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ABSTRACT. Some Hadamard-type inequalities involving the product of two convex functions
are obtained. Our results generalize the corresponding results of B.G.Pachpatte.
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1. INTRODUCTION

Let f be a convex function ofa, b] C R. The following double inequality:

(1.1) f (a+b) <L /a” F@)de < f(aHer(b)

2

is known in the literature as Hadamard’s inequality [1, p. 137], [2, p. 10] for convex functions.

Recently B.G.Pachpatte![3] considered some new integral inequalities, analogous to that of
Hadamard, involving the product of two convex functions. [In [3] the following theorem has
been proved:

Theorem 1.1.Let f andg be nonnegative, convex functions[anb| C R. Then
(i)
1 1

’ 1
(12) = [ f@o@dr <3 @b + gV @),
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2 M. KLARICIC BAKULA AND J. PECARIC

(ii)
(1.3) zf(“b) (Hb)_b_a/f v)de + - M(a b)+;N(a b),

whereM (a,b) = f(a) g (a) + f (b) g (b) and N (a,b) = f(a) g (b) + f (b) g (a). In-
equalities[(1.2) and (1]3) are sharp in the sense that equalities hold for ggmeand

g (x) on|a,b).

In the following Theorem 1]2 we give a variant of the corresponding Theoreni 2 in [3].

Theorem 1.2. Let f andg be nonnegative, convex functions[anb] C R. Then

(i)
(14) b a) ///ftx+ (1—-t)y) gtz + (1 —1t)y)dtdxdy

x)dr + = [M (a,b) + N (a,b)];

(ii)

e

x)dr+ = [ (a,b) + N (a,b)],

whereM (a,b) and N (a, b) are as in Theorerﬂ.l.

It should be noted that in [3, Theorem 2] inequalities (3) and (4) are established. Inequality
(3) from [3, Theorem 2] is a variant of our inequalify (1.4) in which
1[M(a,b) + N (a,b)
8 (b—a)?

stands in place of the ter@[M (a,b) + N (a,b)]. Analogously, inequality (4) from_[3, Theo-
rem 2] is a variant of our inequality (1.5) in which

1 /1+b—a
stands in place of the terfn[M (a,b) + N (a,b)].

However, one can compare inequalities (3) and (4) with (1.4)[and (1.5), respectively, to find
out that estimates given by (1.4) and {1.5) are better (worse) than those given by (3) and (4) in
[3, Theorem 2]incase df—a <1 (b—a > 1).

But on careful inspection of the proof inl[3, Theorem 2], the reader can notice some errors in
Pachpatte’s calculation, so inequalities (3) and (4)in [3, Theorem 2] are in fact incorrect.

The aim of this paper is to prove some simple generalizations of Theorém 1.1 and Theorem
[1.7, which additionally involve weight functions and also nonlinear transformations of the base
interval [a,b]. Those generalizations are established in Thedrein 2.1 and Thgoflem 2.3. The
above cited Theoref 1.1 is a special case of Thegrem 2.1, while the above Thedrem 1.2 is a
special case of our Theor¢gm 2.3 (see Rerpark 2.4).
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2. RESULTS
Throughout the rest of the paper we shall use the following notation

h —h(x
[h; 2,y _hw)=hz) >7 x#y
Yy—x
h(t) =th(a+5—1t),
h(t) = th(t)
whereh : [a, 5] — R is a function,|«, 3] C R, z,y,t € [a,3]. Note that from the above
equalities we get

[ﬁ; «, 5] _ Bh (aﬂ) : Zh (ﬁ),
[ﬁ; «, 5] _ bh (ﬁﬁ) : Zh (a),

and, by simple calculation,
(2.1) (s, 8] = [hia, 8] = (a + B) [hia, 6).
The following results are valid:

Theorem 2.1. Let f be a nonnegative convex function pn,, M;], g a nonnegative convex
function on[mg, Ms], u : [a,b] — [m4, Mi] andv : [a,b] — [msg, Ms] continuous functions,
andp : [a,b] — R a positive integrable function. Then

()
b
@2) 4 [ p@) @) @)d

SMWJMM%JM—/p@u@M@M

g

+ s, M) Gooa, M) [ @) ) d

—_

+ [fv, ml,Ml] [g; Mo, My F/abp(x)v(x) dx

+ []?7 m1,M1] [g; ma, Mo] .

¢
@3 ("5 ) o (") < [ [ r@ s
[ Do) 0 = w(0)) g (08 ma = 02 ]
+ 1 [ Al s ] [ D@y

+ ([gs ma, My] — [g; ma, Ma]) [f;mhMl]/ p(z)u(z)dr
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([T ] = [T 0] g ) [ty ) ]
+ 5 ([Foma ] o, M)+ [P, A 3o, 03]

whereP = fabp (7)dux.

Proof. For anyz € [a, b] we can write

(2.4) u(z) = M —my T M —my M,
and
My —v(z) v (z) — ma
(2.5) v(x) = y— ma fy— Ms,.
Sincef andg are convex functions we have
My — u(x) u(z) —my
fluta) < =0 )+ S ()
_u(z) M, f (m1) —maf (M)
= —m (f (My) = f (ma)) + M, —m,
(2.6) = [f;mq, Mi|u(x) + [f, ml,Ml]
and
9o () < By ) 1 LD =2 o
_ v (z) Mg (mga) — mag (Ms)
=My, (9 (M2) — g (m2)) + M,y —
(27) - [g;m2,M2]’U(Z') + [57 m27M2] .

Functionsf andg are nonnegative by assumption, so after muItipI and we obtain
(2.8) f(u(x))g(v(z))
< [fyma, Mi][g; ma, Mo]u (x) v () + [f;ma, Mi] [g;ma, Ma]u ()
+ [g; ma, M) []?7 mi, Ml] v (x) + []?7 my, Ml] [9; ma, Ma] .
Pl)ow, multiplying by weight p (z), integrating ovefa, b] and dividing byP > 0 we get
i).

To obtain (ii) we can write

mi+ M 1 (M1 —u(a:)ml u(x) —m1M1
2 2\ M, —my My, —my
A )
e (s
+U]\(Z)__n22 g + AJI\;Q__UW(,:Z)MQ) '

J. Inequal. Pure and Appl. Maths(3) Art. 74, 2004 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

HADAMARD -TYPE INEQUALITIES 5

Using the Hadamard inequali and the convexity of functiong andg, we get

m1+M1 m2+M2
() (")

() o (e )

Ml—ml Ml—ml Ml—ml Ml—ml
My — v (x) v (x) —mg v (x) —mg My — v (x)
X _ —— M M. .
|:g(M2—m2 m2+ Mg—mQ 2 +g MQ—m2m2+ Mg—mg 2

According to(2.4) and({2.5)) , after some simple calculus we obtain

@e)f(ﬁ%;%)g(@%;@)

< M @@) g @) + £ On +m — (@) g (My +my — v (2))]

1 M; — u(z) u(x) —my v (x) —my My — v (x)
) Y e B S P G R M
+ |if(M1—m1 Mt Ml—ml ! *9 Mg—mg me + Mg—mg 2

u(x) —my My — u(z) My — v (x) v (x) —my
_ —M M. :
+f(M1—m1 M+ Ml—ml ! g Mg—mQ ma + Mg—mg 2

Using the convexity of functiong andg, from inequality(2.9) we get

(210) f (ml +M1) g (mz +M2)

2 2

g

(S o+ S )

(g () + A (1)
(5 s o+ =0

(T () + S (1)) |

With respect to the notation introduced at the beginning of this section, ineq(@&lity) be-
comes

m1+M1 m2+M2
()5

{£ (@) g @)+ f (M +mi = (@) g (M +ms =0 (2)) |

* }1{ (Lrsme M) u (@) + | Fym, ] ) ([Gma, Ma] = lgima, Moo () )

+ <|:.]?7 mhMJ - [f;mle]U(ﬂ?)) ([9;m2,M2] v (x) + [g; a2, Mo )}
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:i{f(u(:U»g(v(:U))—l—f(Mleml—u(x))g(]\/[2+m2_v(x))}
+41l - [f?mlaMl][g,mg,Mﬂ () (iL’)

<[§ my, Ma] — g,mz,M2]> Lf;ma, My]u ()

+ ([Fima 2| = [Fima 2n] ) g ma. M) v (2)
w7

(2.11) s, M| [§ma, M) + | Fima, M | [35ma, Mo }

Now we multiply both sides by p (z), integrate ovefa, b] and divide byP. We thus
obtain (ii) and the proof is completed. O

Remark 2.2. Pachpatte’s resultf.2) and(L.3) can be obtained fronf2.2)) and (2.3)) respec-
tively if we putp (z) = 1,u () = v (z) = z for all z € [a, b] (then we haven, = my, = a and
M, = M, = b). In the case of () = 1 inequality (i) becomes the right side of Hadamard’s

inequality (1.1)) .

Theorem 2.3. Let f be a nonnegative convex function pn,, M;], ¢ a nonnegative convex
function on[my, Ms], u : [a,b] — [my, Mi] andv : [a,b] — [ms, Ms] continuous functions,
andp, q : [a,b] — R positive integrable functions. Then

(i)
pLQ///Op(w)Q(y)f(tu(:L’)+(1—t)u(y))><g(tv(x)—i—(l—t)v(y))dtd:cdy

o [@ [ @@ p [ fuwabwaw dy}

+ﬁ a p(:c)f(u(x))d:c/a q(y) g (v(y))dy;

whereu = fabp (x)u(z)de,v = é fab q(z)v(x)de.
Proof. Sincef andg are convex functions, fare [0, 1] we have

(2.12) flu@)+ A=t u(y) <tf(u(z)+ 1 —1t)f(uly))
(2.13) gtv (@) + (1 —=t)v(y) <tg(v(@))+(1—1t)g(v(y)).
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Functionsf andg are nonnegative, so multiplyin@.12)) and(2.13)) we get

(2.14) f(tu (@) + (1 =t)u(y))gtv(z)+ 1 =1)v(y)
<Ef (u(@) g (v(@) + (1= f (u) g ()
+t(A =) [f(u(@)g(v(y) + f(u(y))g(v(z))].
Integrating(2.14) over|[0, 1] we obtain

(2.15) / £ (tu () + (1= ) u(y)) g (bv (@) + (- £)v (y)) dt

[f (u(x)) g (v (x)) + f(uly) g ()]

2l @) g (0 )+ F (w0 g o ().

Now we multiply (2.15) by p (z) ¢ (y), integrate ovefa, b] x [a, b] and divide byPQ, where

b b
P:/pu)dx, @:/ ¢ (@) d
so we get

o [ [re )

g(tv(z)+ (1 —t)v(y)) dtdedy
b

b
p (@) f (u(@))g (v (2)) da / ¢ () dy

1
< =
-3

a

+ [0 e [ re
+org | [P0 Fe@nd 1w

+ [ s ea |
1

- oo | [ @ s (a6
+ [0 e [ re

a

b

1(2)g (v <x>>dx]

1 b b
(216) 355 | P F e [ 0w @) dy

This is the desired inequality (i).
To prove inequality (i), in(2.12) and we substituteu (y) and v (y) with @ andv
respectively.
Then we obtain
(2.17) f(tu(z)+ (1 —=t)a) g (tv(z)+ (1 —1t)D)
< f(u(2) g (v (@) +(1—)"f(@)g (@)
+t(1=t)[f (u(2) g (@) + f(@)g(v(z)).
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Integrating(2.17)) in respect ta over|0, 1] we obtain

(2.18) /0 fu(x)+ (1 —t)u)g(tv(x)+ (1 —1t)v)dt

< 17 (@) g (0 (@) + £ (@) g (0] + 517 () g @) + £ (@) g (0 ).
Similarly as before, fronf2.18) we get
—// (-0 gt (@) + (1 1)) dida
< 3ip p() £ (u () g (0 (@) d + 5 f (@) g ()

1

b b
+6—P{ ® [ p@) s @) £@ [ pwgw) ]

This completes the proof. 0J

Remark 2.4. If in (i) we putu (z) = v (x) = x for all x € [a, b], it becomes

(2.19) —/// flx+(1—=1t)y)g(te+ (1 —1t)y)dtdedy
b
< o [Q/ p@) 1@ g s+ P [ o) 7690 d]
a 1 a ) )
350 /. p(ﬂf)f(fv)dﬂf/ q(y) g (y)dy,
so by using a generalization of Hadamard'’s inequality [1, p.138]
b
(2:20) H("50) <5 [ prs @< KOO

which holds forp (a +t) = p (b —t),0 < t < 5 (a + b) , we obtain from(2.19) the following
inequality

fltr+(1—t)y) g (te+ (1 —t)y) dtdzdy
raf [ [

g%{Q/ap(x)f<x>g<x>daz+P/abq<y>f<y>g<y>dy]

L@+ fb)gla)+g()
3 2 2

:ﬁ [Q/abp(x)f(x)g(x)dx+P/abQ(y>f(y)g(y)dy]

(2.21) b M (a,h) + N (ab)].

Now it is easy to observe thatjif(z) = ¢ (z) = 1 for all = € [a, b] inequality (2.21)) becomes
the corrected Pachpatte’s resfltd]).

J. Inequal. Pure and Appl. Mathb(3) Art. 74, 2004 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

HADAMARD -TYPE INEQUALITIES 9

If we do the same in (ii) we get

%/:/Olp(m)f(m+(1—t)“;b)g(m+(1—t)“;b) dtds

Sgip abp(g;)f(x)g($)dx+%f (a+b)g<a+b>

%ﬂ (“;b) /abp(w)f(ﬂf)dm+f(a;b>/abp(x)g(w)dx}-

Using again(2.20)) we obtain

_// (tx+(1—t)aTM)g<tx+(1—t)a+b dtdx

2
Lf(a)+F(b)g(a)+9(b)

< a5 [ r@ 7 @@+ ;1O 2
1{g(a)+g®) f(a)+f(b)  fla)+f(b)gla)+g(b)
+6{g 2g 2 i 2 . 2 ]
b
= [ @) F @) @) dr+ £ (M (a,8) + N (a,)

a

Furthermore, in the cage(x) = 1 for all x € [a, b] we get

: 1a/bff(m+(1—t)a+b)g(m+(1—t)a;b)dtdx
- a JO

_3b—a/f dm—i—é(M(a,b)—i—N(a,b)),

which is the corrected Pachpatte’s resiulf).
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