victoria University. All rights reserved.

This work was supported by the National Natural Science Foundation of China(10471151) and the Educational Science Foundation of

Chongqing, Chongqing of China (KJ051307).

012-06

http://jipam.vu.edu.au/
mailto:mmj1898@163.com
http://www.ams.org/msc/


2 MAO-M ING JIN

On the other hand, monotonicity techniques were extended and applied in recent years be-
cause of their importance in the theory of variational inequalities, complementarity problems,
and variational inclusions. In 2003, Huang and Fang [16] introduced a class of generalized
monotone mappings, maximalη-monotone mappings, and defined an associated resolvent op-
erator. Using resolvent operator methods, they developed some iterative algorithms to approx-
imate the solution of a class of general variational inclusions involving maximalη-monotone
operators. Huang and Fang’s method extended the resolvent operator method associated with an
η-subdifferential operator due to Ding and Luo [6]. In [7], Fang and Huang introduced another
class of generalized monotone operators,H-monotone operators, and defined an associated re-
solvent operator. They also established the Lipschitz continuity of the resolvent operator and
studied a class of variational inclusions in Hilbert spaces using the resolvent operator associated
with H-monotone operators. In a recent paper [9], Fang, Huang and Thompson further intro-
duced a new class of generalized monotone operators,(H, η)-monotone operators, which pro-
vide a unifying framework for classes of maximal monotone operators, maximalη-monotone
operators, andH-monotone operators. They also studied a system of variational inclusions
using the resolvent operator associated with(H, η)-monotone operators.

Inspired and motivated by recent research works in this field, in this paper, we shall intro-
duce and study a new system of nonlinear set-valued variational inclusions involving(H, η)-
monotone mappings in Hilbert spaces. By using the resolvent operator method associated with
(H, η)-monotone mappings, an existence theorem for solutions for this type of system of non-
linear set-valued variational inclusion is established and a new iterative algorithm is suggested
and discussed. The results presented in this paper improve and generalize some recent results
in this field.

2. PRELIMINARIES

Let X be a real Hilbert space endowed with a norm‖ · ‖ and an inner product〈·, ·〉, respec-
tively. 2X andC(X) denote the family of all the nonempty subsets ofX and the family of
all closed subsets ofX, respectively. Let us recall the following definitions and some known
results.

Definition 2.1. Let T, H : X → X be two single-valued mappings.T is said to be:
(i) monotone, if

〈Tx− Ty, x− y〉 ≥ 0 for all x, y ∈ X;

(ii) strictly monotone, ifT is monotone and

〈Tx− Ty, x− y〉 = 0

if and only if x = y;
(iii) r-strongly monotone, if there exists a constantr > 0 such that

〈T (x)− T (y), x− y〉 ≥ r‖x− y‖2 for all x, y ∈ X;

(iv) s-strongly monotone with respect toH, if there exists a constants > 0 such that

〈T (x)− T (y), H(x)−H(y)〉 ≥ S‖x− y‖2 for all x, y ∈ X;

(v) t-Lipschitz continuous, if there exists a constantt > 0 such that

‖T (x)− T (y)‖ ≤ t‖x− y‖ for all x, y ∈ X.

Definition 2.2. A single-valued mappingη : X ×X → X is said to be:
(i) monotone, if

〈x− y, η(x, y)〉 ≥ 0 for all x, y ∈ X;
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(ii) strictly monotone, if

〈x− y, η(x, y)〉 ≥ 0 for all x, y ∈ X

and equality holds if and only ifx = y;
(iii) δ-srongly monotone, if there exists a constantδ > 0 such that

〈x− y, η(x, y)〉 ≥ δ‖x− y‖2 for all x, y ∈ X;

(iv) τ -Lipschitz continuous, if there exists a constantτ > 0 such that

‖η(x, y)‖ ≤ τ‖x− y‖, for all x, y ∈ X.

Definition 2.3. Let η : X × X → X andH : X → X be two single-valued mappings. A
set-valued mappingM : X → 2X is said to be:

(i) monotone, if

〈u− v, x− y〉 ≥ 0, ∀x, y ∈ X, u ∈ Mx, v ∈ My;

(ii) η-monotone, if

〈u− v, η(x, y)〉 ≥ 0 ∀x, y ∈ X, u ∈ Mx, v ∈ My;

(iii) strictly η-monotone, ifM is η-monotone and equality holds if and only ifx = y;
(iv) r-stronglyη-monotone, if there exists a constantr > 0 such that

〈u− v, η(x, y)〉 ≥ r‖x− y‖2 ∀x, y ∈ X, u ∈ Mx, v ∈ My;

(v) maximal monotone, ifM is monotone and(I + λM)(X) = X, for all λ > 0, whereI
denotes the identity mapping onX;

(vi) maximalη-monotone, ifM is η-monotone and(I + λM)(X) = X, for all λ > 0;
(vii) H-monotone, ifM is monotone and(H + λM)(X) = X, for all λ > 0;

(viii) (H, η)-monotone, ifM is η-monotone and(H + λM)(X) = X, for all λ > 0.

Remark 2.1. Maximal η-monotone mappings,H-monotone mappings, and(H, η)-monotone
mappings were first introduced in Huang and Fang [16], Fang and Huang [7, 9], respectively.
Obviously, the class of(H, η)- monotone mappings provides a unifying framework for classes
of maximal monotone mappings, maximalη-monotone mappings, andH-monotone mappings.
For details about these mappings, we refer the reader to [6, 7, 9, 16] and the references therein.

Lemma 2.2([9]). Let η : X ×X → X be a single-valued mapping,H : X → X be a strictly
η-monotone mapping andM : X → 2X an (H, η)-monotone mapping. Then the mapping
(H + λM)−1 is single-valued.

By Lemma 2.2, we can define the resolvent operatorRH,η
M,λ as follows.

Definition 2.4 ([9]). Let η : X ×X → X be a single-valued mapping,H : X → X a strictly
η-monotone mapping andM : X → 2X an(H, η)-monotone mapping. The resolvent operator
RH,η

M,λ : X → X is defined by

RH,η
M,λ(z) = (H + λM)−1(z) for all z ∈ X,

whereλ > 0 is a constant.

Remark 2.3.
(i) When H = I, Definition 2.4 reduces to the definition of the resolvent operator of a

maximalη-monotone mapping, see [16].
(ii) When η(x, y) = x − y for all x, y ∈ X, Definition 2.4 reduces to the definition of the

resolvent operator of aH-monotone mapping, see [7].
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(iii) When H = I andη(x, y) = x − y for all x, y ∈ X, Definition 2.4 reduces to the
definition of the resolvent operator of a maximal monotone mapping, see [31].

Lemma 2.4 ([9]). Let η : X × X → X be aτ -Lipschtiz continuous mapping,H : X → X
be an(r, η)-strongly monotone mapping andM : X → 2X be an(H, η)-monotone mapping.
Then the resolvent operatorRH,η

M,λ : X → X is τ/r-Lipschitz continuous, that is,∥∥∥RH,η
M,λ(x)−RH,η

M,λ(y)
∥∥∥ ≤ τ

r
‖x− y‖ for all x, y ∈ X.

We define a Hausdorff pseudo-metricD : 2X × 2X → (−∞, +∞) ∪ {+∞} by

D(·, ·) = max

{
sup
u∈A

inf
v∈B

‖u− v‖, sup
u∈B

inf
v∈A

‖u− v‖
}

for any givenA, B ∈ 2X . Note that if the domain ofD is restricted to closed bounded subsets,
thenD is the Hausdorff metric.

Definition 2.5. A set-valued mappingA : X → 2X is said to beD-Lipschitz continuous if
there exists a constantη > 0 such that

D(A(u), A(v)) ≤ η‖u− v‖, for all u, v ∈ X.

3. SYSTEM OF VARIATIONAL I NCLUSIONS

In this section, we shall introduce a new system of set-valued variational inclusions involving
(H, η)-monotone mappings in Hilbert spaces. In what follows, unless other specified, we shall
suppose thatX1 andX2 are two real Hilbert spaces,K1 ⊂ X1 andK2 ⊂ X2 are two nonempty,
closed and convex sets. LetF : X1 × X2 → X1, G : X1 × X2 → X2, Hi : Xi → Xi,
ηi : Xi ×Xi → Xi (i = 1, 2) be nonlinear mappings. LetA : X1 → 2X1 andB : X2 → 2X2 be
set-valued mappings,Mi : Xi → 2Xi be (Hi, ηi)-monotone mappings(i = 1, 2). The system
of nonlinear set-valued variational inclusions is formulated as follows. Find(a, b) ∈ X1 ×X2,
u ∈ A(a) andv ∈ B(b) such that

(3.1)

 0 ∈ F (a, v) + M1(a)

0 ∈ G(u, b) + M2(b)

Special Cases

Case 1.If M1(x) = ∂ϕ(x) andM2 = ∂φ(y) for all x ∈ X1 andy ∈ X2, whereϕ : X1 → R ∪
{+∞} andφ : X2 → R∪{+∞} are two proper, convex and lower semi-continuous functionals,
∂ϕ and∂φ denote the subdifferential operators ofϕ andφ, respectively, then problem (3.1)
reduces to the following problem: find(a, b) ∈ X1 ×X2, u ∈ A(a), andv ∈ B(v) such that

(3.2)

 〈F (a, v), x− a〉+ ϕ(x)− ϕ(a) ≥ 0, ∀x ∈ X1,

〈G(u, b), y − a〉+ φ(y)− φ(b) ≥ 0, ∀y ∈ X2,

which is called a system of set-valued mixed variational inequalities. Some special cases of
problem (3.2) can be found in [26].

Case 2. If A andB are both identity mappings, then problem (3.2) reduces to the following
problem: find(a, b) ∈ X1 ×X2 such that

(3.3)

 〈F (a, b), x− a〉+ ϕ(x)− ϕ(a) ≥ 0, ∀x ∈ X1,

〈G(a, b), y − a〉+ φ(y)− φ(b) ≥ 0, ∀y ∈ X2,
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which is called system of nonlinear variational inequalities considered by Cho, Fang, Huang
and Hwang [5]. Some special cases of problem (3.3) were studied by Kim and Kim [21], and
Verma [24].

Case 3. If M1(x) = ∂δK1(x) andM2(y) = ∂δK2(y), for all x ∈ K1 and y ∈ K2, where
K1 ⊂ X1 andK2 ⊂ X2 are two nonempty, closed, and convex subsets, andδK1 andδK2 denote
the indicator functions ofK1 andK2, respectively. Then problem (3.2) reduces to the following
system of variational inequalities: find(a, b) ∈ K1 ×K2 such that

(3.4)

 〈F (a, b), x− a〉 ≥ 0, ∀x ∈ K1,

〈G(a, b), y − a〉 ≥ 0, ∀y ∈ K2,

which is the problem in [20] with bothF andG being single-valued.

Case 4. If X1 = X2 = X, K1 = K2 = K, F (X, y) = ρT (y) + x − y, andG(x, y) =
γT (x) + y − x, for all x, y ∈ X, whereT : K → X is a nonlinear mapping,ρ > 0 and
γ > 0 are two constants, then problem (3.4) reduces to the following system of variational
inequalities: find(a, b) ∈ K ×K such that

(3.5)

 〈ρT (b) + a− b, x− a〉 ≥ 0, ∀x ∈ K,

〈γT (a) + b− a, x− b〉 ≥ 0, ∀x ∈ K,

which is the system of nonlinear variational inequalities considered by Verma [25].

Case 5. If A andB are both identity mappings, the problem (3.1) reduces to the following
problem:(a, b) ∈ X1 ×X2 such that

(3.6)

 0 ∈ F (a, b) + M1(a)

0 ∈ G(a, b) + M2(b)

which is the system of variational inclusions considered by Fang, Huang and Thompson [9].

4. I TERATIVE ALGORITHM AND CONVERGENCE

In this section, by using the resolvent operator method associated with(H, η)-monotone
mappings, a new iterative algorithm for solving problem (3.1) is suggested. The convergence
of the iterative sequence generated by the algorithm is proved.

Theorem 4.1. For given(a, b) ∈ X1 × X2, u ∈ A(a), v ∈ B(b), (a, b, u, v) is a solution of
problem (3.1) if and only if(a, b, u, v) satisfies the relation

(4.1)


a = RH1,η1

M1,ρ1
[H1(a)− ρ1F (a, v)],

b = RH2,η2

M2,ρ2
[H2(b)− ρ2G(u, b)],

whereρi > 0 are two constants fori = 1, 2.

Proof. This directly follows from Definition 2.4. �

The relation (4.1) and Nadler [22] allows us to suggest the following iterative algorithm.

Algorithm 4.1.

Step 1. Choose(a0, b0) ∈ X1 ×X2 and chooseu0 ∈ A(a0) andv0 ∈ B(b0).
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Step 2. Let

(4.2)


an+1 = (1− λ)an + λRH1,η1

M1,ρ1
[H1(an)− ρ1F (an, vn)],

bn+1 = (1− λ)bn + λRH2,η2

M2,ρ2
[H2(bn)− ρ2G(un, bn)],

where0 < λ ≤ 1 is a constant.
Step 3. Chooseun+1 ∈ A(an+1) andvn+1 ∈ B(bn+1) such that

(4.3)

 ‖un+1 − un‖ ≤ (1 + (1 + n)−1)D1(A(an+1), A(an)),

‖vn+1 − vn‖ ≤ (1 + (1 + n)−1)D2(B(bn+1), B(bn)),

whereDi(·, ·) is the Hausdorff pseudo-metric on2Xi for i = 1, 2.
Step 4. If an+1, bn+1, un+1 and vn+1 satisfy (4.2) to sufficient accuracy, stop; otherwise, set

n := n + 1 and return to Step 2.

Theorem 4.2. Let ηi : Xi × Xi → Xi be τi-Lipschitz continuous mappings,Hi : Xi → Xi

(ri, η)-strongly monotone andβi-Lipschitz continuous mappings,Mi : Xi → 2X
i be (Hi, ηi)-

monotone mappings fori = 1, 2. LetA : X1 → C(X1) beD1-γ1-Lipschitz continuous andB :
X2 → C(X2) beD2-γ2-Lipschitz continuous. LetF : X1 ×X2 → X1 be a nonlinear mapping
such that for any given(a, b) ∈ X1 × X2, F (·, b) is µ1-strongly monotone with respect toH1

andα1-Lipschitz continuous andF (a, ·) is ζ1-Lipschitz continuous. LetG : X1 ×X2 → X2 be
a nonlinear mapping such that for any given(x, y) ∈ X1×X2, G(x, ·) is µ2-strongly monotone
with respect toH2 andα2-Lipschitz continuous andG(·, y) is ζ2-Lipschitz continuous. If there
exist constantsρi > 0 for i = 1, 2 such that

(4.4)

 τ1r2

√
β2

1 − 2ρ1µ1 + ρ2
1α

2
1 + τ2r1ζ2γ1 < r1r2,

τ2r1

√
β2

2 − 2ρ2µ2 + ρ2
2α

2
2 + τ1r2ζ1γ2 < r1r2,

then problem (3.1) admits a solution(a, b, u, v) and iterative sequences{an}, {bn}, {un} and
{vn} converge strongly toa, b, u andv, respectively, where{an}, {bn}, {un} and{vn} are the
sequences generated by Algorithm 4.1.

Proof. It follows from (4.2) and Lemma 2.4 that

‖an+1 − an‖

=
∥∥∥(1− λ)an + λRH1,η1

M1,ρ1
(H1(an)− ρ1F (an, vn))

−
[
(1− λ)an−1 + λRH1,η1

M1,ρ1
(H1(an−1)− ρ1F (an−1, vn−1))

]∥∥∥
≤ (1− λ)‖an − an−1‖+ λ

∥∥∥RH1,η1

M1,ρ1
(H1(an)− ρ1F (an, vn))

− RH1,η1

M1,ρ1
(H1(an−1)− ρ1F (an−1, vn−1))

∥∥∥
≤ (1− λ)‖an − an−1‖+ λ

τ1

r1

‖H1(an)−H1(an−1)− ρ1[F (an, vn)− F (an−1, vn−1)]‖

≤ (1− λ)‖an − an−1‖+ λ
τ1

r1

(‖H1(an)−H1(an−1)− ρ1[F (an, vn)− F (an−1, vn)]‖

+ ‖F (an−1, vn)− F (an−1, vn−1)‖).(4.5)
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Similarly, we can prove that

(4.6) ‖bn+1 − bn‖ ≤ (1− λ)‖bn − bn−1‖

+ λ
τ2

r2

(‖H2(bn)−H2(bn−1)− ρ2[G(un, bn)−G(un, bn−1)]‖

+ ‖G(un, bn−1)−G(un−1, bn−1)‖).

SinceHi areβi-Lipschitz continuous fori = 1, 2, F (·, b) is µ1-strongly monotone with respect
to H1 andα1-Lipschitz continuous,G(x, ·) is µ2-strongly monotone with respect toH2 and
α2-Lipschitz continuous, we obtain

‖H1(an)−H1(an−1)− ρ1[F (an, vn)− F (an−1, vn)]‖2

= ‖H1(an)−H1(an−1)‖2 − 2ρ1〈F (an, vn)− F (an−1, vn), H1(an)−H1(an−1)〉
+ ρ2

1‖F (an, vn)− F (an−1, vn)‖2

≤ (β2
1 − 2ρ1µ1 + ρ2

1α
2
1)‖an − an−1‖2(4.7)

and

‖H2(bn)−H2(bn−1)− ρ2[G(un, bn)−G(un, bn−1)]‖2

= ‖H2(bn)−H2(bn−1)‖2 − 2ρ2〈G(un, bn)−G(un, bn−1), H2(bn)−H2(bn−1)〉
+ ρ2

2‖G(un, bn)−G(un, bn−1)‖2

≤ (β2
2 − 2ρ2µ2 + ρ2

2α
2
2)‖bn − bn−1‖2.(4.8)

Further, from the assumptions, we have

‖F (an−1, vn)− F (an−1, vn−1)‖ ≤ ζ1‖vn − vn−1‖(4.9)

≤ ζ1γ2(1 + n−1)‖bn − bn−1‖,
‖G(un, bn−1)−G(un−1, bn−1)‖ ≤ ζ2‖un − un−1‖(4.10)

≤ ζ2γ1(1 + n−1)‖an − an−1‖.

It follows from (4.5) – (4.10) that

(4.11)



‖an+1 − an‖ ≤
(
1− λ + λ τ1

r1

√
β2

1 − 2ρ1µ1 + ρ2
1α

2
1

)
‖an − an−1‖

+λ τ1
r1

ζ1γ2(1 + n−1)‖bn − bn−1‖,

‖bn+1 − bn‖ ≤
(
1− λ + λ τ2

r2

√
β2

2 − 2ρ2µ2 + ρ2
2α

2
2

)
‖bn − bn−1‖

+λ τ2
r2

ζ2γ1(1 + n−1)‖an − an−1‖.

Now (4.11) implies that

‖an+1 − an‖+ ‖bn+1 − bn‖

≤
(

1− λ + λ
τ1

r1

√
β2

1 − 2ρ1µ1 + ρ2
1α

2
1 + λ

τ2

r2

ζ2γ1(1 + n−1)

)
‖an − an−1‖

+

(
1− λ + λ

τ2

r2

√
β2

2 − 2ρ2µ2 + ρ2
2α

2
2 + λ

τ1

r1

ζ1γ2(1 + n−1)

)
‖bn − bn−1‖

≤ (1− λ + λθn)(‖an − an−1‖+ ‖bn − bn−1‖),(4.12)
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where

θn = max

{
τ1

r1

√
β2

1 − 2ρ1µ1 + ρ2
1α

2
1 +

τ2

r2

ζ2γ1(1 + n−1) ,

τ2

r2

√
β2

2 − 2ρ2µ2 + ρ2
2α

2
2 +

τ1

r1

ζ1γ2(1 + n−1)

}
.

Letting

θ = max

{
τ1

r1

√
β2

1 − 2ρ1µ1 + ρ2
1α

2
1 +

τ2

r2

ζ2γ1 ,
τ2

r2

√
β2

2 − 2ρ2µ2 + ρ2
2α

2
2 +

τ1

r1

ζ1γ2

}
,

we have thatθn → θ asn →∞. It follows from condition (4.4) that0 < θ < 1. Therefore, by
(4.12) and0 < λ ≤ 1, {an} and{bn} are both Cauchy sequences and so there exista ∈ X1 and
b ∈ X2 such thatan → a andbn → b asn →∞.

Now we prove thatun → u ∈ A(u) andvn → v ∈ B(b) asn → ∞. In fact, it follows from
(4.9) and (4.10) that{un} and{vn} are also Cauchy sequences. Therefore, there existu ∈ X1

andv ∈ X2 such thatun → u andvn → v asn →∞. Further,

d(u, A(u)) = inf{‖u− t‖ : t ∈ A(a)}
≤ ‖u− un‖+ d(un, A(a))

≤ ‖u− un‖+ D1(A(an), A(a))

≤ ‖u− un‖+ ζ1‖an − a‖ → 0.

Hence, sinceA(a) is closed, we haveu ∈ A(a). Similarly, we can prove thatv ∈ B(b).
By continuity,a, b, u andv satisfy the following relation

a = RH1,η1

M1,ρ1
[H1(a)− ρ1F (a, v)],

b = RH2,η2

M2,ρ2
[H2(b)− ρ2G(u, b)].

By Theorem 4.1, we know that(a, b, u, v) is a solution of problem (3.1). This completes the
proof. �
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