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ABSTRACT. If ¢,, denotes the-th composed number, one proves inequalities involeinge., , ¢, ,
and one shows that the sequen@gs),,>1 and(c,,, ),>1 are neither convex nor concave.
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1. INTRODUCTION

We are going to use the following notation

7(x) the number of prime numbers z,
C(z) the number of composed numbefSz,
pn then-th prime number,
¢, then-th composed numbet; =4,¢, =6, ...,
log, n = log(logn).

Forz > 1 we have the relation

(1.1) m(z) +C(z) +1=[z].
Bojarincev proved (see 1], [4]) that
1 2 4 19 1 181 1 1
12) cp=n(1+ + + + = - +—- + :
(1.2) e =n ( logn  log’n  log®n 2 log'n 6 log’n ¢ (log5 n) )
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2 LAURENTIU PANAITOPOL

Let us remark that

_J 1 if ¢ + 1is composed
(1.3) Gkt = k= { 2 if ¢, + 1is prime

In the proofs from the present paper, we shall need the following facts relatéd tandp,,:

x
14 f > _—
(1.4) orx > 67, w(x)> gz 05
(seell7]);
(1.5) forz > 3299, 7(z) > ——
logx — 55
(seel[6]);
x

1.6 f >4 _
(1.6) ore 24, (@) < T
(seel6]);
(1.7) forn>1, n(z)=— En: ! +0<L)

' - log x pr log® x log"™ /)’
(1.8) forn > 2, p, >n(logn+log,n —1)
(seel[2] andlIB]);
(1.9) forn > 6, p, <n(logn+ log,n)

(seell7]).

2. INEQUALITIES INVOLVING ¢,

Property 1. We have

1 3 1 1
2.1) 0 (14 o ) Z e (U o+ )
logn  log“n logn  log“n

whenevem > 4.

Proof. If we takex = ¢, in (1.7)), then we get
(2.2) m(cn) +n+1=cp.

Now (I.4) implies that for. > 48 we have

Cn >n+7(e,) >n+

logn
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SERIES OFCOMPOSEDNUMBERS 3

and then

1
cn>n+7r(cn)>n+7r(n(1+ ))
logn

<1 + logn)

logn + log (1 + —) —0.5

logn
<1 + logn)

logn

1+ = + !
=N .
logn  log*n

By (1.6) and|[(2.R) it follows that

>n 4+

>n 4+

logc, —2.12
“ Jog ey —1.12

—2.12 _ logn—2.12
112 ~ logn—1L.12 hence

logn — 2.12
logn —1.12°
Assume that there would exist> 1747 such that

1 3
n(l+ +— .
logn  log“n

Then a direct computation shows ttia) implies

1 S 0.881logn — 6.36
n ~ log®n(logn — 1.12)

<n+ 1.

Sincec,, > n, it follows thathgc"

(2.3) n+1>c,-

Forn > 1747, one easily shows tha&fﬁilonginlfj > -, hencel > m But this is
impossible, since fon > 1724 we have— < m

Consequently we havwe, < n (1 + logn og? ) By checking the cases when< 1746,
one completely proves the stated inequalities. O

Property 2. If n > 30, 398, then the inequality

Pn > cploge,
holds.
Proof. We use[(1.B)[(2]1) and the inequalities

1 1+ ! + ; < ! + ’
O )
& logn  log*n logn ~ log”n

and

1 3 1 3
n(logn +loglogn — 1) >n | 1+ +——) (logn+ —+ —— ),
logn  log“n logn  log“n

that isloglogn > 2 + bgn + 105_;4% + 1og63n + 10g94n, which holds ifn. > 61, 800. Now the proof

can be completed by checking the remaining cases. O
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4 LAURENTIU PANAITOPOL

Proposition 2.1. We have
w(n)p, > Ci
whenevern > 19,421.

Proof. In view of the inequalities@S)@.S) and (R.1), for> 3299 it remains to prove that
et o (14 Ly 3 thatis

log n—23 logn log? n

log] - 59 n 5.069 0.758  3.207  8.68
oglogn > — - - .
6708 20 logn log’n log’n log'n

It suffices to show that

loglogn > 29 + 0069

6708 29  logn
Forn = 130,000, one get2.466--- > 2.4649.... The checking of the cases when<
130, 000 completes the proof. O

3. INEQUALITIES INVOLVING ¢,, AND p,,
Proposition 3.1. We have
(3.1) Pn+n <cp, <pp+n+m(n)
for n sufficiently large.

Proof. By ) and ) it follows that fon sufficiently large we have, = n+n(n) + et T
0 < 5 ) hence

log® n

D n
3.2 =p,+n+ + 0 )
(3-2) “n =P " log2 DPn <log2 n)

Thus forn large enough we havg, > p,, + n.
Since the functionr — —%— is increasing, one gets .9)

log? x
P _ n(logn + log, n)
logZp,  (logn + log(logn + log, n))?
n(logn + log, n)

logn(logn + 2log, n)

logn — % log, n

<n 5
log”n
(n) 1 nlog2n+0< n )
=7(n)—=- :
2 log’n log?n

Both this inequality and (3}2) show that fersufficiently large we have indeeg, < p, +n +
m(n). O

Proposition 3.2. If n is large enough, then the inequality

pcn > Cpn
holds.
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Proof. By (2.1)) it follows that
(3.3) ¢, =7(Cp,) + 0+ 1.

Now (3.7) and[(3.8) imply that for sufficiently large we have(c,,) < n+m(n). Butby (2.1)
it follows thatc,, > n + m(n), hencec,, > 7(c,,). If we assume that,, > p.,, then we obtain

the contradictionr(c,,) > 7(p.,) = ¢,. Consequently we must havg, < p.,. O

It is easy to show that the sequerieg),.>; is neither convex nor concave. We are lead to the
same conclusion by studying the sequenegs),,.>1 and(p., )»,>1. Let us say that a sequence
(an)n>1 has the property” when the inequality

Apt1 — 20y, + ap—1 >0
holds for infinitely many indices and the inequality
Apai1 — 20y + an_1 <0
holds also for infinitely many indices. Then we can prove the following fact.
Proposition 3.3. Both sequenceg;,, ),>1 and(p., )»,>1 have the property’.
In order to prove it we need the following auxiliary result.
Lemma 3.4. If the sequencéu,,),.>,, IS convex, then fom > n > n; we have

Ay, — Qp
> Gy — a,.

(3.4)

m—n
If the sequencéu,,),.>x, IS concave, then for > p > n, we have
Qp — Gy

n—p

(3.5)

> Ap41 — Ap

whenevem > n > n;.

Proof. In the first case, for > n we havea; ;1 — a; > a,41 — a,, henceZ?;l(am —a;) >

(m — n)(an+1 — a,), thatis[3.4). The inequality (3.5) can be proved similarly. O
Proof of Proppsitio@Erdds proved in [[3] that, withd, = p,.1 — p,., we have
limsup, ., Mdnduie) — o |n particular, the sed = {n | min(d,, dyy1) > 2logn} is

logn
infinite. :

For everyn, at least one of the numbersandn + 1 is composed, that is, either = ¢,
orn+ 1 = ¢, for somem. Consequently, there exist infinitely many indicessuch that
Dep+1 — Pen, > 21o0g ¢y, SiNCec,, 11 > ¢, + 1 ande,,, > m, we get infinitely many values of.
such that

(36) Pemyr — Pew > 2 IOg m.

Let M’ be the set of these numbers
If we assume that the sequenge, ),>,, is convex, then[(3]4) implies that far € M’ we

have
pCQm - pcm

m
hencep.,,, > 2mlogm + p.,, . But this is a contradiction becausg ~ n andp,, ~ nlogn,
that isp.,,, ~ 2mlog2m andp., ~ mlogm.
On the other hand, if we assume that the sequénge,~,, is concave, therj (3.5) implies
that forz € M’ we have

Pecp, — Pefm/2]

=[]

2 pcm+1 — Pep, > 210gm7

> Pepsr — Pem > 21ogm,
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thatis
2 (m — [%]) logm + pejm2
Pen,
Form — oo, m € M’, the last inequality implies the contradiction> 1 + % Consequently
the sequencép., ),>1 has the property.
Now let us assume that the seque&g),>,, is convex. Then fon € M, n > n,, we get

by (3.4)

1>

Cpan —
n
If we taken — oo, n € M, in the inequalityl > (2nlogn + ¢,,)/c,,,, then we obtain the
contradictionl > 2.
Finally, if we assume that the sequen@g, ),>n, is concave, ther| (3.5) implies that for
n € M,n > nq, we have

Cpn — Cp[n/z]

n— 3]

which is again a contradiction. O

c n
£ 2 Cpn+1 - Cpn 2 pn+1 - pn > 2].Og n.

Z cpn+1 - Cpn Z pn+1 - pn > 210g TL7
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