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ABSTRACT. The author aims at finding certain conditions ona, b andc such that the normalized
Gaussian hypergeometric functionzF (a, b; c; z) given by

F (a, b; c; z) =
∞∑

n=0

(a, n)(b, n)
(c, n)(1, n)

zn, |z| < 1,

is in certain subclasses of analytic functions. A particular operator acting onF (a, b; c; z) is also
discussed.
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1. I NTRODUCTION

As usual, letA denote the class of functions of the form

(1.1) f(z) = z +
∞∑

k=2

akz
k,

analytic in the open unit disk∆ = {z : |z| < 1}, andS denote the subclass ofA that are
univalent in∆. We begin with the following.

Definition 1.1 ([2]). Let f ∈ A, 0 ≤ k < ∞, and0 ≤ α < 1. Thenf ∈ k − UCV (α) if and
only if

(1.2) Re

{
1 +

zf ′′(z)

f ′(z)

}
≥ k

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣+ α.
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2 A. SWAMINATHAN

This class generalizes various other classes which are worthy of mention. The classk −
UCV (0), called thek-Uniformly convex is due to [11], and has its geometric characterization
given in the following way: Let0 ≤ k < ∞. The functionf ∈ A is said to bek-uniformly
convex in∆, f is convex in∆, and the image of every circular arcγ contained in∆, with center
ζ, where|ζ| ≤ k, is convex.

The class0− UCV (α) = K(α) is the well-known class of convex functions of orderα that
satisfy the analytic conditions

Re

{
1 +

zf ′′(z)

f ′(z)

}
> α.

In particular, forα = 0, f maps the unit disk onto the convex domain (for details, see [8]).
The class1 − UCV (0) = UCV [9] describes geometrically the domain of values of the

expression

p(z) = 1 +
zf ′′(z)

f ′(z)
, z ∈ ∆,

asf ∈ UCV if and only if p is in the conic region

Ω = {ω ∈ C : (Im ω)2 < 2 Reω − 1}.
The classesUCV and Sp are unified and studied using certain fractional calculus operator
methods found in [18]. We refer to [10, 11, 12] and references therein for basic results related
to this paper.

The Gaussian hypergeometric functionf(z) = zF (a, b; c; z), z ∈ ∆, given by the series

F (a, b; c; z) =
∞∑

n=0

(a, n)(b, n)

(c, n)(1, n)
zn

is the solution of the homogenous hypergeometric differential equation

z(1− z)w′′(z) + [c− (a + b + 1)z]w′(z)− abw(z) = 0

and has rich applications in various fields such as conformal mappings, quasiconformal theory,
continued fractions and so on.

Herea, b, c are complex numbers such thatc 6= 0,−1,−2,−3, . . ., (a, 0) = 1 for a 6= 0, and
for each positive integern, (a, n) := a(a+1)(a+2) · · · (a+n−1) is the Pochhammer symbol.
In the case ofc = −k, k = 0, 1, 2, . . . , F (a, b; c; z) is defined ifa = −j or b = −j where
j ≤ k. In this situation,F (a, b; c; z) becomes a polynomial of degreej in z. Results regarding
F (a, b; c; z) whenRe(c − a − b) is positive, zero or negative are abundant in the literature. In
particular whenRe(c − a − b) > 0, the functionF (a, b; c; z) is bounded. This and the zero
balanced caseRe(c − a − b) = 0 are discussed in detail by many authors (for example, see
[19, 25, 1]). For interesting results regardingRe(c−a−b) < 0, see [26] and references therein.

The hypergeometric functionF (a, b; c; z) has been studied extensively by various authors and
play an important role in Geometric Function Theory. It is useful in unifying various functions
by giving appropriate values to the parametersa, b, andc. We refer to [3, 17, 29, 27, 20, 21, 25]
and references therein for some important results. In particular, the close-to-convexity (in turn
the univalency), convexity, starlikeness, (for details on these technical terms we refer to [8, 5])
and various other properties of these hypergeometric functions were examined based on the
conditions ona, b, andc in [21].

The observation that1 + z = F (−1,−1; 1; z) is convex in∆ and its normalized form
z(1 + z) = zF (−1,−1; 1; z) is not even univalent in∆ clearly exhibits that the normalized
functions need not inherit the properties that non-normalized functions have. Even though, the
starlikeness and close-to-convexity of the normalized hypergeometric functionszF (a, b; c; z)
are discussed in detail by many authors (see [21, 25, 16]), many results on the convexity of
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SUFFICIENCY ON HYPERGEOMETRIC FUNCTIONS 3

zF (a, b; c; z) do not seem to be available in the literature except the non-convexity condition
discussed in [25], the convexity condition fora = 1 solved completely in [24], and a weaker
condition for convexity given by [32]. There is also a sufficient condition forF (a, b; c; z) to be
in k − UCV (0) given in [12], which gives the convexity condition whenk = 0.

Theorem 1.1([12]). Letc ∈ R, anda, b ∈ C. Leta, b andc satisfy the conditionsc > |a|+|b|+2
and

(1.3)
|ab|Γ(c)Γ(c− |a| − |b| − 2)

Γ(c− |a|)Γ(c− |b|)
(|ab| − |a| − |b|+ 2c− 3) ≤ 1

2
.

ThenzF (a, b; c; z) is convex in∆.

Remark 1.2. We note that for the casea = 1, the convexity condition forzF (1, b; c; z) obtained
in [24] does not require (1.3) and hence is stronger than Theorem 1.1.

Also, for τ ∈ C\{0} we introduce the classP τ
γ (β), with 0 ≤ γ < 1 andβ < 1 as

P τ
γ (β) :=

{
f ∈ A :

∣∣∣∣∣ (1− γ)f(z)
z

+ γf ′(z)− 1

2τ(1− β) + (1− γ)f(z)
z

+ γf ′(z)− 1

∣∣∣∣∣ < 1, z ∈ ∆

}
.

We list a few particular cases of this class discussed in the literature.
(1) The classP τ

1 (β) is given in [4] and discussed for the operatorIa,b;c(f)(z) = zF (a, b; c; z)∗
f(z) in [7].

(2) The classP τ
γ (β) for τ = eiη cos η whereπ/2 < η < π/2 is given in [14] and dis-

cussed by many authors with reference to the Carlson–Schaffer operatorGb,c(f)(z) =
zF (1, b; c; z) ∗ f(z) using duality techniques for various values ofγ (for example, see
[1, 6, 14, 15, 19, 22]).

To be more specific, the properties of certain integral transforms of the type

Vλ(f) =

∫ 1

0

λ(t)
f(tz)

t
dt, f ∈ P (eiη cos η)

γ (β)

with β < 1, γ < 1 and|η| < π/2, under suitable restrictions onλ(t) was discussed by many
authors [6, 14, 19, 22]. In particular, if

λ(t) =
Γ(c)

Γ(b)Γ(b− c)
tb−1(1− t)c−b−1,

thenVλ(f) is the well known Carlson–Schaffer operatorGb,c(f)(z).

2. M AIN RESULTS

If f ∈ A such thatf has the power series expansion

(2.1) f(z) = z −
∞∑

n=2

anz
n, an ≥ 0

thenf is one main subclass ofS and is denoted byT . This class is due to H. Silverman [30]
and has many interesting results (see [30] and [31]).

In the line ofk − UCV (α), the following class was defined in [2].

Definition 2.1 ([2]). Letk−UCT (α) be the class of functionsf(z) of the form (2.1) that satisfy
the condition (1.2).

Using the analytic condition (1.2) and a Alexander type theorem, the following classes are
defined in [2].
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4 A. SWAMINATHAN

Definition 2.2 ([2]). Let 0 ≤ k < ∞, and0 ≤ α < 1. Then

(1) f ∈ k − Sp(α) if and only if f has the form (1.1) and satisfies the condition

(2.2) Re

{
zf ′(z)

f(z)

}
≥ k

∣∣∣∣zf ′(z)

f ′(z)
− 1

∣∣∣∣+ α.

(2) f ∈ k − SpT (α) if and only if f has the form (2.1) and satisfies the inequality given by
the expression (2.2).

For k = 0, we obtain the well-known class of starlike functions of orderα, which has the
analytic characterizationRe zf ′(z)

f(z)
> α with z ∈ ∆. In particular, forα = 0, f maps the

unit disk onto the starlike domain (for details, see [8]). We further note that,1 − Sp(α) is the
well-known class discussed in [28]. We also need the following sufficient condition on the
coefficients for the functions in the classk − UCV (α).

Lemma 2.1([2]). A functionf(z) of the form (1.1) is ink−UCV (α) if it satisfies the condition

(2.3)
∞∑

n=2

n [n(1 + k)− (k + α)] an ≤ 1− α.

It was also found that the condition (2.3) is necessary and sufficient forf to be ink−UCT (α).
Further that the condition

(2.4)
∞∑

n=2

[n(1 + k)− (k + α)] an ≤ 1− α

is sufficient forf to be in k − Sp(α) and it is both necessary and sufficient forf to be in
k − SpT (α).

Another sufficient condition is also given for the classk − UCV in [11] which is given by
the following

Lemma 2.2([11]). Letf ∈ S and be of the form (1.1). If for somek, 0 ≤ k < ∞, the inequality

(2.5)
∞∑

n=2

n(n− 1)|an| ≤
1

k + 2
,

holds true, thenf ∈ k − UCV . The number1/(k + 2) cannot be increased.

It is interesting to observe that sufficient conditions forf ∈ k−Sp, analogous to (2.5), cannot
be obtained by replacingan by an/n as in many other situations.

Sufficiency conditions forzF (a, b; c; z) to be in the classk − UCV (α) using the condition
(2.1), and to be in the classk − Sp(α) using the condition (2.4) were obtained in [33] (see also
[13]). In [11], it is proved thatzF (a, b; c; z) is in k − UCV by applying the condition (2.5).

Theorem 2.3.Letf(z) ∈ S and be of the form (1.1). Iff is in P τ
γ (β), then

(2.6) |an| ≤
2|τ |(1− β)

1 + γ(n− 1)
.

The estimate is sharp.

It is easy to find the sufficient condition forf(z) to be inP τ
γ (β) under standard techniques.

Hence we state the result without proof.
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SUFFICIENCY ON HYPERGEOMETRIC FUNCTIONS 5

Theorem 2.4.Letf(z) be of the form (1.1). Then a sufficient condition forf(z) to be inP τ
γ (β)

is

(2.7)
∞∑

n=2

[1 + γ(n− 1)]|an| ≤ |τ |(1− β).

This condition is also necessary iff(z) is of the form (2.1) andτ = 1.

Theorem 2.5.Leta, b, c andγ satisfy any one of the following conditions such thatTi(a, b, c, γ) ≤
|τ |(1− β) for i = 1, 2, 3.

(i) a, b > 0, c > a + b and

T1(a, b, c, γ) =

(
1 +

γab

c

)
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
.

(ii) −1 < a < 0, b > 0, c > 0 and

T2(a, b, c, γ) =
Γ(c− a− b)Γ(c)

Γ(c− a)Γ(c− b)

(
1 +

γ|ab|
(c− a− b)

)
+

γ|ab|
c

− γ(a, 2)(b, 2)

(c, 2)
.

(iii) a, b ∈ C\{0}, c > |a|+ |b| and

T3(a, b, c, γ) = γ +
Γ(c− |a| − |b| − 1)Γ(c)

Γ(c− |a|)Γ(c− |b|)
(c− |a| − |b| − 1 + γ|ab|) .

ThenzF (a, b; c; z) is in P τ
γ (β).

Sincea = b is useful in characterizing polynomials with positive coefficients whenb is some
negative integer, we give the corresponding result independently.

Corollary 2.6. Leta, b ∈ C\{0}, a = b, c > 2Reb andT4(a, b, c, γ) ≤ |τ |(1− β) where

T4(a, b, c, γ) = γ +
Γ(c− 2Reb− 1)Γ(c)

Γ(c− b)Γ(c− b)

(
c− 2Reb− 1 + γ|b|2

)
.

ThenzF (b, b; c; z) is in P τ
γ (β).

In the above theorem, if we takea = 1, we get the result for operatorGb,c(f)(z) which we
give independently as

Theorem 2.7.Let b > 0 and
(c + γb)(c− 1)

c(c− b− 1)
≤ |τ |(1− β).

Then the incomplete beta functionφ(b; c; z) := zF (1, b; c; z) is in P τ
γ (β).

Whenf(z) = − log(1− z), consider the operator of the form

(2.8) G(a, b; c; z) =

∫ z

0

F (a, b; c; t)dt.

The sufficient condition for the operatorG(a, b; c; z) to be inK(α) andS∗(α) is given in [32]
and extended to the classk − UCV (α) andk − Sp(α) in [33].

Theorem 2.8.Let0 < a 6= 1, 0 < b 6= 1 andc > a+b+1 such thatT (a, b, c, γ) ≤ 1+|τ |(1−β)
where

(2.9) T (a, b, c, γ) =
Γ(c− a− b)Γ(c)

Γ(c− a)Γ(c− b)

(
γ +

(1− γ)(c− a− b)

(a− 1)(b− 1)

)
− (1− γ)(c− 1)

(a− 1)(b− 1)
.

ThenG(a, b; c; z) is in P τ
γ (β).
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6 A. SWAMINATHAN

Corollary 2.9. Leta = b, 0 < b 6= 1, andc > 2Reb + 1 such thatT (b, b, c, γ) ≤ 1 + |τ |(1− β)
where

T (b, b, c, γ) =
Γ(c− 2Reb)Γ(c)

Γ(c− b)Γ(c− b)

(
γ +

(1− γ)(c− 2Reb)

|b− 1|2

)
− (1− γ)(c− 1)

|b− 1|2
.

ThenG(b, b; c; z) is in P τ
γ (β).

We note that an equivalent of Theorem 2.8 cannot be given for the Carlson–Schaffer operator
Gb,c(f)(z) = zF (1, b; c; z) ∗ f(z) [3].

We give here another sufficiency condition forG(a, b; c; z) to be ink − UCV (0) using the
sufficiency condition (2.5) ofk − UCV (0) given in [11]. A simple computation of applying
(2.5) in the series representation ofG(a, b; c; z) gives the following result immediately. We omit
the proof.

Theorem 2.10.Leta > −1, b > −1 andc > a + b + 2 such that for all0 ≤ k < ∞,

(2.10)
(a + 1)(b + 1)

(c + 1)
· Γ(c− a− b− 1)Γ(c + 1)

Γ(c− a)Γ(c− b)
≤ 1

k + 2
.

ThenzF (a, b; c; z) is in k − UCV (0) =: k − UCV .

The following results are immediate.

Corollary 2.11. Let b > −1, a = b andc > 2+Reb such that for all0 ≤ k < ∞,

|b + 1|2

(c + 1)
· Γ(c− Reb− 1)Γ(c + 1)

Γ(c− b)Γ(c− b)
≤ 1

k + 2
.

ThenzF (b, b; c; z) is in k − UCV (0) = k − UCV .

Corollary 2.12. Let b > −1 andc > b + 3 such that for all0 ≤ k < ∞,

2(b + 1)

(c + 1)
· c(c− 1)

(c− b− 1)(c− b− 2)
≤ 1

k + 2
.

Then the incomplete functionφ(b; c; z) is in k − UCV (0) = k − UCV . In particular, when
k = 0, φ(b; c; z) is convex in∆.

3. PROOFS OF THEOREMS 2.3, 2.5AND 2.8

We need the following result and we state this as

Lemma 3.1. Leta, b ∈ C\{0}, c > 0. Then we have the following:
(i) For a, b > 0, c > a + b + 1,

(3.1)
∞∑

n=0

(n + 1)(a, n)(b, n)

(c, n)(1, n)
=

Γ(c− a− b)Γ(c)

Γ(c− a)Γ(c− b)

[
ab

c− 1− a− b
+ 1

]
.

(ii) For a 6= 1, b 6= 1 andc 6= 1 with c > max{0, a + b− 1},

(3.2)
∞∑

n=0

(a, n)(b, n)

(c, n)(1, n + 1)
=

1

(a− 1)(b− 1)

[
Γ(c + 1− a− b)Γ(c)

Γ(c− a)Γ(c− b)
− (c− 1)

]
.

(iii) For a 6= 1 andc 6= 1 with c > max{0, 2 Re a− 1},

(3.3)
∞∑

n=0

|(a, n)|2

(c, n)(1, n + 1)
=

1

|a− 1|2

[
Γ(c + 1− 2 Re a)Γ(c)

Γ(c− a)Γ(c− a)
− (c− 1)

]
.

The results in this lemma are part of Lemma 3.1 given in [23] and we omit details.
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SUFFICIENCY ON HYPERGEOMETRIC FUNCTIONS 7

Proof of Theorem 2.3.Sincef ∈ P τ
γ (β), we have

1 +
1

τ

{
(1− γ)

f(z)

z
+ γf ′(z)− 1

}
=

1 + (1− 2β)w(z)

1− w(z)
,

wherew(z) is analytic in∆ and satisfies the conditionw(0) = 0, |w(z)| < 1 for z ∈ ∆. Hence
we have

1

τ

(
(1− γ)

f(z)

z
+ γf ′(z)− 1

)
= w(z)

{
2(1− β) +

1

τ

(
(1− γ)

f(z)

z
+ γf ′(z)− 1

)}
.

Using (1.1) andw(z) =
∑∞

n=1 bnz
n we have[

2(1− β) +
1

τ

(
∞∑

n=2

[1 + γ(n− 1)]anz
n−1

)][
∞∑

n=1

bnz
n

]
=

1

τ

∞∑
n=2

[1 + γ(n− 1)]anz
n−1.

Equating the coefficients of the above expression, we observe that the coefficientan in the
right hand side of the above expression depends only ona2, . . . , an−1 and the left hand side of
the above expression. This gives[

2(1− β) +
1

τ

(
k−1∑
n=2

[1 + γ(n− 1)]anz
n−1

)]
w(z)

=
1

τ

k∑
n=2

[1 + γ(n− 1)]anz
n−1 +

∞∑
n=k+1

dnz
n−1.

Using|w(z)| < 1, this reduces to the inequality∣∣∣∣∣2(1− β) +
1

τ

(
k−1∑
n=2

[1 + γ(n− 1)]anz
n−1

)∣∣∣∣∣
>

∣∣∣∣∣1τ
k∑

n=2

[1 + γ(n− 1)]anz
n−1 +

∞∑
n=k+1

dnz
n−1

∣∣∣∣∣ .
Squaring the above inequality and integrating around|z| = r, 0 < r < 1, and lettingr → 1 we
obtain

4(1− β)2 ≥ 1

|τ |2
[1 + γ(n− 1)]2|an|2

which gives the desired result. Equality holds for the function

f(z) =
1

γz1− 1
γ

∫ z

0

w1− 1
γ

[
1 +

2(1− β)τwn−1

1− 2n−1

]
dw.

�

Proof of Theorem 2.5.ClearlyzF (a, b; c; z) has the series representation of the form (1.1) where

an =
(a, n− 1)(b, n− 1)

(c, n− 1)(1, n− 1)
.

Hence it suffices to prove that
∞∑

n=2

[1 + γ(n− 1)]|an| ≤ |τ |(1− β).
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8 A. SWAMINATHAN

It is easy to see that

S :=
∞∑

n=2

[1 + γ(n− 1)]an(3.4)

=
∞∑

n=1

(a, n)(b, n)

(c, n)(1, n)
+ γ

ab

c

∞∑
n=2

(a + 1, n− 2)(b + 1, n− 2)

(c + 1, n− 2)(1, n− 2)
.

Case 1(i). Let a, b > 0 andc > a+b. An easy computation using hypothesis (i) of the theorem
and

F (a, b; c; 1) =
∞∑

n=0

(a, n)(b, n)

(c, n)(1, n)
=

Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
,

wherea, b > 0 andc > a + b, gives the required result.

Case 2(ii) . Let−1 < a < 0, b > 0 andc > 0. Then (3.4) gives

S =
|ab|
c

∞∑
n=0

(a + 1, n)(b + 1, n)

(c + 1, n)(1, n + 1)
+ γ

|ab|
c

∞∑
n=0

(a + 1, n)(b + 1, n)

(c + 1, n)(1, n)

=
|ab|
c

∞∑
n=0

(a + 1, n)(b + 1, n)

(c + 1, n)(1, n + 1)
+ γ

|ab|
c
· (a + 1)(b + 1)

c + 1

∞∑
n=1

(a + 2, n)(b + 2, n)

(c + 2, n)(1, n + 1)
.

Using (3.2), we easily get that the above expression is equivalent to

|ab|
c

{
1

|ab|
· Γ(c− a− b)Γ(c + 1)

Γ(c− a)Γ(c− b)
− c

|ab|

}
+ γ

|ab|
c
· (a + 1)(b + 1)

(c + 1)

{
1

(a + 1)(b + 1)
· Γ(c− a− b− 1)Γ(c + 2)

Γ(c− a)Γ(c− b)

− (c + 1)

(a + 1)(b + 1)
− 1

}
which by hypothesis (ii) of the theorem gives the result.

Case 3(iii) . Let a, b ∈ C\{0}, c > |a|+ |b|. Since|(a, n)| ≤ (|a|, n), we have from (3.4),

S :=
∞∑

n=2

[1 + γ(n− 1)]|an|

=
∞∑

n=0

[1 + γ(n + 1)]|an+2|

≤ |ab|
c

∞∑
n=0

(|a|+ 1, n)(|b|+ 1, n)

(c + 1, n)(1, n + 1)
+ γ

∞∑
n=0

(n + 1)
(|a|, n + 1)(|b|, n + 1)

(c, n + 1)(1, n + 1)
.

The right hand side of the above expression can be written as

(3.5)
|ab|
c

∞∑
n=0

(|a|+ 1, n)(|b|+ 1, n)

(c + 1, n)(1, n + 1)
+ γ

∞∑
n=1

(n + 1)
(|a|, n)(|b|, n)

(c, n)(1, n)
− γ

∞∑
n=1

(a, n)(b, n)

(c, n)(1, n)
.

Now using (3.2) we get the first part of the expression (3.5) as

|ab|
c

∞∑
n=0

(|a|+ 1, n)(|b|+ 1, n)

(c + 1, n)(1, n + 1)
=

Γ(c− |a| − |b|)Γ(c)

Γ(c− |a|)
Γ(c− |b|)− 1.
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Similarly using (3.1) we get the second part of the expression (3.5) as

γ
∞∑

n=1

(n + 1)
(|a|, n)(|b|, n)

(c, n)(1, n)
= γ

Γ(c− |a| − |b|)Γ(c)

Γ(c− |a|)Γ(c− |b|)

(
|ab|

c− 1− |a| − |b|
+ 1

)
.

Since the third part of the expression (3.5) iszF (a, b; c; 1)− 1, combining these three parts and
using hypothesis (iii) of the theorem we obtain the required result.

�

Proof of Theorem 2.8.Clearly we have

G(a, b; c; z) = z +
∞∑

n=2

(a, n− 1)(b, n− 1)

(c, n− 1)(1, n)
zn =: z +

∞∑
n=2

Anz
n,

and it suffices to prove that

(3.6)
∞∑

n=2

[1 + γ(n− 1)]|An| ≤ 1 + |τ |(1− β).

The left hand side of the above inequality can be expressed as

(1− γ)
∞∑

n=1

(a, n)(b, n)

(c, n)(1, n + 1)
+ γ

∞∑
n=1

(a, n)(b, n)

(c, n)(1, n)

which by using (3.2) andF (a, b; c; 1) gives (2.9). �
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