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ABSTRACT. The aim of the present paper is to establish some new integral inequalities in two
independent variables and their discrete analogues which provide explicit bounds on unknown
functions. The inequalities given here can be used as tools in the qualitative theory of certain
partial differential and finite difference equations.
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1. INTRODUCTION

The integral and finite difference inequalities involving functions of one and more than one
independent variables which provide explicit bounds on unknown functions play a fundamental
role in the development of the theory of differential and finite difference equations. During
the past few years, many such new inequalities have been discovered, which are motivated
by certain applications (seg![1]-[10]). In the qualitative analysis of some classes of partial
differential and finite difference equations, the bounds provided by the earlier inequalities are
inadequate and it is necessary to seek some new inequalities in order to achieve a diversity of
desired goals. Our main objective here is to establish some useful integral inequalities involving
functions of two independent variables and their discrete analogues which can be used as ready
and powerful tools in the analysis of certain classes of partial differential and finite difference
equations.

2. STATEMENT OF RESULTS

In what follows,R denotes the set of real numbers @d = [0,0), Ny = {0,1,2,...}
are the given subsets &. The first order partial derivatives of a functiar(x, y) defined
for z,y € R with respect tar andy are denoted by, (z,y) andz, (z,y) respectively. We
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2 B.G. FACHPATTE

use the usual conventions that empty sums and products are take @nbdé respectively.
Throughout the paper, all the functions which appear in the inequalities are assumed to be real-
valued and all the integrals, sums and products involved exist on the respective domains of their
definitions.

We need the inequalities in the following lemma, which are the slight variants of the inequal-
ities given in [5, pp. 12, 28].
Lemma 2.1. Letu (¢), a(t), b(t) be nonnegative and continuous functions defined iR , .

(1) Assume that (t) is nondecreasing for € R, . If

u(t) ga(t)+/0 b(s)u(s)ds,

w(t) < a(t)exp (/Otws)ds),
fort e R,.

() Assume that (t) is nonincreasing fot € R, . If

u(t) §a(t)+/toob(s)u(s)ds,

u () < at) exp (/t“b@ds),
fort e R,.

The proofs of the inequalities ifw;), («2) can be completed as inl[5, pp. 12, 28, 325-326]
(see alsa]4]). Here we omit the details.
Our main results on integral inequalities are established in the following theorems.

Theorem 2.2. Letu (z,y), a(z,y), b(z,y), c¢(x,y) be nonnegative continuous functions de-
fined forz,y € R,.

(ay) If
(2.1) u(z,y) <a(z,y)+b(x,y) /Ox /Ooc(s,t) u (s,t) dtds,

forz,y € R, then

(2.2) u(z,y) <a(z,y)+b(z,y)e(x,y)exp (/Ox /yooc(s,t) b(s,t) dtds) :

forz,y € R,, where

fort € R, then

fort € R, then

(2.3) e(z,y) :/0 /y c(s,t)al(s,t)dtds,
forz,y € R,.
(0,2) If
(2.4) w(z,y) < aley) +b(y) /Oo /ooc(s,t)u(s,t) dids,

forz,y € R, then

(2.5) u(z,y) <a(zr,y)+b(x,y)e(x,y)exp (/:O /yooc(s,t) b(s,t) dtds) ,
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for z,y € R,, where

(2.6) é(xr,y) = /OO /Ooc(s,t) a(s,t)dtds,

forz,y € R,.

Theorem 2.3.Letu (z,y), a(x,y), b(x,y), c(z,y) be nonnegative continuous functions de-
fined forz,y € R,.

(by) Assume that (z,y) is nondecreasing in € R.,.. If

(2.7) u(m,y)§a(x,y)—|—/Omb(s,y)u(s,y)ds—k/Oz/ooc(s,t)u(s,t)dtds,

forz,y € R, then

(2.8) u(z,y) <p(z,y) [a (z,y) + A(z,y)exp (/: /yOOC(S,t)p(S,t) dtd8>] ,

for z,y € R,, where

(2.9) p(z,y) = exp (/:b(s,y)dS),
(2.10) Alz,y) = /Ox/yooc(s,t)p(s,t)a(s,t)dtds,

forz,y e R,.
(by) Assume that (z,y) is nonincreasing in: € R.,.. If

(2.11) u(z,y) Sa(x,y)+/Oob(s,y)u(s,y)ds—i—/Oo/ooc(s,t)u(s,t)dtds,

forz,y € R, then

(2.12) u(x,y)gp(x,y)[a(x,y) xyexp(// (5,4)p stdtds)},

for z,y € R,, where
(2.13) p(x,y) = exp </Oob(8,y) dS) :
(2.14) A(z,y) = /OO /Ooc(s,t)ﬁ(sj)a(s,t) dtds,

forz,y e R,.

Theorem 2.4. Letu(x,y), a(x,y), b(x,y) be nonnegative continuous functions defined for
z,y € Ry andF : R? — R, be a continuous function which satisfies the condition

OSF(x,y,u)—F(x,y,v) SK(.CL’,Z/,U)(U—U),

foru > v > 0, whereK (z,y, v) is a nonnegative continuous function definedifoy, v € R,..
(1) Assume that (z,y) is nondecreasing in € R.,.. If

(2.15) u(x,y)ga(x,y)—l—/o b(s,y)u(s,y ds—l—/ / (s,t,u(s,t))dtds,
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for x,y € R4, then

@ameuawSpmw>Pmym4ﬂaw

X exp (/ / K (s,t,p(s,t)a(s,t))p(s,t) dtds)} ,
0 Yy
forz,y € Ry, where

(2.17) (x,y) / / (s,t,p(s,t)a(s,t))dtds,

for z,y € R, andp (z,y) is defined by[(2]9).
(co) Assume that (z,y) is nonincreasing in: € R,.. If

(2.18) u(:c,y)ga(s,y)—l—/ b(s,y)u(s,y ds—l—/ / (s,t,u(s,t))dtds,

for x,y € R4, then

(zw>wmwSp@wﬂ<xw+Bmy

xexp</ / K (s,t,p(s,t)a(s, t))f)(s,t)dtds)},
for T,y € Ry, where

(2.20) (z,9) / / (s,t,p(s,t) a(s,t)) dtds,

for z,y € R, andp (z, y) is defined by[(2.13).

We require the following discrete version of Lemma] 2.1 to establish the discrete analogues
of Theorems$ 213 arid 2.4.
Lemma 2.5. Letu (n), a (n), b (n) be nonnegative functions defined foe N,.

(61) Assume that (n) is nondecreasing for € Nj. If

for n € Ny, then

n—1
u(n) < a(m) [TL+b(s)],
s=0
forn € Nj.
(B2) Assume that (n) is nonincreasing for € Nj. If

n)+ Z b(s)u(s

s=n-+1
for n € Ny, then

o0

u(n)<a(m) [T +b(s),

s=n-+1
forn € Nj.
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The proof of(3;) can be completed by following the proof of Theorefiri[6, p. 256] and
closely looking at the proof of Theorem 4.2.2in [5, p. 326]. For the prodfief, see([10] and
also [4].

The discrete analogues of Theorgmg 2.2 1 2.4 are given in the following theorems.

Theorem 2.6.Letu (m,n), a(m,n), b(m,n), c(m,n) be nonnegative functions defined for
m,n € Ny.

(pl) If

(2.21) u(mn)<a(mn)+bngZc

s=0 t=n+1

for m,n € Ny, then

(2.22) u(m,n) <a(m,n)+0b(m,n) f(m,n) H 1+Z (s,t)b(s,t)],

= t=n+1

for m,n € Ny, where

—_

m—

(2.23) f(m,n) = Z Z c(s,t)a(s,t),

s=0 t=n+1

form,n € Ng.

(p2) If
(2.24) u(m,n) < a(m,n)+b(m,n) Z Z c(s,t)u(s,t)

s=m+1t=n+1
form,n € Ny, then

e}

(2.25) u(m,n) < a(m,n)+b(m,n) f(m,n) H 1+ i c(s,t)b(s,t

s=m+1 t=n-+1

for m,n € Ny, where

(2.26) f(m,n):i icstast

s=m+1t=n+1
form,n € Ng.

Theorem 2.7.Letu (m,n), a(m,n), b(m,n), c(m,n) be nonnegative functions defined for
m,n € Ny.

(¢1) Assume that (m,n) is nondecreasing im € Nj. If

m—1 00 )
(2.27) u(m,n)§a(m,n)+2b(s,n)u(s7n)—|— Z cht u(s,t
s=0 s=m+1t=n-+1

for m,n € Ny, then

(2.28) u(m,n) < q(m,n) |a(m,n)+ G (m,n H 1+ Z s,t)q (s, t)”

s= t=n+1
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for m,n € Ny, where

[y

m—

(2.29) g(mn) = [[0+0b(sn),
5=0

(2.30) G(m,n) = - Z c(s,t)q(s,t)a(s,t),
s=0 t=n+1

form,n € Ny.
(g2) Assume that (m,n) is nonincreasing inn € Nj. If

(2.31) u(m,n) < a(m,n)+ stn ,n)—i—i icstust

s=m+1 s=m+1t=n+1

form,n € Ny, then

(2.32) u(m,n) < q(m,n) |a(m,n)+ G (m,n) H 1+ Z c(s,t)q(s,t)”,

s=m-+1 t=n-+1

for m,n € Ny, where

e}

(2.33) g(m,n) = H [1+b(s,n),
(2.34) G(mn) = > Y clst)q(s,t)a(st),

s=m+1t=n+1
form,n € Ng.

Theorem 2.8.Letu (m,n), a (m,n), b(m,n) be nonnegative functions defined farn € N,
andL : N¢ x R, — R, be a function which satisfies the condition

0<L(m,n,u)—L(m,n,v) <M (m,n,v)(u—uv),

foru > v > 0, whereM (m, n,v) is a nonnegative function fon,n € Ny, v € R,.
(r1) Assume that (m, n) is nondecreasing im € Ny. If

(2.35) u(m,n)ﬁa(m,n)—i—Zb( (s,m —i—Z Z (s,t,u(s,t)),
s=0 s=0 t=n+1

for m,n € Ny, then

(2.36) u(m,n) < q(m,n) [a (m,n) + H (m,n)

m—1 00
<II [+ > M(s,t,q<s,t>a(s,t»q(s,t)”,
s=0 t=n+1
for m,n € Ny, where
m—1 oo
(2.37) H(m,n) =YY L(stq(st)a(st),
s=0 t=n+1

for m,n € Ny andq (m, n) is defined by[(2.29).
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(g2) Assume that (m,n) is nonincreasing inn € Nj. If

(2.38) u(m,n) <a(m,n)+ Z b(s,n)u Z Z (s, t,u(s,t)),

s=m+1 s=m+1t=n+1

for m,n € Ny, then
(2.39) u(m,n) < q(m,n) [a (m,n) + H (m,n)

< I

s=m+1

L+ > M(S’taq(s,t)a(sat))Q(&t)” :

t=n-+1
for m,n € Ny, where

(2.40) Z Z (s,t,q(s,t)a(s,t)),

s=m+1t=n+1

for m,n € Ny andg (m, n) is defined by[(2.33).

3. PROOFS OF THEOREMS 2.2 {2.4

Since the proofs resemble one another, we give the detailgfor(b;,) and(c;); the proofs
of (as), (b2) and(c2) can be completed by following the proofs of the above mentioned results
with suitable changes.

(ay) Define a functior: (z,y) by

(3.1) z(z,y) = /Om /yoo c(s,t)u(s,t)dtds.

Then [2.1) can be restated as

(3.2) u(z,y) <a(z,y)+b(r,y)z(z,y).

From (3.1) and[(3]2) we have

(3.3) z(z,y) < /Ox /Ooc(s,t) [a(s,t)+0b(s,t)z(s,t)]dtds

e(q:,y)—i-/ox/yooc(s,t)b(s,t)z(s,t)dtds,

wheree (z,y) is defined by[(2]3). Clearly, (z, y) is nonnegative, continuous, nondecreasing in
x and nonincreasing ip for z,y € R,. First we assume that(x,y) > 0 for z,y € R,. From
(3.3) itis easy to observe that

<1+// (s,t)b E’tidtd
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Define a function (z, y) by the right hand side 0.4), then(0, y) = v (z,00) = 1, 124 <
v (x,y), v (x,y) is nonincreasing iy, y € R, and

(3.5) v (x,y) = /00 c(z,t)b(x,t) @dt
< /Ooc(a:,t)b(:c,t)v(:c,t)dt
< U(a:,y)/ooc(a:,t)b(:c,t)dt.

Treatingy, y € R, fixed in (3.5), dividing both sides of (3.5) by(z,y), settingz = s and
integrating the resulting inequality fromto z, x € R, we get

(3.6) v(z,y) < exp (/Ox /yooc(s,t)b(s,t) dtds) .

Using ) in% < v (x,y), we have

3.7) 2 (z,y) < ez, y) exp (/0 /yooc(s,t) b(s,t) dtds) .

The desired inequality (2.2) follows frorn (8.2) and (3.7).
If e (z,y) is nonnegative, we carry out the above procedure wfith y)+¢ instead ot (x, y),
wheree > 0 is an arbitrary small constant, and then subsequently pass to the limitas to

obtain [2.2).

(by) Define a functior: (z, y) by
(3.8) z(z,y) = /Ox /Ooc(s,t)u(s,t) dtds.
Then [2.7) can be restated as y
(3.9) u(r,y) < z(v,y)+ /Owb(s,y) u(s,y)ds.

Clearlyz (z,y) is a nonnegative, continuous and nondecreasing functioyire R, . Treating
y, y € R, fixed in (3.9) and using pafty;) of Lemmg 2.1 to[(3]9), we get

(3.10) u(z,y) < z(z,y)p(r,y),
wherep (z, y) is defined by[(2]9). Fronj (3.1.0) ar{d (B.8) we have
(3.11) u(z,y) <p(x,y)la(z,y) +o(z,y)],
where

(3.12) v(x,y) = /o / c(s,t)u(s,t)dtds.
From (3.11) and (3.12) we get

v(z,y) < /Ox/ooc(s,t)p(s,t)[a(s,t)—i—v(s,t)]dtds
— A(w,y)+/Ox/ooc(s,t)p(s,t)v(s,t)dtds,
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whereA (z,y) is defined by[(2.10). Clearly} (z,y) is nonnegative, continuous, nondecreasing
in z, z € R, and nonincreasing in, y € R,. Now, by following the proof ofa, ), we obtain

(3.13) v(z,y) < A(z,y)exp (/Ox /yooc(s,t)p(s,t) dtds) .

Using (3.13) in|(3.11) we get the required inequality[in2.8).
(c1) Define a functiore (z, y) by

(3.14) z(z,y) =a(z,y) / / (s,t,u(s,t))dtds.
Then [2.15) can be restated as
(3.15) u(z,y) < z(z,y) +/ b(s,y)u(s,y)ds.

0

Clearly,z (x, y) is a nonnegative, continuous and nondecreasing functioyuire R, . Treating
y, y € R, fixed in (3.15) and using pafty;) of Lemmd 2.1 to[(3.1]5), we obtain

(3.16) u(z,y) < z(z,y)p(z,y),

wherep (z, y) is defined by[(2]9). Fronj (3.16) ar{d (3/15) we have
(3.17) u(z,y) <plzy)lazy) +o(zy)l,
where

(3.18) (z,y) / / (s,t,u(s,t))dtds.

From [3.18),[(3.17) and the hypotheses/oit follows that

(3.19) v (z,y) / / (s,t,p(s,t) (a(s,t)+v(s,1)))
— F(s,t,p(s,t)a(s,t)) + F(s,t,p(s,t)a(s,t))|dtds
< B(z,y) +/O / K (s,t,p(s,t)a(s,t))p(s,t)v(s,t)dtds.

Clearly, B (z,y) is nonnegative, continuous and nondecreasingand nonincreasing in for
x,y € R, . By following the proof of(a; ), we get

(3.20) v(z,y) < B(z,y)exp (/Ox /yOOK(s, t,p(s,t) a(s,t)) p(s,t) dtds) :

The required inequality (2.16) follows frorn (3]17) and (3.20).

4. PROOFS OF THEOREMS 2.8 2.8

We give the proofs ofp;), (¢1), (r1) only; the proofs of p,), (¢2), (r2) can be completed by
following the proofs of the above mentioned inequalities.
(p1) Define a functior: (m, n) by

m—1 oo
(4.2) Z Z c(s,t)u(s,t)
5s=0 t=n+1
Then [2.211) can be stated as
4.2) u(m,n) <a(m,n)+b(m,n)z(m,n).
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From (4.1) and[(4]2) we have

3

(4.3) z(m,n) < D (st fals,t) +b(s,t)z (s,1)]

S

Il
o

= f(m,n)—i—i: D els,t)b(s,t)z(s.t),

s=0 t=n+1

where f (m,n) is defined by[(2.23). Clearly; (m,n) is nonnegative, nondecreasingrinand
nonincreasing im for m,n € N,. First, we assume thagt(m,n) > 0 for m,n € Ny. From
(4.3) we observe that

i €1+ 5, 3 el 53
Define a function (m, n) by
s 2 (st
(4.4) v(m,n) =1+ Z; t;lc(s,t) b(s,t) fis’t;,
then% < wv(m,n)and
(4.5) v(m+1,n)—v(mn)—[vim+1,n+1)—v(mn+1)]
z(m,n+1)

:c(m,n+1)b(m,n+1)m

<c(mn+1)b(m,n+1)v(mn+1).
From (4.5) and using the facts thatm,n) > 0, v(m,n +1) < v (m,n) for m,n € Ny, we
observe that
[v(m+1,n) _U(man)] _ [v(m+1,n—i—1) —v(m,n—i—l)]
v (m,n) v(m,n+1)

(4.6)

<c(m,n+1)b(m,n+1).

Keepingm fixed in (4.6), sek = t and sumovet = n,n+1,...,r— 1 (r > n+ 1is arbitrary
in Np) to obtain

w(m+1n)—v(mmn) [v(m+1r)—v(m,r)
v (m,n) v (m,r)

< Z c(m,t)b(m,t),

t=n+1

4.7)

Noting thatlim v (m,r) = lim v (m + 1,7) = 1 and by letting- — oo in ) we get

r—00 r—00

[v(m+1,n) —v(m,n)]
v (m,n)

< ) ce(mt)b(m,t),

t=n+1

(4.8) vim+1,n) < |1+ Z c(m,t)b(m,t)| v(m,n).
t=n+1

J. Inequal. Pure and Appl. Math2(2) Art. 15, 2001 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

ON SOME FUNDAMENTAL INTEGRAL INEQUALITIES AND THEIR DISCRETEANALOGUES 11

Now, by keepingr fixed in (4.8) and setting: = s and substitutingg = 0,1,2,...,m — 1
successively and using the fact thdt), n) = 1, we get

1+§: (m,t)b mt)]

t=n-+1

(4.9) (m,n) < nll_[

Usmg ) |n

(4.10) z(m,n) < f(m,n) ”i_[

s=

The required inequality irj (2.22) follows fror (4.2) and (4.10).

If f(m,n) is nonnegative, then we carry out the above procedure f\th, n) + ¢ instead
of f (m,n), wheres > 0 is an arbitrary small constant, and subsequently pass to the limit as
¢ — 0 to obtain [2.2R).

(m,n) we have

1+Z (s,£)b st)]

t=n+1

(q1) Define a functior (m,n) by

(4.12) z(m,n) =a(m,n) + i Z c(s,t)u(s,t)

s=0 t=n+1
then [2.2}) can be restated as

m—1

(4.12) u(m,n) < z(m,n)+ Z b(s,n)u(s,n).

s=0

Clearly, z (m, n) is nonnegative and nondecreasingrinm € N,. Treatingn, n € N, fixed in

(4.13) and using paft3;) of Lemmg 2.5 to[(4.12), we obtain
(4.13) w(m,n) < = (m,n) g (m,n),
whereq (m,n) is defined by[(2.29). Froni (4.13) arjd (4.11) we have

(4.14) u(m,n) < q(m,n)a(m,n)+v(m,n)],
where
(4.15) mz i c(s,t)u(s,t)

s=0 t=n+1

From (4.14) and (4.15), it is easy to see that

v (m,n) SG(m,n)+i Z c(s,t)q(s,t)v(s,t),

s=0 t=n+1

whereG (m,n) is as defined by (2.30). The rest of the proof|of (2.28) can be completed by
following the proof of(p,) given above, and we omit the further details.

(r1) The proof follows by closely looking at the proofs@f, ), (¢1) and(c;) given above.
Here we leave the details to the reader.
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5. SOME APPLICATIONS

In this section we present some immediate applications of(parf Theorenj 2.p to study
certain properties of solutions of the following terminal value problem for the hyperbolic partial
differential equation
(5.1) Uay (2,y) = h(z,y,u(z,y))+r(z,y),

(5.2) u(x,00) = 00 (), u(00,y) =T (y), u(co,00)=d,
whereh : RZ x R — R, 7 : R — R, 0, 7o : Ry — R are continuous functions antis a

real constant.
The following theorem deals with the estimate on the solutiof of (5.[) - (5.2)

Theorem 5.1. Suppose that
(5.3) |h (2, y,u)] < c(z,y) |ul,

(5.4) Ooo (%) + Too (y) — d + / / (s,t)dtds

<al(z,y),

wherea (z,y), ¢ (z,y) are as defined in parta,) of Theoren) 2]2. Let (z,y) be a solution of
(1) - [5:2) forz,y € Ry, then

(5.5) lu (2,9)] < alz,y) + & (2, y) exp (/Oo /yooc(s,t) dtds) |

for z,y € R, whereeé (z, y) is defined by[ (2]6).
Proof. If u (z,y) is a solution of[(5.1l) { (5]2), then it can be written as (5ée [1, p. 80])

(5.6) U(Z,y) = 0o () + Too (y) — d +/ / (s, t,u(s,t)) +r(s,t)]dtds,
for z,y € R;. From [5.6),[(5.B),[(5]4) we get

(5.7) ue) <ato)+ [ [ el fuls ) deds.

r Jy
Now, a suitable application of paft.) of Theorenj 2. tdq (5]7) yields the required estimate in
G3). O

Our next result deals with the uniqueness of the solutioris df (5[1) |- (5.2).
Theorem 5.2. Suppose that the functidnin (5.1) satisfies the condition

(58) |h(x,y,u)—h(m,y,v)|Sc(x,y) |U’_U”

wherec (z,y) is as defined in Theorem 2.2. Then the problem| (5.1) 4 (5.2) has at most one
solution onR? .

Proof. The problem[(5]1) { (5]2) is equivalent to the integral equaltion (5.6)u Lety), v (z,y)
be two solutions of (5]1) - (5.2). Froin (5.6), (5.8) we have

(5.9) lu(z,y) —v(z,y)| < /00 /00 c(s,t)|u(s,t) —v(s,t)|dtds.

Now a suitable application of pafit,) of Theorenj 2.2 yields (z,y) = v (z,y), i.e., there is at
most one solution to the problein (b.1)—(5.2). O
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We note that the inequality given in pdbt) of Theorenj 2.3 can be used to obtain the bound
and uniqueness of the solutions of the following non-self-adjoint hyperbolic partial differential
equation

(5.10) Uay (2,y) = (r (z,9) u (2,9)), + b (2, y,u(z,9)),
with the given terminal value conditions in (9.2), under some suitable conditions on the func-

tions involved in[(5.10) {(5]2). We also note that the inequalities given here have many appli-
cations, however, various applications of other inequalities is left for another time.
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