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ABSTRACT. In this paper we prove that there are no domainsE ⊂ R2, other than the ellipses,
such that the Lebesgue measure of the intersection ofE and its homothetic imageεE translated
to a boundary pointq ∈ ∂E is independent ofq, provided thatE is "centered" at a certain interior
pointO ∈ E (the center of homothety).
Similar problems arise in various fields of mathematics, including, for example, the study of
stationary isothermal surfaces and rearrangements.

Key words and phrases:Convex sets, asymptotic expansion, ordinary differential equations.

2000Mathematics Subject Classification.52A10, 41A58, 34A05.

1. I NTRODUCTION

In this paper we devote ourselves to the investigation, in two dimensions, of the following
problem, which was originally proposed in a more generalN -dimensional setting by one of the
authors in [4] and up to this moment has remained an open problem.

Problem 1.1.Determine all the open bounded convex setsE in R2 for which there exists a point
O ∈ E such that, for everyε > 0, the measure of the intersection ofE with its homothetic image
εE with respect toO, translated to a boundary pointq, is independent ofq, for every chosenq
belonging to the boundary ofE .
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Figure 1.1: The area of the shaded regionεE is independent ofq.

In other words, we are interested in determining all the open bounded convex setsE in R2

satisfying the following property:

(1.1) ∀ε > 0 ∃C = C(ε) > 0 s.t. |E ∩ [εE + (q −O)]| = C ∀q ∈ ∂E ,

with C independent ofq (see Fig. 1.1).
In fact, we will answer this question by solving a more general problem:

Problem 1.2. Determine all those open bounded convex setsE ⊂ R2 such that there exists
an open bounded convex setE ⊂ R2, with the property that the measure of the intersection
E ∩ [εE + (q −O)] is independent ofq, for anyq ∈ ∂E , i.e.

(1.2) ∀ε > 0 ∃C = C(ε) > 0 s.t. |E ∩ [εE + (q −O)]| = C ∀q ∈ ∂E ,

whereC is independent ofq andO is a suitable interior point ofE.

We will prove that, assuming sufficient regularity for the setsE andE , the only setsE for
which property (1.2) is satisfied are the ellipses. Hence, if a solution to Problem 1.1 exists,
it must be an ellipse (thus giving uniqueness). On the other hand, homothetic ellipses clearly
satisfy (1.1). Indeed, ifE andE are two discs, (1.1) is obviously satisfied, and the homothetic
ellipses case can be reduced to this last one, by means of a proper dilatation, under which our
problem is invariant.

Actually, we will show that, in Problem 1.2,E must be an ellipse as well (see Corollary 2.4).
This result is not trivial forN > 2 and it is obtained in [7].

The result proved here strongly suggests that also inRN the only admissible convex setsE
should be the ellipsoidal domains. This multidimensional version of our result will be the object
of future investigations.

It is worthwhile to point out that the assumption thatE is bounded is crucial since, otherwise,
many more cases appear. For example, inR2, whenE is the half plane,E can be any bounded
set, or inR3, whenE is a sphere, many classes of unbounded domainsE are admissible (see
[7]).

The problem treated in this paper, though interesting in itself, is strangely related to some
other problems appearing in different contexts. For example, in [7] the authors show that the
domainsE satisfying (1.2), whereE is a sphere, are related to the determination of stationary
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A NON LOCAL QUANTITATIVE CHARACTERIZATION OF ELLIPSES 3

isothermic surfaces. They prove that, in the bounded case, the only admissible setsE must be
the spheres, while, in the unbounded case, the admissible setsE are classified, as recalled above.

The result obtained in [7] suggests many possible extensions, among which the one studied
in this paper is definitely the most general, at least in the two dimensional setting.

Another possible application of the result obtained in this paper is in connection with rear-
rangements (see [3]), with the aim of deriving a generalized version of the Riesz-Sobolev type
inequality making use of the Hardy-Littlewood inequality (see [5]).

An abstract version of the Riesz-Sobolev inequality can be written in the form

(1.3)
∫

RN

(f ? g) (x)h(x) dx ≤
∫

RN

(
f#B ? g#B) (x)h#B(x) dx ,

whereB = {Br : r ∈ R+} is the family of all the homothetic sets of a givenopen convex
neighborhoodof the origin with compact closure, and, for any measurable functionφ with level
sets of finite measure,φ#B is itsB-rearrangement, i.e

(1.4) φ#B(x) = sup
{

λ > 0 : x ∈ (φλ)
#B

}
,

where(φλ)
#B is theB-rearrangementof the sublevelφλ := {x ∈ RN : φ(x) < λ} (see,

for instance, [2], [6], [8]). Here,f, g, h are measurable functions onRN and? denotes the
convolution products.

In the first place, an argument based on linearity reduces the task of proving inequality (1.3)
for B-rearrangements to the proof of its validity in the case of positive step functions. In partic-
ular, we have to prove such an inequality for the case

I :=

∫
RN

∫
RN

χBr
(x− y)f(y)χB(x) dxdy,

(see the beginning of pg. 24 in [6]). A simple calculation shows that, in this case, inequality
(1.3) is clearly satisfied when, for example,

(1.5) |(Br + y) ∩B| =
∣∣∣[(Br + y) ∩B]#B

∣∣∣ .

But (1.5) holds if and only if, for every chosenr > 0, there existsC > 0 such that

|B ∩ (x + Br)| = C when x ∈ ∂Br .

In this paper, it is proved that this last property holds only for ellipsoidal domains.
We conclude by observing that the proof of our main theorem strongly relies on the McLaurin

expansion, with respect toε, of the functionε 7→ A(ε, q) := |E ∩ (εE + q)|, which allows us to
obtain a particular differential equation, satisfied by anyE having property (1.2). This particular
technique connects our problem to other related ones, already studied by the authors (see, e.g.,
[1]).

The paper is organized as follows: in Section 2 we give the definition of a “proper testing set”
and state our main result (see Theorem 2.1), with its consequences. In Section 3 we give the
McLaurin expansion, with respect toε, up to the fifth order, of the area functionε 7→ A(ε, q),
defined above (see Propositions 3.1 and 3.2). Finally, in Section 4 we prove the main theorem.
A Section 5, with the conclusions and some final remarks, is added.

2. POSITION OF THE PROBLEM

Let E andE be two bounded convex subsets ofRN , with |E| = 1. Let O be a point in the
interior ofE andεE be the set

εE := {y ∈ RN : y = ε(x−O) with x ∈ E} .
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4 M. AMAR , L.R. BERRONE, AND R. GIANNI

Finally, for every pointq ∈ ∂E , we denote withA(ε, q) the Lebesgue measure of the region
E ∩ εEq, whereεEq = εE + (q − O). From now on, we will call the setE the “tested convex
set” and the setE the “testing convex set”.

In agreement with the notations introduced in [7], we will make use of the following defini-
tions:

Definition 2.1. Given two setsE andE, we will say thatE is uniformlyE-dense on its boundary
if A(ε, q) does not depend onq ∈ ∂E . In this case,E will be called a “proper testing set”.

In this regard, the question arises of whether it is possible to characterize the convex setsE,
together with the pointO (which will be later chosen as the origin of both the cartesian axis and
the polar coordinates), for which a convex setE , uniformly E-dense on its boundary, exists.

In theN -dimensional setting, the problem has been treated by Magnanini, Prajapat and Sak-
aguchi in [7], where it is proved that, ifE is a sphere, then it is a proper testing set and, in
this case,E must be a sphere, too. In the2-dimensional case this property is a consequence of
Proposition 3.2, as it is stated in Corollary 3.3 (see Section 3).

Remark 1. In general, it is possible to prove that any ellipsoid is a proper testing set. This
can be easily obtained observing that the problem is invariant under dilatation of the axes under
which any ellipsoid can be reduced to a sphere. Clearly, in this case the pointO must be the
center of the testing ellipsoid and the tested convex set is, up to a translation, homothetic to the
testing one.

Nevertheless, the problem of determining all the proper testing sets remains open. In this
paper, this problem will be solved for the caseN = 2, for tested convex sets of classC4 and
testing convex sets of classC2, as stated in Theorem 2.1 below.

From now on, we assumeN = 2.

Theorem 2.1. Let E and E be a tested set and a testing convex set of classC4 and C2, re-
spectively. If the McLaurin expansion up to the fifth order, with respect toε, of the function
A(ε, q) = |E ∩ [εE + (q − O)]| has coefficients which do not depend onq ∈ ∂E , thenE must
be an ellipse andO must be its center.

Corollary 2.2. The only proper testing sets of classC2 are the ellipses.

Proof. It is a direct consequence of the previous theorem since, ifE is a proper testing set, by
definition the functionA(ε, q) does not depend onq, so that its fifth order power expansion also
does not depend onq. �

Corollary 2.3. The ellipsesΩ are the only sets which are uniformlyλΩ-dense on their bound-
ary, whereλ = 1/|Ω| (see Definition 2.1 withE = Ω andE = λΩ).

Proof. It is a direct consequence of Corollary 2.2. �

Corollary 2.4. Let E and E be a tested set and a testing convex set of classC4 and C2, re-
spectively. IfE is uniformlyE-dense on its boundary, thenE is an ellipse andE ≡ λE, for a
suitableλ > 0.

Proof. From Corollary 2.2, we get thatE is an ellipse. Since the problem is invariant under
dilatation of the axes, we can perform a proper dilatationΛ in such a way thatE is transformed
in a circleΛ(E). Using the forthcoming Corollary 3.3, we have thatΛ(E) is a circle, too. Hence,
E is an ellipse homothetic toE. �
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3. PRELIMINARY RESULTS

Let us now fix a system(x, y) of cartesian coordinates and let(θ, ρ) be the associated polar
coordinates (in whichθ = 0 corresponds to the positivex-axis), centered in the pointO belong-
ing to the interior ofE. In the following, we will use a local cartesian representation for the
tested convex setE , while for the testing convex setE we will use a global polar representation
ρ = ρ(θ), 0 ≤ θ ≤ 2π. Moreover,E andE are always assumed to be of classC4 andC2,
respectively.

Given a unit vectorν ∈ S1, we setC(ν) as the area of the portion of the plane, not containing
the vectorν, bounded byE and by the straight line orthogonal toν passing through the origin.

Proposition 3.1. The second order McLaurin expansion of the functionA(ε, q) with respect to
ε is given by

(3.1) A(ε, q) = C(ν(q))ε2 + o(ε2) ,

whereν(q) is the outward unit normal vector toE in q.
Moreover, such a power expansion does not depend onq if and only if the testing convex set

E is centrally symmetric with respect toO; i.e., ρ(θ) = ρ(θ + π) for everyθ ∈ R. Obviously, in
this case,C(ν(q)) = 1/2.

x0

f(x0)

ε

εEq

P1

P2

R1

f(x)

y=f(x0)+f'(x0)(x-x0)

R2 ν(q)

O

Figure 3.1:q =
(
x0, f(x0)

)
, A(ε, q) is the area of the grey region andD(ε, q) is the area of the black region.

Proof. SinceA(ε, q) = |E ∩ εEq| and the diameter ofεEq is of the orderε, the first term in the
expansion ofA(ε, q) is of orderε2. Moreover, keeping account of this fact, it is clear that we
can locally approximate the arĉR2qR1 with the segmentP2P1, up to an error of orderε2 (see
Figure 3.1); thus producing in the computation ofA(ε, q) an error of orderε3, which does not
affect the second order McLaurin expansion.

This implies thatA(ε, q) = C(ν(q))ε2 + o(ε2). Clearly, if the second order power expansion
of A(ε, q) does not depend onq, the functionC(ν(q)) also does not depend onq. Rewriting
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C(ν(q)) in terms of the angleφ, between the normalν(q) and the positivex-axis, and calling
this new functionC̃(φ), we have that it is constant if and only if

0 = C̃ ′(φ) =
C̃(φ + dφ)− C̃(φ)

dφ

=
ρ2(φ + 3π/2) dφ− ρ2(φ + π/2) dφ

dφ

which impliesρ(φ + 3π/2) = ρ(φ/2). Since the boundary ofE is a closed connected simple
curve,φ attains any value in[0, 2π), asq varies on∂E . Consequently,ρ(θ + π) = ρ(θ); i.e.,
E is centrally symmetric with respect toO. Clearly, in this case,C(ν(q)) = C̃(φ) = 1

2
|E| =

1/2. �

Having found the second order expansion ofA(ε, q), we will now devote our attention to
determining its fifth order expansion. To this purpose, given the convex setE , let us assume
that y = f(x) is a local parametrization of classC4 of ∂E , in a neighborhood ofq, such that
q = (x0, f(x0)).

O

y= f'(x0) x

p
1

p2

εΕ

t1

t2

ϕ
ϕ

ερ(θ)

θ

Figure 3.2:α = tan ϕ.

Let t1 andt2 be the tangent lines (in their cartesian representation) toεE at the points (ex-
pressed in polar coordinates)

p1 = (arctan f ′(x0), ερ
(
arctan f ′(x0)

)
)

p2 = (arctan f ′(x0) + π, ερ
(
arctan f ′(x0) + π

)
) .

Because of the central symmetry we have

ρ
(
arctan f ′(x0) + π

)
= ρ

(
arctan f ′(x0)

)
andt1 ‖ t2.
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We denote byα the angular coefficient of the tangent linet1 to εE at the pointp1. Straight-
forward computations give the following expression forα:

(3.2) α =
ρ′(θ0) sin θ0 + ρ(θ0) cos θ0

ρ′(θ0) cos θ0 − ρ(θ0) sin θ0

,

whereθ0 = arctan f ′(x0) (see Figure 3.2).
LetP1, P2 ∈ εEq be the corresponding points ofp1, p2 ∈ εE andS1 andS2 be the intersection

points of the tangent lines toεEq atP1 andP2 with the curve whose equation is

y = T(x0,4)(x)

:= f(x0) + f ′(x0)(x− x0) + f ′′(x0)
(x− x0)

2

2
+

f ′′′(x0)(x− x0)
3

3!
+

f (iv)(x0)(x− x0)
4

4!

(i.e. the fourth order expansion ofE).
Finally, t1 + q and t2 + q are the tangent lines, obtained translating the linest1 and t2 by

adding the vector(q −O) (see Figure 3.3).

T
(x0,4)

(x)

q

P1

P2

S2

S1

t2+q

t1+q

Q2

Q1

Figure 3.3:C1(ε, q) is the area of the grey region, whileC2(ε, q)− C1(ε, q) is the area of the black region.

Proposition 3.2. Let us assume thatE is centrally symmetric with respect toO. Then the fifth
order McLaurin expansion of the functionA(ε, q) with respect toε is given by

(3.3) A(ε, q) =
1

2
ε2 + C3(q)ε

3 + C5(q)ε
5 + o(ε5) ,
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8 M. AMAR , L.R. BERRONE, AND R. GIANNI

where

C3(q) =
f ′′(x0)

3
[
1 +

(
f ′(x0)

)2
]3/2

ρ3
(
arctan f ′(x0)

)
;(3.4)

C5(q) =

[ (
f ′′(x0)

)3

4
(
α− f ′(x0)

)2 +
f ′′(x0)f

′′′(x0)

6
(
α− f ′(x0)

) +
f (iv)(x0)

60

]
ρ5

(
arctan f ′(x0)

)[
1 +

(
f ′(x0)

)2
]5/2

;(3.5)

and the term of fourth order is zero.

Remark 2. It is a straightforward computation to prove that the ellipsesC3(q) andC5(q) given
in (3.4) and (3.5) are actually constants independent ofq.

Proof. It is clear that, ifε is sufficiently small, the differenceD(ε, q) between the areaA(ε, q)
of E ∩ εEq and its second order expansion is given by the area (with the minus sign) of that
portion ofεEq in betweenf(x) and the liney = f(x0) + f ′(x0)(x− x0) (i.e. the black region
P2P1R1R2 in Figure 3.1).

Since we are looking for the fifth order expansion ofA(ε, q), we can locally (i.e. in a neigh-
borhood ofq) replace the cartesian representation(x, f(x)) of E by means of its fourth order
Taylor expansionT(x0,4)(x), centered inx0 (in this regard, we use the fact that the length|P1P2|
is of orderε).

Henceforth,D(ε, q) = −C1(ε, q) + o(ε5), whereC1(ε, q) is the area of that portion ofεEq in
betweeny = T(x0,4)(x) and the liney = f(x0)+f ′(x0)(x−x0) (i.e. the grey regionP2P1Q1Q2

in Figure 3.3).
Nevertheless,C1(ε, q) cannot be easily computed; for this reason we need a further approx-

imation which, however, does not affect the fifth order of the McLaurin expansion ofC1(ε, q).
To this purpose, we replace the boundary ofεEq with the tangent linest1 + q andt2 + q. Ac-
cordingly, we denote byC2(ε, q) the area of the region thus obtained, which is bounded by the
graph of the functiony = T(x0,4)(x) and by the linesy = f(x0) + f ′(x0)(x − x0), t1 + q and
t2 + q, i.e. the grey region together with the black one in Figure 3.3.

We claim thatC1(ε, q) = C2(ε, q) + o(ε5). This is mainly due to the following facts:

(1) Firstly, |(P1 − q) ∧ (P1 − S1)| ≥ η > 0, for everyq ∈ ∂E , with η independent ofq.
Indeed, if this is not the case, due to the compactness ofE, there will be a pointq for
which the tangent linet1 + q to εEq at the corresponding pointP1 will coincide with
the tangent lineP1P2 to E . Consequently, allE should stay either on the left or on the
right side of the lineP1P2, in contrast with the central symmetry ofεEq with respect to
q, proved in Proposition 3.1.

(2) Secondly, the length|P1S1| is of orderε2. This is a consequence of the fact that the
difference between the abscissae ofP1 andS1 is of orderε2, as it can be seen using (3.16)
below (with δ replaced byδ0 as given in (3.9)), provided that|α − f ′(x0)| ≥ η̃ > 0.
This final inequality is guaranteed by (1).

(3) Using (1) and (2), it is easy to realize that the area of the black regionP1S1Q1 in Figure
3.3 can be bounded from above by the integral (with respect to a cartesian reference
frame attached to the linet1 + q) of the function whose graphs gives the profile ofεEq

(which, in the cartesian representation, is clearly a function of second order) along the
interval |P1S1| ∼ ε2. Henceforth, such area isO(ε6). Obviously the same holds for the
black regionP2S2Q2.

Having proved the claim, we now evaluate the areaC2(ε, q).
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To this purpose, let us consider the liney = α(x − x0) − (δ − f(x0)) which is parallel
to t1 + q andt2 + q. Moreover, let us callP (δ) the intersection point between the two lines
y = f(x0) + f ′(x0)(x− x0) andy = α(x− x0)− (δ − f(x0)) andS(δ) the intersection point
between the liney = α(x− x0)− (δ − f(x0))) andy = T(x0,4)(x) (see Figure 3.4).

T
(x0,4)

(x)

q

P2

S2

S1

t2+q

t1+q

x0

y
0

y=α(x-x0)-(δ-f(x0))

{
q(δ)

δ=
S(δ)

P1

P(δ)

O

Figure 3.4:C2(ε, q) is the area of the shaded region.

Clearly, thex-coordinateXP of the pointP (δ) is given by

(3.6) α(XP − x0)− (δ− f(x0)) = f(x0) + f ′(x0)(XP − x0) =⇒ XP − x0 =
δ

α− f ′(x0)
.

In particular, we setδ0 to be the value of the parameterδ for which P (δ0) = P1 andP (−δ0)
= P2; consequently,S(δ0) = S1 andS(−δ0) = S2.

Keeping in mind that the angular coefficient of the lineP1P2 is f ′(x0), by (3.6) we get

(3.7) |P (δ0)− q| = δ0

α− f ′(x0)

√
1 +

(
f ′(x0)

)2
.

On the other hand,

(3.8) |P (δ0)− q| = |P1 − q| = |p1| = ερ
(
arctan f ′(x0)

)
(see Figure 3.4),

hence, by (3.7) and (3.8), it follows that

(3.9) δ0 =

(
α− f ′(x0)

)
ρ
(
arctan f ′(x0)

)√
1 +

(
f ′(x0)

)2
ε .
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10 M. AMAR , L.R. BERRONE, AND R. GIANNI

Moreover, thex-coordinateXS of the pointS(δ) is obtained by solving the following alge-
braic equation:

(3.10) α(XS − x0)− (δ − f(x0)) = f(x0) + f ′(x0)(XS − x0) +
f ′′(x0)(XS − x0)

2

2

+
f ′′′(x0)(XS − x0)

3

3!
+

f (iv)(x0)(XS − x0)
4

4!
,

which gives

(3.11) XS − x0 =
δ

α− f ′(x0)
+

f ′′(x0)

2[α− f ′(x0)]
(XS − x0)

2

+
f ′′′(x0)

3![α− f ′(x0)]
(XS − x0)

3 +
f (iv)(x0)

4![α− f ′(x0)]
(XS − x0)

4 .

This is a non trivial computation. For this reason, we confine ourselves to finding the fourth
order McLaurin expansion with respect toδ of XS − x0, i.e.:

XS − x0 = D1(x0)δ + D2(x0)δ
2 + D3(x0)δ + D4(x0)δ

4 + o(δ4) ,

which is, however, enough to carry on all the other computations of this paper.
Firstly, let us observe thatXS − x0 = O(δ) and hence,

(3.12) (at the 1st order) XS − x0 =

[
1

α− f ′(x0)

]
δ + o(δ) .

Replacing (3.12) in the right hand side of (3.11), we get

(3.13) (at the 2nd order) D2(x0) =

[
f ′′(x0)

2(α− f ′(x0))3

]
.

Finally, by means of a standard bootstraps argument, we have

(at the 3rd order) D3(x0) =

[
f ′′′(x0)

3!(α− f ′(x0))4
+

2
(
f ′′(x0)

)2

4(α− f ′(x0))5

]
,(3.14)

(at the 4th order) D4(x0) =

[
5
(
f ′′(x0)

)3

8(α− f ′(x0))7
+

5f ′′(x0)f
′′′(x0)

12(α− f ′(x0))6
(3.15)

+
f (iv)(x0)

4!(α− f ′(x0))5

]
.

Hence,

(3.16) XP −XS = −
[

f ′′(x0)

2(α− f ′(x0))3

]
δ2 −

[
f ′′′(x0)

3!(α− f ′(x0))4
+

2
(
f ′′(x0)

)2

4(α− f ′(x0))5

]
δ3

−

[
5
(
f ′′(x0)

)3

8(α− f ′(x0))7
+

5f ′′(x0)f
′′′(x0)

12(α− f ′(x0))6
+

f (iv)(x0)

4!(α− f ′(x0))5

]
δ4 + o(δ4) .

This implies, in accordance with Figure 3.5, thatC2(ε, q) is obtained by integrating with
respect toδ, from−δ0 to δ0, the infinitesimal areadA(δ) of the shaded region in Fig. 3.5, found
by multiplying the base|P (δ)S(δ)| = |XP −XS|

√
1 + α2 by the corresponding height, whose

J. Inequal. Pure and Appl. Math., 9(4) (2008), Art. 94, 14 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


A NON LOCAL QUANTITATIVE CHARACTERIZATION OF ELLIPSES 11

T
(x0,4)

(x)

q

S(δ+dδ){dδ =

S(δ)

P(δ)

P(δ+dδ)

y=α(x-x0)-(δ-f(x0))

Figure 3.5: The shaded region is the infinitesimal areadA(δ).

value isdδ/
√

1 + α2. Hence, we have

C2(ε, q) =

∫ δ0

−δ0

|XP −XS| dδ(3.17)

= −
[

f ′′(x0)

3(α− f ′(x0))3

]
δ3
0

−

[ (
f ′′(x0)

)3

4(α− f ′(x0))7
+

f ′′(x0)f
′′′(x0)

6(α− f ′(x0))6
+

f (iv)(x0)

60(α− f ′(x0))5

]
δ5
0 ,

and, replacingδ0 as given by (3.9), it follows that

(3.18) C2(ε, q) = −

[
f ′′(x0)ρ

3
(
arctan f ′(x0)

)
3
(
1 +

(
f ′(x0)

)2)3/2

]
ε3

−
ρ5

(
arctan f ′(x0)

)(
1 +

(
f ′(x0)

)2)5/2

[ (
f ′′(x0)

)3

4(α− f ′(x0))2
+

f ′′(x0)f
′′′(x0)

6(α− f ′(x0))
+

f (iv)(x0)

60

]
ε5 .

Recalling that

A(ε, q) =
1

2
|εEq|+D(ε, q) =

1

2
ε2 − C1(ε, q) + o(ε5) =

1

2
ε2 − C2(ε, q) + o(ε5)

and using (3.18), we finally get the required result. �

Corollary 3.3. If the proper testing convex setE ∈ C2 is a circle, then the tested convex set
E ∈ C4 must also be a circle.

Proof. SinceE is a proper testing set, by Definition 2.1A(ε, q) is constant. Hence, Proposition
3.2 applied to this particular case, implies

f ′′(x0)[
1 +

(
f ′(x0)

)2
]3/2

= cost .
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It follows that the boundary of the tested convex setE has a positive constant curvature, which,
as far as bounded sets are concerned, implies that it is a circle. �

In the caseN ≥ 2, the same result stated in Corollary 3.3 was previously proven in [7,
Theorem 1.2].

4. PROOF OF THE M AIN THEOREM

Proof. By (3.4) and (3.5) in Proposition 3.2 and the fact that, by assumption, the McLaurin
expansion of the functionA(ε, q) up to the fifth order does not depend on the pointq ∈ E , we
obtain

C3 =
f ′′(x0)

3
[
1 +

(
f ′(x0)

)2
]3/2

ρ3
(
arctan f ′(x0)

)
;(4.1)

C5 =

[ (
f ′′(x0)

)3

4
(
α− f ′(x0)

)2 +
f ′′(x0)f

′′′(x0)

6
(
α− f ′(x0)

) +
f (iv)(x0)

60

]
ρ5

(
arctan f ′(x0)

)[
1 +

(
f ′(x0)

)2
]5/2

;(4.2)

whereC3 andC5 are now constants independent ofq. The next step is to eliminate the function
f putting together (4.1) and (4.2), thus obtaining an ordinary differential equation for a new
functionw defined by

(4.3) w(f ′) =

(
1 + (f ′)2

)1/2

ρ
(
arctan(f ′)

) .

Note that, now,w is regarded as a function of the new variablef ′.
By (4.1), we obtain

(4.4) f ′′(x) =
C

[
1 +

(
f ′(x)

)2
]3/2

ρ3
(
arctan f ′(x)

) ,

which gives

(4.5) f ′′(x) = Cw3
(
f ′(x)

)
.

Hence, differentiating iteratively the previous equation with respect tox, we get

f ′′′(x) = 3C2w5
(
f ′(x)

)
w′(f ′(x)

)
;(4.6)

f (iv)(x) = 3C3w7
(
f ′(x)

) [
5(w′)2

(
f ′(x)

)
+ w

(
f ′(x)

)
w′′(f ′(x)

)]
.(4.7)

Recalling thatf ′(x) = tan θ, (4.3) implies

ρ(θ) =
1

w(tan θ) cos θ
,

ρ′(θ) =
w(tan θ) tan θ − (1 + tan2 θ)w′(tan θ)

w2(tan θ) cos θ
,

and, by (3.2),

(4.8) α(θ) = tan θ − w(θ)

w′(θ)
=⇒ α(θ)− f ′(x) = − w(θ)

w′(θ)
.

Replacing (4.3) and (4.5)–(4.8) in (4.2), we get

(4.9) C5 =

[
C3w9

4w2/(w′)2
− C3w8w′

2w/w′ +
C3w7

20

(
5(w′)2 + ww′′)] · 1

w5
,
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which, after a simplification, gives

(4.10) w′′(f ′(x)
)
w3

(
f ′(x)

)
= C̃ ,

whereC̃ is a proper constant.
From equation (4.10), it easily follows thatE has a boundary of classC∞.
At this point, using Lemma 4.1 below, withy(ξ) = w(ξ) andξ = f ′(x) = tan θ, together

with (4.3) and (4.14), we get

(4.11) w2(tan θ) =
1 + tan2 θ

ρ2(θ)
=

C̃ + (B + 2A tan θ)2

2A
.

Hence,

(4.12) ρ(θ) =

√
2A

(C̃ + B2) cos2 θ + 4A2 sin2 θ + 4AB sin θ cos θ
.

It is well known that equation (4.12) is the polar representation of a conic curve whose center
is the origin of the polar coordinates. On the other hand, the testing convexE is a closed curve
and hence it must be an ellipse. �

Lemma 4.1. Lety(ξ) be aC2-function satisfying the equation

(4.13) y′′(ξ)y3(ξ) = C̃ .

Then,

(4.14) y(ξ) = ±

√
C̃ + (B + 2Aξ)2

2A
,

whereA andB are two arbitrary constants.

Proof. Introducing the auxiliary functionv(p) = y′ (y−1(p)), with p = y(ξ), the equation
(4.13) reduces to

dv(p)

dp
· v(p) =

C̃

p3
=⇒ v2(p) = − C̃

p2
+ 2A,

whereA is an arbitrary constant. This implies

y′(ξ) = ±

√
2Ay2(ξ)− C̃

y(ξ)
.

This is a standard ordinary differential equation, whose solution is given by

y2(ξ) =
C̃ + (B + 2Aξ)2

2A
.

�

5. CONCLUSIONS AND FINAL REMARKS

We want to stress the fact that, though applied to the case in whichE andE are convex sets,
the technique used in this paper should work equally well in the case in whichE is star-shaped
with respect to a pointO and its boundary is a simple closed curve such that in any pointP ,
the vector(P − O) and the unit tangent vector~t in P satisfy the condition|(P − O) ∧ ~t | ≥ δ,
for someδ > 0, whileE has a curvaturek(s) (wheres is the arc-length) which does not change
sign infinitely many times.
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