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ABSTRACT. Three results dealing with probability distributions(p, q) over a two-element set
are presented. The first two give bounds for the entropy functionH(p, q) and are referred to as
the logarithmicand thepower-typebounds, respectively. The last result is a refinement of well
knownPinsker-type inequalitiesfor information divergence. The refinement readily extends to
general distributions, but the key case to consider involves distributions on a two-element set.

The discussion points to some elementary, yet non-trivial problems concerning seemingly
simple concrete functions.
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1. I NTRODUCTION AND STATEMENTS OF RESULTS

Denote byM1
+(N) the set of discrete probability distributions overN, typically identified by the

set of point probabilitiesP = (p1, p2, . . .), Q = (q1, q2, . . .) or what the case may be.Entropy,
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2 FLEMMING TOPSØE

(Kullback-Leibler–)divergenceand (total)variationare defined as usual:

H(P ) = −
∞∑
i=1

pi ln pi,(1.1)

D(P‖Q) =
∞∑
i=1

pi ln
pi

qi
,(1.2)

V (P,Q) =
∞∑
i=1

|pi − qi|.(1.3)

Here, “ln” denotes natural logarithm. Thus we measure entropy and divergence in “nits” (nat-
ural units) rather than in “bits”. Admittedly, some of our results, especially the power–type
bounds, would look more appealing had we chosen to work with logarithms to the base2, i.e.
with bits.

By M1
+(n) we denote the set ofP ∈M1

+(N) with pi = 0 for i > n.

We shall pay special attention toM1
+(2). Our first two results give bounds forH(P ) with

P = (p, q) = (p, q, 0, 0, . . .) ∈M1
+(2):

Theorem 1.1(Logarithmic bounds). For anyP = (p, q) ∈M1
+(2),

ln p · ln q ≤H(p, q) ≤ ln p · ln q
ln 2

.(1.4)

Theorem 1.2(Power–type bounds). For anyP = (p, q) ∈M1
+(2),

ln 2 · (4pq) ≤H(p, q) ≤ ln 2 · (4pq)1/ ln 4.(1.5)

The proofs are given in Sections 2 and 3 and the final section contains a discussion of these
inequalities. Here we only remark that the results are best possible in a natural sense, e.g. in
Theorem 1.2 the exponent1/ ln 4 is the largest one possible.

The last inequality we shall prove concerns the relation betweenD = D(P‖Q) andV =
V (P,Q). We are interested in lower bounds ofD in terms ofV . The start of research in this
direction is Pinsker’s inequality

D ≥ 1

2
V 2,(1.6)

cf. Pinsker [11] and a later improvement by Csiszár [1], where the best constant for this in-
equality is found (1/2 as stated in (1.6)). The best two term inequality of this type is

D ≥ 1

2
V 2 +

1

36
V 4(1.7)

as proved by Krafft [7].

A further term1/288V 6 was added by Krafft and Schmitz [8] and Toussaint [13]. For further
details see Vajda [14] and also Topsøe [12] where an improvement of the results in [8] and
[13] was announced. For present purposes, thebest constantscmax

ν , ν = 0, 1, 2, . . ., are defined
recursively by takingcmax

ν to be the largest constantc for which the inequality

D ≥
∑
i<ν

cmax
i V i + cV ν(1.8)

holds generally (for anyP andQ in M1
+(N)). Clearlycmax

ν , ν = 0, 1, 2, . . ., are well defined
non-negative real constants.
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BOUNDS FORENTROPY AND DIVERGENCE FORDISTRIBUTIONS OVER ATWO-ELEMENT SET 3

By the datareduction inequality, cf. Kullback and Leibler [9] and also Csiszár [1], it follows that
the determination of lower bounds of the type considered only depends on the interrelationship
betweenD andV for distributionsP,Q inM1

+(2). In particular, in the relation (1.8) defining the
best constants, we may restrict attention to distributionsP andQ in M1

+(2). Thus, researching
lower bounds as here, belongs to the theme of the present paper as it essentially amounts to a
study of distributions inM1

+(2). Our contribution is easily summarized:

Theorem 1.3.

cmax
6 =

1

270
,(1.9)

cmax
8 =

221

340200
.(1.10)

Corollary 1.4 (Refinement of Pinsker’s inequality). For any set of probability distributionsP
andQ, the inequality

D ≥ 1

2
V 2 +

1

36
V 4 +

1

270
V 6 +

221

340200
V 8(1.11)

holds withD = D(P‖Q) andV = V (P,Q).

Note also that the term1/270V 6 is better than the term1/288V 6 which is the term given in
the papers by Krafft and Schmitz and by Toussaint. Indeed, the term is the best one in the sense
described and so is the last term in (1.11). The proofs of these facts depend on an expansion of
D in terms ofV which is of independent interest. The expansion in question is due to Kambo
and Kotz, [6], and is presented in Section 4. The proof of (1.9) is given in all details in Section
5, whereas the proof of (1.10), which is similar, is here left to the reader (it may be included in
a later publication).

We stress once more that though the proofs deal with distributions on a two-element set, Corol-
lary 1.4 applies to general distributions.

2. THE L OGARITHMIC BOUNDS

In this section we prove Theorem 1.1. The original proof found by the author and supplied
for the first version of the manuscript was not elegant but cumbersome (with seven differen-
tiations!). The idea of the simple proof we shall now present is due to O.N. Arjomand, M.
Bahramgiri and B.D. Rouhani, Tehran, (private communication). These authors remark that the
functionf given by

(2.1) f(p) =
H(p, q)

ln p · ln q
; 0 ≤ p ≤ 1

(with q = 1− p andf(0) andf(1) defined by continuity forp = 0 andp = 1) can be written in
the form

f(p) = ϕ(p) + ϕ(q)

whereϕ denotes the function given by

(2.2) ϕ(x) =
x− 1

lnx
; x ≥ 0

(with ϕ(0) = 1), and they observe thatϕ is concave (details below). It follows thatf is concave
too, and asf is also symmetric aroundp = 1

2
, f must be increasing in[0, 1

2
], decreasing in[1

2
, 1].

Thusf(0) ≤ f ≤ f(1
2
) which is the inequalities claimed in Theorem 1.1.
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4 FLEMMING TOPSØE

The essential concavity ofϕ is proved by differentiation. Indeed,

ϕ′′(x) =
−1

x2(ln x)3
ψ(x)

with

ψ(x) = (x+ 1) ln x+ 2(1− x) .

As

ψ′(x) = ln x−
(

1− 1

x

)
≥ 0 ,

and asψ(1) = 0, inspection of the sign ofϕ′′ shows thatϕ′′(x) ≤ 0 for all x > 0, and concavity
of ϕ follows.

3. THE POWER–TYPE BOUNDS

In this section we prove Theorem 1.2.

The lower bound ofH(p, q) is a special case of Theorem 2.6 of Harremoës and Topsøe, [4].

A direct proof of this bound is quite easy. We may also apply the technique of the previous
section. Indeed, letf ∗ andϕ∗ be the “dual” functions off andϕ:

(3.1) f ∗(p) =
H(p, q)

pq
; 0 ≤ p ≤ 1 ,

(3.2) ϕ∗(x) =
1

ϕ(x)
=

ln x

x− 1
; x ≥ 0

(f ∗(0) = f ∗(1) = ϕ∗(0) = ∞). Thenϕ∗ is convex andf ∗(p) = ϕ∗(p) +ϕ∗(q), sof ∗ is convex
too. Noting also the symmetry off ∗, we see thatf ∗ is decreasing in

[
0, 1

2

]
, increasing in[1

2
, 1].

Thusf ∗(1
2
) ≤ f ∗ ≤ f ∗(0) which shows that4 ln 2 ≤ f ∗ ≤ ∞, thereby establishing the lower

bound in Theorem 1.2.

For the proof of the upper bound, we parametrizeP = (p, q) by p = 1+x
2

, q = 1−x
2

and consider
only values ofx in [0, 1]. From the cited reference it follows that for no larger exponentα than
α = (ln 4)−1 can the inequality

(3.3) H(p, q) ≤ ln 2 · (4pq)α

hold generally (see also the discussion). For the remainder of this section we put

(3.4) α =
1

ln 4
.

With this choice ofα we have to prove that (3.3) holds generally. Letψ denote the auxiliary
function

(3.5) ψ = ln 2 · (4pq)α −H(p, q),

conceived as a function ofx ∈ [0, 1], i.e.

(3.6) ψ(x) = ln 2 · (1− x2)α − ln 2 +
1 + x

2
ln(1 + x) +

1− x

2
ln(1− x).
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BOUNDS FORENTROPY AND DIVERGENCE FORDISTRIBUTIONS OVER ATWO-ELEMENT SET 5

We have to prove thatψ ≥ 0. Clearlyψ(0) = ψ(1) = 0. In contrast to the method used in
the previous section we now prefer to base the analysis mainly on the technique of power series
expansion. From (3.6) we find that, at least for0 ≤ x < 1,

(3.7) ψ(x) =
∞∑

ν=2

1

2ν

(
1

2ν − 1
−
(
1− α

)(
1− α

2

)
· · ·
(
1− α

ν − 1

))
x2ν .

Actually (3.7) also holds forx = 1 but we do not need this fact. The computation behind this
formula is straight forward when noting that the coefficientln 2 ·

(
α
ν

)
(−1)ν which occurs in the

expansion of the first term in (3.6) can be written as− 1
2ν

(1− α)(1− α
2
) · · · (1− α

ν−1
).

We cannot conclude directly from (3.7) thatψ ≥ 0, as (3.7) contains negative terms, but (3.7)
does show thatψ′(0) = 0 and thatψ(x) > 0 for 0 < x < ε with ε > 0 sufficiently small. For
0 < x < 1, we find from (3.7) that

ψ′′(x)
1− x2

x2
= 3α− 2−

∞∑
ν=1

(
2− 2α− α

ν + 1

)(
1− α

)
· · ·
(
1− α

ν

)
x2ν ,

thus, still for0 < x < 1, the equivalence

ψ′′(x) = 0 ⇔
∞∑

ν=1

(
2− 2α− α

ν + 1

)(
1− α

)
· · ·
(
1− α

ν

)
x2ν = 3α− 2

holds. As all terms in the infinite series occuring here are positive, it is clear thatψ only has
one inflection point in]0, 1[. Combining with the facts stated regarding the behaviour ofψ at
(or near) the end points, we conclude thatψ > 0 in ]0, 1[, thusψ ≥ 0.

4. THE K AMBO –KOTZ EXPANSION

The proof of Theorem 1.3 will be based on theKambo–Kotz expansion, cf. Kambo and Kotz
[6]∗ , which we shall now discuss. Two distributionsP andQ in M1

+(2) are involved. For these
we choose the basic parametrization

(4.1) P =

(
1− α

2
,
1 + α

2

)
, Q =

(
1 + β

2
,
1− β

2

)
,

and we consider values of the parameters as follows:−1 ≤ α ≤ 1 and0 ≤ β ≤ 1. We shall
also work with another parametrization(ρ, V ) where

(4.2) ρ =
α

β
, V = |α+ β|.

Here, V is the total variationV (P,Q), the essential parameter in Pinsker-type inequalities.
We may avoid the inconvenient caseβ = 0 simply by noting that this case corresponds to
Q = U2 (the uniform distribution(1

2
, 1

2
)) which will never cause difficulties in view of the

simple expansion

(4.3) D(P‖U2) =
∞∑

ν=1

V 2ν

2ν(2ν − 1)

with V = V (P,Q) (actually derived in Section 3 in view of the identityD(P‖U2) = ln 2 −
H(P )).

∗The result is contained in the proof of Lemma 3 of that paper; there is a minor numerical error in the statement
of this lemma, cf. Krafft, [7]
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6 FLEMMING TOPSØE

−1 1 2

1

V

ρ

Fig. 1. Parameter domain for the Kambo-Kotz expansion with indication of thecritical
domain(for explanation see further on in the text).

Denote byΩ the subset of the(ρ, V )-plane sketched in Figure 1. To be precise,

(4.4) Ω = {(−1, 0)} ∪ Ω1 ∪ Ω2 ∪ Ω3

with

Ω1 = {(ρ, V ) | ρ < −1, 0 < V ≤ 1 + 1/ρ},(4.5)

Ω2 = {(ρ, V ) | − 1 < ρ ≤ 1, 0 < V ≤ 1 + ρ},(4.6)

Ω3 = {(ρ, V ) | 1 < ρ, 0 < V ≤ 1 + 1/ρ}.(4.7)

From [6] we have (adapting notation etc. to our setting):

Theorem 4.1(Kambo-Kotz expansion). ConsiderP andQ of the form(4.1), assume thatβ > 0
and defineρ andV by (4.2). Then(ρ, V ) ∈ Ω and

(4.8) D(P‖Q) =
∞∑

ν=1

fν(ρ)

2ν(2ν − 1)
V 2ν ,

wherefν ; ν ≥ 1, are rational functions defined by

(4.9) fν(ρ) =
ρ2ν + 2νρ+ 2ν − 1

(ρ+ 1)2ν
; ρ 6= −1.

We note that the value offν for ρ = −1 is immaterial in (4.8) asV = 0 whenρ = −1 hence,
with the usual conventions, (4.8) gives the correct valueD = 0 in this case too. However, we
do find it natural to definef1(−1) = 1 andfν(−1) = ∞ for ν ≥ 2.

The functionsfν are essential for the further analysis. We shall refer to them as theKambo–Kotz
functions. We need the following result:

Lemma 4.2 (Basic properties of the Kambo–Kotz functions). All functionsfν ; ν ≥ 1, are
everywhere positive,f1 is the constant function1 and all other functionsfν assume their mini-
mal value at a uniquely determined pointρν which is the only stationary point offν . We have
ρ2 = 2, 1 < ρν < 2 for ν ≥ 3 andρν → 1 asν →∞.

For ν ≥ 2, fν is strictly increasing in the two intervals]−∞,−1[ and [2,∞[ andfν is strictly
decreasing in] − 1, 1]. Furthermore,fν is strictly convex in[1, 2] and, finally,fν(ρ) → 1 for
ρ→ ±∞.
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BOUNDS FORENTROPY AND DIVERGENCE FORDISTRIBUTIONS OVER ATWO-ELEMENT SET 7

Proof. Clearly,f1 ≡ 1. For the rest of the proof assume thatν ≥ 2. Forρ ≥ 0, fν(ρ) > 0 by
(4.9) and forρ < 0, we can use the formula

(4.10) fν(ρ) = (ρ+ 1)−(2ν−2)

2ν∑
k=2

(−1)k(k − 1)ρ2ν−k

and realize thatfν(ρ) > 0 in this case, too.

We need the following formulae:

f ′ν(ρ) = 2ν(ρ+ 1)−(2ν+1)(ρ2ν−1 − (2ν − 1)ρ− (2ν − 2))(4.11)

and

f ′′ν (ρ) = 2ν(ρ+ 1)−(2ν+2) · gν(ρ),(4.12)

with the auxiliary functiongν given by

gν(ρ) = −2ρ2ν−1 + (2ν − 1)ρ2ν−2 + 2ν(2ν − 1)ρ+ 4ν2 − 4ν − 1.(4.13)

By (4.11),f ′ν > 0 in ]−∞,−1] andf ′ν < 0 in ]−1, 1]. The sign off ′ν in [1, 2] is the same as that
of ρ2ν−1−(2ν−1)ρ−(2ν−2) and by differentiation and evaluation atρ = 2, we see thatf ′ν(ρ) =
0 at a unique pointρ = ρν in ]1, 2]. Furthermore,ρ2 = 2, 1 < ρν < 2 for ν ≥ 3 andρν → 1
for ν → ∞. Investigating further the sign off ′ν , we find thatfν is strictly increasing in[2,∞[.
As fν(ρ) → 1 for ρ → ±∞ by (4.9), we now conclude thatfν has the stated monotonicity
behaviour. To prove the convexity assertion, note thatgν defined by (4.13) determines the sign of
f ′′ν . Forν = 2, g2(ρ) = 2(2−ρ)ρ2+ρ(12−ρ)+7 which is positive in[1, 2]. A similar conclusion
can be drawn in caseν = 3 sinceg3(ρ) = 2ρ4(2−ρ)+ρ4+30ρ+23. For the general caseν ≥ 4,
we note thatgν(1) = 4(ν − 1)(2ν + 1) > 0 and we can then close the proof by showing thatgν

is increasing in[1, 2]. Indeed,g′ν = (2ν − 1)hν with hν(ρ) = −2ρ2ν−2 + (2ν − 2)ρ2ν−3 + 2ν,
hencehν(1) = 4(ν − 1) > 0 andh′ν(ρ) = (2ν − 2)(2ν − 3 − 2ρ)ρ2ν−4 which is positive in
[1, 2]. �

In the sequel, we shall writeD(ρ, V ) in place ofD(P‖Q) with P andQ parametrized as ex-
plained by (4.1) and (4.2).

1 2−1

Fig. 2. A typical Kambo-Kotz function shown in normal/logarithmic scale.

Figure 2 illustrates the behaviour of the Kambo–Kotz functions. In order to illustrate as clearly
as possible the nature of these functions, the graph shown is actually that of the logarithm of
one of the Kambo-Kotz functions.
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8 FLEMMING TOPSØE

Note that if we extend the domainΩ by the points(±∞, V ) with 0 < V ≤ 1, then (4.8) reduces
to (4.3). Therefore, we may consider the caseβ = 0 as a singular or limiting case for which
(4.8) also holds.

Motivated by the lemma, we define thecritical domainas the set

Ω∗ = {(ρ, V ) ∈ Ω | 1 ≤ ρ ≤ 2}
= {(ρ, V ) ∈ Ω | 1 ≤ ρ ≤ 2, 0 < V < 1 + 1/ρ}.(4.14)

We then realize that in the search for lower bounds ofD in terms ofV we may restrict the
attention to the critical domain. In particular:

Corollary 4.3. For eachν0 ≥ 1

(4.15) cmax
ν0

= inf

{
V −ν0

(
D(ρ, V )−

∑
ν<ν0

cmax
ν V ν

)∣∣∣∣(ρ, V ) ∈ Ω∗
}
.

5. A REFINEMENT OF PINSKER ’ S I NEQUALITY

In this section we prove Theorem 1.3.

We use notation and results from the previous section. We shall determine the best constants
cmax
ν , ν = 0, 1, . . . , 8 in the inequalityD ≥

∑∞
ν=0 cνV

ν , cf. the explanation in the introductory
section. In fact, we shall mainly focus on the determination ofcmax

6 . The reason for this is
that the value ofcmax

ν for ν ≤ 4 is known and that it is pretty clear (see analysis below) that
cmax
5 = cmax

7 = 0. Further, the determination ofcmax
8 , though more complicated, is rather

similar to that ofcmax
6 .

Before we continue, let us briefly indicate that from the Kambo–Kotz expansion and the identi-
tiesf1 ≡ 1 and

f2(ρ) =
1

3

(
1 +

2(2− ρ)2

(1 + ρ)2

)
(5.1)

one deduces the results regardingcmax
ν for ν ≤ 4 (in fact forν ≤ 5).

Now then, let us determinecmax
6 . From the identity

D(ρ, V )− 1

2
V 2 − 1

36
V 4

=
1

18

(
2− ρ

1 + ρ

)2

V 4 +
1

30

ρ6 + 6ρ+ 5

(1 + ρ)6
V 6 +

∞∑
ν=4

fν(ρ)

2ν(2ν − 1)
V 2ν ,(5.2)

we see thatcmax
6 ≤ 1/270 (takeρ = 2 and consider smallV ’s). In order to show thatcmax

6 ≥
1/270, we recall (Lemma 4.2) that each term in the sum

∑∞
4 in (5.2) is non-negative, hence it

suffices to show, that

1

18

(
2− ρ

1 + ρ

)2

V −2 +
f3(ρ)

30
+
f4(ρ)

56
V 2 ≥ 1

270
.(5.3)

Here we could restrict(ρ, V ) to the critical domainΩ∗, but we may also argue more directly
as follows: If ρ ≥ 2, the middle term alone in (5.3) dominates1/270. Then, since for fixed
non-negatives andt, the minimal value ofsV −2 + tV 2 is 2

√
st, it suffices to show that

f3(ρ)

30
+ 2

√
(2− ρ)2(ρ8 + 8ρ+ 7)

18 · 56 · (1 + ρ)10
≥ 1

270
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BOUNDS FORENTROPY AND DIVERGENCE FORDISTRIBUTIONS OVER ATWO-ELEMENT SET 9

for ρ < 2, i.e. we must check that

8ρ3 − 6ρ2 + 9ρ− 22 ≤ 45√
7

√
ρ6 − 2ρ5 + 3ρ4 − 4ρ3 + 5ρ2 − 6ρ+ 7

holds (here, factors of1 + ρ and2 − ρ have been taken out). In fact, even the square of the
left-hand term is dominated by the square of the right-hand term for allρ ∈ R. This claim
amounts to the inequality

452(ρ6 − 2ρ5 + 3ρ4 − 4ρ3 + 5ρ2 − 6ρ+ 7) ≥ 7(8ρ3 − 6ρ2 + 9ρ− 22)2.(5.4)

An elementary way to verify (5.4) runs as follows: Write the equation in the form
6∑

ν=0

(−1)νaνρ
ν ≥ 0,(5.5)

and note that, for allρ ∈ R
6∑

ν=0

(−1)νaνρ
ν ≥ xρ4 +

3∑
ν=0

(−1)νaνρ
ν ≥ yρ2 +

1∑
ν=0

(−1)νaνρ
ν ≥ z,

with

x = a4 −
a2

5

4a6

, y = a2 −
a2

3

4x
, z = a6 −

a2
1

4y
(sincea6, x andy are all positive). Sincez > 0 (in fact,z ≈ 6949.51), (5.5) and therefore also
(5.4) follow. Thuscmax

6 = 1/270.

6. DISCUSSION

Theorem 1.1:

Emphasis here is on the quite precise upper bound ofH(p, q). An explanation of the origin of
the upper bound may not be all that helpful to the reader. Basically, the author stumbled over
the inequality (in the search for a natural proof of Theorem 1.2, cf. below), and has no special
use in mind for it. The reader may take it as a curiosity, an ad-hoc inequality. It is not known if
the inequality has natural generalisations to distributions inM1

+(3),M1
+(4), . . . .

Theorem 1.2:

This result, again with emphasis on the upper bound, is believed to be of greater significance.
It is discussed, together with generalizations toM1

+(n), in Harremoës and Topsøe [4]. Appli-
cations to statistics (decision theory, Chernoff bound) appear promising. The term4pq in the
inequality should best be thought of as1 minus therelative measure of roughnessintroduced
in [4]. The term may, qualitatively, be taken to measure the closeness to the “flat” uniform
distribution(1/2, 1/2). It varies from0 (for a deterministic distribution) to1 (for the uniform
distribution).

As stated in the introduction, the exponent1/ ln 4 ≈ 0.7213 is best possible. A previous result
by Lin [10] establishes the inequality with exponent1/2, i.e.H(p, q) ≤ ln 2

√
4pq.

Theorem 1.2 was stated in [4] but not proved there.

Comparing the logarithmic and the power-type bounds:

The two lower bounds are shown graphically in Figure 3. The power bound is normally much
sharper and it is the best bound, except for distributions close to a deterministic distribution
(max(p, q) >0.9100).
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10 FLEMMING TOPSØE

Both upper bounds are quite accurate for all distributions inM1
+(2) but, again, the power bound

is slightly better, except when(p, q) is very close to a deterministic distribution
(max(p, q) >0.9884). Because of the accuracy of the two upper bounds, a simple graphical
presentation together with the entropy function will not enable us to distinguish between the
three functions. Instead, we have shown in Figure 4 the difference between the two upper
bounds (logarithmic bound minus power-type bound).

p

0 1
2

1

1
2

1
4

Fig. 3: Lower bounds

p
1
2

−0.005

0

0.005

0.01

0.015

Fig. 4: Difference of upper bounds

p

0 1
2

1

1

0

Fig. 5: Ratios regarding lower bounds

p

0 1
2

1

1

0

Fig. 6: Ratios regarding upper bounds

Thus, for both upper and lower bounds, the power–type bound is usually the best one. However,
an attractive feature of the logarithmic bounds is that the quotient between the entropy function
and theln p ln q function is bounded. On Figures 5 and 6 we have shown the ratios: entropy to
lower bounds, and: upper bounds to entropy. Note (hardly visible on the graphs in Figure 6),
that for the upper bounds, the ratios shown approaches infinity for the power bound but has a
finite limit (1/ ln 2 ≈ 1.44) for the logarithmic bound when(p, q) approaches a deterministic
distribution.

Other proofs of Theorem 1.1:

As already indicated, the first proof found by the author was not very satisfactory, and the
author asked for more natural proofs, which should also display the monotonicity property of the
functionf given by (12). Several responses were received. The one by Arjomand, Bahramgiri
and Rouhani was reflected in Section 2. Another suggestion came from Iosif Pinelis, Houghton,
Michigan (private communication), who showed that the following general L’Hospital – type
of result may be taken as the basis for a proof:
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Lemma. Let f and g be differentiable functions on an interval]a, b[ such thatf(a+) =
g(a+) = 0 or f(b−) = g(b−) = 0, g′ is nonzero and does not change sign, andf ′/g′ is
increasing (decreasing) on(a, b). Thenf/g is increasing (respectively, decreasing) on]a, b[.

Other proofs have been obtained as response to the author’s suggestion to work with power
series expansions. As the feed-back obtained may be of interest in other connections (dealing
with other inequalities or other type of problems), we shall indicate the considerations involved,
though for the specific problem, the methods discussed above are more elementary and also
more expedient.

Let us parametrize(p, q) = (p, 1− p) by x ∈ [−1, 1] via the formula

p =
1 + x

2
,

and let us first consider the analytic function

ϕ(x) =
1

ln 1+x
2

; |x| < 1.

Let

(6.1) ϕ(x) =
∞∑

ν=0

γνx
ν ; |x| < 1,

be the Taylor expansion ofϕ and introduce the abbreviationλ = ln 2. One finds thatγ0 = −1/λ
and that

(6.2) f
(1 + x

2

)
=

1

λ
−

∞∑
ν=1

(γ2ν − γ2ν−1)x
2ν ; |x| < 1.

Numerical evidence indicates thatγ2 ≥ γ4 ≥ γ6 ≥ · · · , thatγ1 ≤ γ3 ≤ γ5 ≤ · · · and that both
sequences converge to−2. However, it appears that the natural question to ask concerns the
Taylor coefficients of the analytic function

(6.3) ψ(x) =
2

1 + x
+

1

ln(1−x
2

)
; |x| < 1 .

Let us denote these coefficients byβν ; ν ≤ 0, i.e.

(6.4) ψ(x) =
∞∑

k=0

βkx
k ; |x| < 1 .

The following conjecture is easily seen to imply the desired monotonicity property off as well
as the special behaviour of theγ’s:

Conjecture 6.1. The sequence(βν)ν≥0 is decreasing with limit0.

In fact, this conjecture was settled in the positive, independently, by Christian Berg, Copen-
hagen, and by Miklós Laczkovich, Budapest (private communications). Laczkovich used the
residue calculus in a straightforward manner and Berg appealed to the theory of so-called Pick-
functions – a theory which is of great significance for the study of many inequalities, including
matrix type inequalities. In both cases the result is an integral representation for the coefficients
βν , which immediately implies the conjecture.

It may be worthwhile to note that theβν ’s can be expressed as combinations involving certain
symmetric functions, thus the settlement of the conjecture gives information about these func-
tions. What we have in mind is the following: Guided by the advice contained in Henrici [5]
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we obtain expressions for the coefficientsβν which depend on numbershν,j defined forν ≥ 0
and eachj = 0, 1, . . . , ν, byhν,0 = 1 and

hν,j =
∑

1≤i1<···<ij≤ν

(i1i2 · · · ij)−1.

Then, fork ≥ 1,

(6.5) βk = 2(−1)k − 1

kλ

k∑
ν=1

(−1)νν!

λν
hk−1,ν−1 .

A natural proof of Theorem 1.2:

Denote byg the function

(6.6) g(p) =
ln
(

H(p,q)
ln 2

)
ln(4pq)

; 0 ≤ p ≤ 1,

with q = 1−p. This function is defined by continuity at the critical points, i.e.g(0) = g(1) = 1
andg(1/2) = 1/ ln 4. Clearly,g is symmetric aroundp = 1/2 and the power-type bounds of
Theorem 1.2 are equivalent to the inequalities

(6.7) g(1/2) ≤ g(p) ≤ g(1).

Our proof (in Section 3) of these inequalities was somewhat ad hoc. Numerical or graphical
evidence points to a possible natural proof which will even establish monotonicity ofg in each
of the intervals[0, 1

2
] and[1

2
, 1]. The natural conjecture to propose which implies these empirical

facts is the following:

Conjecture 6.2. The functiong is convex.

Last minute input obtained from Iosif Pinelis established the desired monotonicity properties of
g. Pinelis’ proof of this fact is elementary, relying once more on the above L’Hospital type of
lemma.

Pinsker type inequalities:

While completing the manuscript, new results were obtained in collaboration with Alexei Fe-
dotov and Peter Harremoës, cf. [3]. These results will be published in a separate paper. Among
other things, a determination in closed form (via a parametrization) ofVajda’s tight lower
bound, cf. [14], has been obtained. This research also points to some obstacles when studying
further terms in refinements of Pinsker’s inequality. It may be that an extension beyond the
result in Corollary 1.4 will need new ideas.
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