

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 4, Issue 1, Article 24, 2003

SOME VARIANTS OF ANDERSON'S INEQUALITY IN C_1 -CLASSES

SALAH MECHERI AND MESSAOUD BOUNKHEL

KING SAUD UNIVERSITY COLLEGE OF SCIENCE
DEPARTMENT OF MATHEMATICS
P.O.BOX2455, RIYADH 11451
SAUDI ARABIA.
mecherisalah@hotmail.com

bounkhel@ksu.edu.sa

Received 15 October, 2002; accepted 19 February, 2003 Communicated by A.G. Babenko

ABSTRACT. The main purpose of this note is to characterize the operators $S \in \ker \Delta_{A,B} \cap C_1$ which are orthogonal to the range of elementary operators, where S is not a smooth point in C_1 by using the φ -directional derivative.

Key words and phrases: Elementary operators, Schatten p-classes, Orthogonality.

2000 Mathematics Subject Classification. Primary 47B47, 47A30, 47B20; Secondary 47B10.

1. Introduction

Let E be a complex Banach space. We first define orthogonality in E. We say that $b \in E$ is orthogonal to $a \in E$ if for all complex λ there holds

$$(1.1) ||a + \lambda b|| \ge ||a||.$$

This definition has a natural geometric interpretation. Namely, $b \perp a$ if and only if the complex line $\{a + \lambda b \mid \lambda \in \mathbb{C}\}$ is disjoint with the open ball $K(0, \|a\|)$, i.e, if and only if this complex line is a tangent one.

Note that if b is orthogonal to a, then a need not be orthogonal to b. If E is a Hilbert space, then from (1.1) follows $\langle a,b\rangle=0$, i.e, orthogonality in the usual sense. This notion and first results concerning the orthogonality in linear metric space was given by G. Birkhoff [2].

Next we define the von Neumann-Schatten classes C_p $(1 \le p < \infty)$. Let B(H) denote the algebra of all bounded linear operators on a complex separable and infinite dimensional Hilbert space H and let $T \in B(H)$ be compact, and let $s_1(X) \ge s_2(X) \ge \cdots \ge 0$ denote the singular

ISSN (electronic): 1443-5756

^{© 2003} Victoria University. All rights reserved.

This Work was supported by the research center project No. Math/1422/10 and for the second author by the research center project No. Math/1422/22.

values of T, i.e., the eigenvalues of $|T| = (T^*T)^{\frac{1}{2}}$ arranged in their decreasing order. The operator T is said to belong to the Schatten p-classes C_p if

$$||T||_p = \left[\sum_{j=1}^{\infty} s_j(T)^p\right]^{\frac{1}{p}} = [tr(T)^p]^{\frac{1}{p}}, \qquad 1 \le p < \infty,$$

where tr denotes the trace functional. Hence C_1 is the trace class, C_2 is the Hilbert-Schmidt class, and C_{∞} is the class of compact operators with

$$||T||_{\infty} = s_1(T) = \sup_{\|f\|=1} ||Tf||$$

denoting the usual operator norm. For the general theory of the Schatten p-classes the reader is referred to [13].

Recall that the norm $\|\cdot\|$ of the B-space V is said to be Gâteaux differentiable at non-zero elements $x\in V$ if

$$\lim_{\mathbb{R} \ni t \to 0} \frac{\|x + ty\| - \|x\|}{t} = \text{Re} \, D_x(y),$$

for all $y \in V$. Here $\mathbb R$ denotes the set of all reals, Re denotes the real part and D_x is the unique support functional (in the dual space V^*) such that $\|D_x\|=1$ and $D_x(x)=\|x\|$. The Gâteaux differentiability of the norm at x implies that x is a smooth point of the sphere of radius $\|x\|$. It is well known (see [7] and references therein) that for $1 , <math>C_p$ is a uniformly convex Banach space. Therefore every non-zero $T \in C_p$ is a smooth point and in this case the support functional of T is given by

$$D_T(X) = tr \left[\frac{|T|^{p-1} UX^*}{\|T\|_p^{p-1}} \right]$$

for all $X \in C_p$ (1 , where <math>T = U |T| is the polar decomposition of T.

In [1] Anderson proved that if A is a normal operator on Hilbert space H, then AS = SA implies that for all bounded linear operator X there holds

$$(1.2) ||S + AX - XA|| \ge ||S||.$$

This means that the range of the derivation $\delta_A: B(H) \to B(H)$ defined by $\delta_A(X) = AX - XA$ is orthogonal to its kernel. This result has been generalized in two directions, by extending the class of elementary mappings

$$\tilde{E}: B(H) \to B(H); \tilde{E}(X) = \sum_{i=1}^{n} A_i X B_i$$

and

$$E: B(H) \to B(H); E(X) = \sum_{i=1}^{n} A_i X B_i - X,$$

where $(A_1, A_2, ..., A_n)$, $(B_1, B_2, ..., B_n)$ are n-tuples of bounded operators on H and by extending the inequality (1.2) to C_p -classes with 1 , see [3], [7], [10] and [11].

The Gâteaux derivative concept was used in [4], [5], [6], [8], [9] and [15] and, in order to characterize those operators for which the range of a derivation is orthogonal. In these papers, the attention was directed to C_p -classes for some p > 1.

The main purpose of this note is to characterize the operators $S \in C_1$ which are orthogonal to the range of elementary operators, where S is not a smooth point in C_1 by using the φ -directional derivative.

Recall that the operator S is a smooth point of the corresponding sphere in C_1 if and only if either S is injective or S^* is injective.

It is very interesting to point out that this result has been done in C_p -classes with $1 but, at least to our acknowledge, it was not given, till now, for <math>C_1$ -classes.

It is well known see ([6]) that the norm $\|\cdot\|$ of the B-space V is said to be φ -directional differentiable at non-zero elements $x \in V$ if

$$\lim_{\mathbb{R}\ni t\to 0} \frac{\|x+te^{i\varphi}y\| - \|x\|}{t} = D_{x,\varphi}(y),$$

for all $y \in V$. Therefore for every non-zero $T \in C_1$ which is not a smooth point, the support functional of T is given by

$$D_{\varphi,T}(S) = \operatorname{Re}\left\{e^{i\varphi}tr(U^*Y)\right\} + \|QYP\|_{C_1},$$

for all $X \in C_1$, where S = U[S] is the polar decomposition of $X, P = P_{\ker X}, Q = Q_{\ker X^*}$.

2. MAIN RESULTS

Let $\phi: B(H) \to B(H)$ be a linear map, that is, $\phi(\alpha X + \beta Y) = \alpha \phi(X) + \beta \phi(Y)$, for all α, β, X, Y , and satisfying the following condition:

$$tr(X\phi(Y)) = tr(\phi(X)Y)$$
, for all $X, Y \in C_1$.

Let $S \in C_1$ and put

$$\mathcal{U} = \{ X \in B(H) : \phi(X) \in C_1 \}.$$

Let $\psi: \mathcal{U} \to C_1$ defined by

$$\psi(X) = S + \phi(X).$$

Theorem 2.1. [12] *Let* $V \in C_1$. *Then,*

$$||S + \phi(X)||_{C_1} \ge ||\psi(S)||_{C_1}$$
, for all $X \in C_1$,

if and only if $U^* \in \ker \phi$, where $\psi(V) = U|\psi(V)|$.

As a first consequence of this result we have the following theorem.

Theorem 2.2. Let $S \in C_1 \cap \ker \phi$. The following assertions are equivalent:

(1)

$$||S + \phi(X)||_{C_1} \ge ||S||_{C_1}$$
, for all $X \in C_1$,

(2) $U^* \in \ker \phi$, where S = U|S|.

Our main purpose in this paper is to use the general result in Theorem 2.1 in order to characterize all those operators $S \in C_1 \cap \ker \phi$ which are orthogonal to $Ran(\phi \mid C_1)$ (the range of $\phi \mid C_1$) when ϕ is one of the following elementary operators:

(1) $E_{A,B}: B(H) \to B(H)$ defined by

$$E_{A,B}(X) = \sum_{i=1}^{n} A_i X B_i - X,$$

where $A=(A_1,A_2,\ldots,A_n)$ and $B=(B_1,B_2,\ldots,B_n)$ are *n*-tuples of operators in B(H).

(2) $\Delta_{A,B}: B(H) \to B(H)$ defined by

$$\Delta_{A,B}(X) = AXB - X,$$

where A and B are operators in B(H).

(3) $\delta_{A,B}: B(H) \to B(H)$ is defined by

$$\delta_{A,B}(X) = AX - XB$$
,

where A and B are operators in B(H).

(4) $\tilde{E}_{A,B}: B(H) \to B(H)$ is defined by

$$\tilde{E}_{A,B}(X) = \sum_{i=1}^{n} A_i X B_i$$

where $A = (A_1, A_2, \dots, A_n)$ and $B = (B_1, B_2, \dots, B_n)$ are n -tuples of operators in B(H).

Note that all the elementary operators recalled above satisfy the assumptions assumed on our abstract general map ϕ .

Let us begin by proving our main results for the elementary operator E.

Theorem 2.3. Let $A = (A_1, A_2, \dots, A_n)$, $B = (B_1, B_2, \dots, B_n)$ be n-tuples of operators in B(H) such that

$$\ker E_{A,B}|C_1 \subseteq \ker E_{A^*,B^*}|C_1.$$

Assume that

(2.1)
$$\sum_{i=1}^{n} A_i A_i^* \le 1, \ \sum_{i=1}^{n} A_i^* A_i \le 1, \ \sum_{i=1}^{n} B_i B_i^* \le 1 \ \text{and} \ \sum_{i=1}^{n} B_i^* B_i \le 1$$

and let $S = U |S| \in C_1$. Then $S \in \ker E_{A,B}$ if, and only if,

$$||S + E_{A,B}(X)||_1 \ge ||S||_1$$

for all $X \in C_1$.

Proof. Let $S \in \ker E_{A,B}|C_1$. Then it follows from Theorem 2.1 that

$$(2.2) ||S + E_{A,B}(X)||_1 \ge ||S||_1,$$

for all $X \in C_1$ if and only if $U^* \in \ker E_{A,B}$. The hypothesis $\ker E_{A,B} \subseteq \ker E_{A^*,B^*}$, implies that $U^* \in \ker E_{A^*,B^*}$. Note that $U^* \in \ker E_{A,B} \subseteq \ker E_{A^*,B^*}$ if and only if

(2.3)
$$tr(U^*E_{A,B}(X)) = 0 = tr(U^*E_{A^*,B^*}(X)).$$

Choosing $X \in C_1$ to be the rank one operator $x \otimes y$ it follows from (2.3) that if (2.2) holds then

$$= tr\left(\left(\sum_{i=1}^{n} B_i U^* A_i - U^*\right) (x \otimes y)\right)$$
$$= \left(\sum_{i=1}^{n} B_i U^* A_i x, y\right) - (U^* x, y) = 0$$

and

$$\left(\sum_{i=1}^{n} B_i^* U^* A_i^* x, y\right) - (U^* x, y) = 0$$

for all $x, y \in H$ or

$$E_{A,B}(U) = 0 = E_{A^*,B^*}(U).$$

It is known that if $\sum_{i=1}^{n} B_i B_i^* \le 1$, $\sum_{i=1}^{n} B_i^* B_i \le 1$ and $E_{B,B}(S) = 0 = E_{B,B}^*(S)$, then the eigenspaces corresponding to distinct non-zero eigenvalues of the compact positive operator $|S|^2$ reduces each B_i see ([3, Theorem 8], [15, Lemma 2.3]). In particular |S| commutes with each B_i for all $1 \le i \le n$. Hence (2.2) holds if and only if,

$$E_{A,B}(S) = 0 = E_{A,B}^*(S).$$

Now, we prove a similar result for the operator $\Delta_{A,B}$. Note that in this case we don't need the condition (2.1).

Theorem 2.4. Let A and B be two operators in B(H) such that

$$\ker \Delta_{A,B}|C_1 \subseteq \ker \Delta_{A^*,B^*}|C_1$$

and assume that $S = U|S| \in C_1$. Then $S \in \ker \Delta_{A,B}|C_1$ if and only if,

for all $X \in C_1$.

Proof. Let $S \in \ker \Delta_{A,B} | C_1$. Then it follows from Theorem 2.1 that

$$||S + \Delta_{A,B}(X)||_1 \ge ||S||_1$$
,

for all $X \in C_1$ if and only if $U^* \in \ker \Delta_{A,B}$. By the same arguments as in the proof of the above theorem, it follows that (2.4) holds if and only if

$$AUB = U = A^*UB^*$$
 or $B^*U^*A^* = U^* = BU^*A$.

Multiplying at right by |S| we get

(2.5)
$$AUB|S| = U|S| = A^*UB^*|S|.$$

Now as $S \in \ker \Delta_{A,B} | C_1 \subseteq \ker \Delta_{A^*,B^*} | C_1$, i.e.,

$$ASB = S = A^*SB^*A$$
 or $B^*S^*A^* = S^* = BS^*A$,

then

$$BS^*S = BS^*ASB = S^*SB$$
, i.e., $B|S| = |S|B$.

We also get A|S| = |S|A, that is, both operators A and B commute with |S|. Thus, (2.5) is equivalent to

$$AU|S|B = U|S| = A^*U|S|B^*$$
, i.e., $ASB = S = A^*SB^*$.

Thus $S \in \ker \Delta_{A,B}$.

Remark 2.5. The above theorem is still true if we consider instead of $\Delta_{A,B}$ the generalized derivation $\delta_{A,B}(X) = AX - XB$. It is still possible to characterize the operators $S \in \ker \phi_{A,B} \cap C_1$ which are orthogonal to $Ran(\phi_{A,B})$, where $\phi_{A,B} = AXB + CXD$. In [13] Shulman stated that there exists a normally represented elementary operator of the form $\sum_{i=1}^{n} A_i X B_i$ with n > 2 such that $\operatorname{asc} E > 1$, i.e. the range and the kernel have non trival intersection. Hence Theorem 2.1 does not hold in the case where $E_{A,B}$ is replaced by $\phi_{A,B} = \sum_{i=3}^{n} A_i X B_i$

Corollary 2.6. Let A, B be normal operators in B(H) and let $S = U|S| \in C_1$. Then $S \in \ker \Delta_{A,B}$, if and only if,

$$||S + \Delta_{A,B}(X)||_1 \ge ||S||_1$$
,

for all $X \in C_1$.

Proof. If A,B are normal operators the Putnam-Fuglede theorem ensures that $\ker \Delta_{A,B} \subseteq \ker \Delta_{A,B}^*$

Corollary 2.7. Let A, B in B(H) be contractions and let $S = U|S| \in C_1$. Then $S \in \ker \Delta_{A,B}$, if and only if,

$$||S + \Delta_{A,B}(X)||_1 \ge ||S||_1$$
,

for all $X \in C_1$.

Proof. It is known [14, Theorem 2.2] that if A and B are contractions and $S \in C_1$, then $\ker \Delta_{A,B} \subseteq \ker \Delta_{A,B}^*$ and the result holds by the above theorem.

Remark 2.8. The above corollaries still hold true when we consider $\delta_{A,B}$ instead of $\Delta_{A,B}$.

REFERENCES

- [1] J. ANDERSON, On normal derivations, *Proc. Amer. Math. Soc.*, **38**(1) (1979), 129–135.
- [2] G. BIRKHOFF, Orthogonality in linear metric spaces, *Duke Math. J.*, 1 (1935), 169–172.
- [3] B.P. DUGGAL, A remark on normal derivations, *Proc. Amer. Math. Soc.*, **126**(7) (1998), 2047–2052.
- [4] D. KECKIC, Orthogonality of the range and the kernel of some elementary operators, *Proc. Amer. Math. Soc.*, **128**(11) (2000), 3369–3377.
- [5] D. KECKIC, Orthogonality in C_1 and C_{∞} -spaces and normal derivations, J. Optim. Theory, to appear.
- [6] F. KITTANEH, Operators that are orthogonal to the range of a derivation, *J. Math. Anal. Appl.*, **203** (1996), 863–873.
- [7] F. KITTANEH, Normal derivations in norm ideals, *Proc. Amer. Math. Soc.*, **123**(6) (1995), 1779–1785.
- [8] P.J. MAHER, Commutator Approximants, Proc. Amer. Math. Soc., 115 (1992), 995–1000.
- [9] S. MECHERI, On minimizing $||S (AX XB)||_n$, Serdica Math. J., **26**(2) (2000), 119–126.
- [10] S. MECHERI, On the orthogonality in von Neumann-Shatten classes, *Int. Jour. Appl. Math.*, **8** (2002), 441–447.
- [11] S. MECHERI AND A.BACHIR, Generalized derivation modulo the ideal of all compact operators, *Int. Jour. Math. Math. Sc.*, 2002, to appear.
- [12] S. MECHERI AND M. BOUNKHEL, Global minimum and orthogonality in C_1 classes, (submitted)
- [13] B. SIMON, Trace ideals and their applications, *London Math. Soc. Lec. Notes Ser.*, **35**, Cambridge University Press, 1979.
- [14] V.S. SHULMAN, Multiplying operators in C^* algebras and the problem of reflexivity of algebras containing m.a.s.a (Russian), Funkc. analis i prilozhen, 8(1) (1974), 92–93.
- [15] A. TURNSEK, Elementary operators and orthogonality, *Linear Algebra Appl.*, **317**(1-3) (2000), 207–216.