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ABSTRACT. This paper gives best bounds for the ratio
∫ b−t

a
f(x) f(x + t) dx/

∫ b

a
f2(x) dx for

any square-summable real functionf(x) on the interval(a, b]. Similarly, bounds are established
for the autocorrelation of any pulse or finite-length sequence at any known lag, and the family of
pulses and sequences attaining these bounds is identified. The form of this family is related to a
half-cycle of a sinusoid. Stronger bounds are suggested for pulses known to be non-negative and
unimodal or concave.
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1. I NTRODUCTION

This paper presents a derivation of the inequality

(1.1)

∣∣∣∣∣
∫ b−t

a
f(x) f(x + t) dx∫ b

a
f 2(x) dx

∣∣∣∣∣ ≤ cos

(
π⌈

b−a
t

⌉
+ 1

)
0 < t ≤ b− a

for any square-summable real functionf(x) on the interval(a, b], and demonstrates that the
bound is the best possible. The notationd·e denotes the ‘lowest integer not less than’ function.
The result is obtained by a shift in origin after derivation of the inequality

(1.2) |A(t)| ≤ cos

(
π

dT/te+ 1

)
0 < t ≤ T,
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2 R. WILLINK

where

(1.3) A(t) ≡
∫ T−t

0
f(x) f(x + t) dx∫ T

0
f 2(x) dx

is the autocorrelation function of a pulse of durationT . As the notation suggests, the autocorre-
lation function is principally thought of as a function of the lagt for knownf(x) andT . In that
context familiar results areA(0) = 1 and|A(t)| ≤ 1. Here the lag (as a proportion of the pulse
duration) is deemed to be known and the bounds, equation (1.2), are obtained for any square-
summable pulsef(x). If T is unknown then the parameter of interest is the lag proportiont/T ,
and equation (1.2) can be written accordingly. Also if the pulse duration is known only to be
less than or equal to some figureT then the same bounds hold. Equation (1.2) is obtained by
first developing a discrete analogy which bounds the autocorrelation of a real sequence.

The motivating example for this work was the placement of bounds on a correlation arising
in medical Doppler ultrasound, where the goal is the description of blood-flow. Scatterers of
ultrasound (groupings of red cells) within the blood can be regarded as being distributed uni-
formly and randomly within an insonated volume. Therefore the power of the signal measured
on reception at the transmitter-receiver is the sum of many contributions with uniform random
phases. A short time later the scatterers have moved with the rest of the blood but with lit-
tle change in their relative positions. Some scatterers have entered the insonated volume and
some have left. The correlation between the powers received at these two times is related to the
velocity of bloodv, the time intervalτ , and the intensity profile of the ultrasound beam. The
‘pulse’ f(x) is this intensity profile as a one-dimensional function of space in the direction of
the blood velocity. So the product|vτ | is t, and the spatial extent of the intensity function isT .
If sides lobes are ignored this extent is the width of the central lobe of the intensity function.
Even if theshapeof the intensity function is unknown the correlation between the powers at the
two times is bounded according to equation (1.2) and more strongly according to the results for
unimodal and concave functions obtained in Sections 3 and 4. If the correlation is determined
experimentally this in turn boundsv.

There appears to be little published regarding such bounds on an autocorrelation. Com-
munications engineers are more interested in the design of sequences with desirable (small)
autocorrelation over a range of lags. Upper bounds have been given for the autocorrelation
of maximal-length pseudo-random sequences [1], while lower bounds for the maximum mag-
nitude of cross-correlation functions and autocorrelation functions for sets of complex-valued
sequences have been considered [2].

2. ANALYSIS

Equation (1.2) is derived by considering the definite integral to be a sum of infinitesimal
terms. So we first study the autocorrelation of a finite real sequence ofP values{fn},
n = 1, 2, . . . , P , at positive lagp, which is

(2.1) Ap ≡
∑P−p

n=1 fnfn+p∑P
n=1 f 2

n

.

Then we increasep andP without limit while preserving the ratiop/P = t/T .
Write P = Mp + q whereM = bP/pc and0 ≤ q < p, andb·c is ‘the greatest integer

not greater than’ function. The sequence can be split intop interleaving subsequences each
containing elements spacedp apart. Thejth subsequence,{fj, fj+p, . . . , fj+(Lj−1)p} has length
Lj, whereLj = M + 1 for 1 ≤ j ≤ q andLj = M for q + 1 ≤ j ≤ p. Equation (2.1) can then
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BOUNDS ON AUTOCORRELATION 3

be written as

Ap =
a1 + . . . + ap

b1 + . . . + bp

where

aj =

Lj∑
k=1

fj+(k−1)pfj+kp and bj =

Lj∑
k=1

f 2
j+(k−1)p.

Evidentlyaj/bj is the autocorrelation of thejth subsequence with lag 1. Because eachbj is non-
negative it follows thatAp is bounded between the maximum and minimum values ofaj/bj, so

|Ap| ≤ max
j
{|aj/bj|}.

Any of the subsequences can be relabelled{F1, F2, . . . FN} whereN = M or N = M + 1 so
the problem reduces to bounding the autocorrelation of this new sequence at lag 1, i.e. bounding

(2.2) A∗ ≡
∑N−1

n=1 FnFn+1∑N
i=1 F 2

n

for any sequence{Fn} and choosingN = M or N = M + 1 to give the least lower bound and
greatest upper bound.

Let ρ be an extremum ofA∗ with respect to each element of{Fn}. Setting∂A∗/∂Fn = 0
gives

(Fn−1 + Fn+1)
N∑

i=1

F 2
i = 2Fn

N−1∑
i=1

FiFi+1 n = 1, . . . , N

if we defineF0 ≡ 0 andFN+1 ≡ 0. At this extremum the right-hand side of equation (2.2) isρ,
so this rearranges to the recurrence relation

(2.3) Fn+1 = 2ρ Fn − Fn−1.

The general solution to equation (2.3) withF0 = 0 is

Fn = K sin(n cos−1 ρ) n = 0, . . . , N

whereK is an arbitrary constant. This equation must be the general solution because it satisfies
equation (2.3) andF0 = 0 while keepingF1 arbitrary. From the further conditionFN+1 = 0 we
identify possible values ofρ to be

(2.4) ρ = cos
(

kπ
N+1

)
wherek is an integer. SoA∗ takes its global maximum and minimum values of

(2.5) ρmax = cos
(

π
N+1

)
and ρmin = − cos

(
π

N+1

)
with corresponding sequences

(2.6) Fn = K sin
(

nπ
N+1

)
and Fn = (−1)nK sin

(
nπ

N+1

)
,

whose elements are equally spaced samples of half-cycles of sinusoids.
An alternative derivation of equation (2.4) follows from writing the right-hand side of equa-

tion (2.2) as(F′CF)/(F′F) whereF is the column vector(F1, F2, . . . , FN)′, andC is theN×N
Toeplitz matrix with elements1/2 in the diagonals immediately either side of the leading di-
agonal (first super-diagonal and first sub-diagonal), and zero elsewhere. Differentiating with
respect toF and setting the result to zero givesCF = ρF, which is a re-expression of equation
(2.3) with F0 = 0 andFN+1 = 0. So the possible values ofρ and vectorsF are the eigen-
values and eigenvectors ofC. The eigenvalues of anN × N matrix with elementsc0 in the
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Figure 2.1: Bounds for the autocorrelation function. Solid line – magnitude of bound for all functions,
cos (π/(dT/te+ 1)). Short-dashed line –cos (π/(T/t + 1)). Long-dashed line – apparent upper bound for
unimodal functions. Cross marks – apparent upper bound for concave sequences of length 14. Ast/T approaches
zero each line approachescos(πt/T ).

leading diagonal,c1 in the first super-diagonal,c2 in the first sub-diagonal and zero elsewhere
arec0 + 2(c1c2)

1/2 cos (kπ/(N + 1)), k = 1, . . . , N [3, p. 284].
Both bounds in equation (2.5) are larger in magnitude whenN = M +1 than whenN = M .

Also M +1 = dP/pe. Therefore the autocorrelation of the original sequence at lagp is bounded
by

(2.7) |Ap| ≤ cos

(
π

dP/pe+ 1

)
.

If p andP tend to infinity while maintaining the ratiop/P = t/T , the result is equation (1.2)
for the bound on the autocorrelation defined by equation (1.3). To show this more rigorously
define the stepwise function

f(x) = fn
(n−1)T

P
< x ≤ nT

P
n = 1, 2, . . . , P,

which has fixed extentT and step lengthT/P , and definef(x) = 0 outside(0, T ]. So for
integer values ofk ≥ 0

fn+k = f(x + kT/P ) (n−1)T
P

< x ≤ nT
P

n = 1, 2, . . . , P − k,

from which it follows that

fnfn+k =
P

T

∫ nT/P

(n−1)T/P

f(x)f(x + kT/P ) dx.
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0 T
t st t

Figure 2.2: A function giving maximum correlation whenT/t is not an integer. (Heret/T = 0.3.) The function
comprisesdT/te regions of durations = T − (dT/te − 1) t, each with identical arbitrary form but scaled so that
corresponding points lie on a sinusoid, anddT/te − 1 interleaving regions of zero.

Form the relevant sums
∑

fnfn+k appearing in equation (2.1) withk = p in the numerator and
k = 0 in the denominator, and sett = pT/P to obtain

Ap =

∫ T−t

0
f(x) f(x + t) dx∫ T

0
f 2(x) dx

.

Recall thatT is fixed. Letp andP tend to infinity in a way that maintains the ratiop/P =
t/T . No restrictions are placed on thefn values so this enablesf(x) to approach any square-
summable function, continuous or otherwise, which is zero outside(0, T ]. Also the lagst
corresponding to neighbouring values ofp become arbitrarily close, so the result is valid for
any t where0 < t ≤ T . Therefore equation (2.1) becomes equation (1.3), and equation (2.7)
becomes equation (1.2). Thus we have found bounds on the autocorrelation of any pulse at a
lag which is a known proportion of the pulse duration.

If the condition thatf(x) = 0 outside(0, T ] is relaxed then equation (1.3) no longer defines
the autocorrelation function but describes a more general situation. The equations derived will
still be true, as they do not require anything off(x) outside that interval, and by a shift of
origin, with T = b − a (for any reala, b, with a < b), equation (1.2) generalises to the more
fundamental result that is equation (1.1).

The bound in equation (1.2) is given by the stepwise solid line in Figure 2.1. The left end-
points of the pieces of this function correspond to integer values ofT/t. For non-integerT/t
the positive upper bound is only reached by functions such as that in Figure 2.2, (where, for
example,t/T = 0.3). The function can only be non-zero indT/te (= 4) regions each of du-
rations = T − (dT/te − 1) t (= 0.1). The points in these regions correspond to elements in
the longer subsequences of lengthM + 1(= 4), in the discrete formulation given above. The
function in each of these regions is of identical arbitrary form, but with a different scale fac-
tor. Corresponding points lie on a half-cycle of a sinusoid, as drawn in Figure 2.2 for the two
modal points, and in accordance with the first sequence in equation (2.6). The function must be
zero in the interleavingdT/te − 1 (= 3) regions, containing points corresponding to elements
in the shorter subsequences of lengthM(= 3). The negative lower bound is reached by such
a function if every second non-zero region is inverted, as in the second sequence in equation
(2.6). Examples like this can be constructed for any lag, which indicates that the bounds given
by equation (1.2) and equation (1.1) are the best possible.

The short-dashed line on Figure 2.1 gives the quantitycos (π/(T/t + 1)) which is the bound
in equation (1.2) without application of thed·e function. As the lag approaches zero the bound

J. Inequal. Pure and Appl. Math., 3(1) Art. 15, 2002 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


6 R. WILLINK

0 1

α
1

y y

1-2y

(b)
x /T

f(x)

0 1

α
1

y

y

1-4y

β
y

y

(a)
x /T

f(x)

0 1

α

1

y

1-y

(c)
x /T

f(x)

T

Figure 3.1: Unimodal functions maximising the autocorrelation at lagy ≡ t/T . (a) 1/6 ≤ y < 1/4 (b)
1/4 ≤ y < 1/2 (c) 1/2 ≤ y < 1

approaches this quantity, which itself approachescos(πt/T ). Also, using equation (2.6) for
sequences with increasing length, the shape of the pulse maximising the correlation approaches
in some sense the half-cyclesin(πx/T ) for 0 < x ≤ T .

3. UNIMODAL FUNCTIONS

Consider the subset of pulses which are non-negative and unimodal, i.e. with a single modal
point or plateau that might contain either extreme point 0 orT . An example is the central lobe
of a sinc, i.e.(sin x)/x, or sinc-squared function, as might be the form off(x) in the medical
ultrasonics example. The bound of interest is the upper bound.

The discussion in the previous section suggests that for such functions the upper bound given
in equation (1.2) is only reached whenT/t is an integer and the function comprisesT/t level
sections each of lengtht with heights which are equally spaced samples of a half-sinusoid.

For general values ofT/t a Monte Carlo technique was used to find the unimodal pulse
shape maximising the autocorrelation for a given lag. (An analytical derivation was not found.)
Random unimodal sequences of lengthN = 8 were created by the cumulative summation of
uniform random numbers either side of a randomly selected mode. This was carried out109

times, and for each lag the sequence giving the maximum autocorrelation was recorded. For
y ≤ 1/2 the sequences suggested were symmetric, so109 symmetric sequences of bothN = 13
andN = 16 were studied. The sequences and functions strongly suggested by this technique
are stepwise. Consider the autocorrelation as a function of the lag proportiony ≡ t/T . For
y < 1/2 the function suggested is symmetric, stepwise and of the family including Figures 3.1a
and 3.1b. Fory ≥ 1/2 the function suggested is of the form shown in Figure 3.1c (or its
reflection about the axisx/T = 1/2).

In Figure 3.1 the modal region in each case is scaled to have height 1. Assuming these
forms are correct, expressions are found for the maximum autocorrelation by setting to zero
the derivatives of the autocorrelation with respect to the unknown levels,α (andβ), solving
a polynomial equation to obtain these levels, and calculating the autocorrelation. Thus the
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BOUNDS ON AUTOCORRELATION 7

autocorrelation for a unimodal function is bounded by

(3.1) 0 ≤ A(t) ≤



5y−1+
√

(1−2y−3y2)
4y

1
5
≤ y < 1

4

y
3y−1+

√
(1−4y+5y2)

1
4
≤ y < 1

3

3y−1+
√

(1+2y−7y2)
4y

1
3
≤ y < 1

2

1
2

√
( 1

y
− 1) 1

2
≤ y < 1.

The upper bound is continuous and is the long-dashed line in Figure 2.1.
The two dashed lines on Figure 2.1 are close betweeny = 1/5 andy = 1/3 and, by sug-

gestion, will be close for lower values ofy also. Therefore, fory ≤ 1/3 the short-dashed line
provides an approximate bound, and for a unimodal function the inequality

(3.2) 0 ≤ A(t) <≈ cos

(
π

T/t + 1

)
0 < t

T
≤ 1

3

might be used in place of equation (3.1).
The levelsα (andβ) in the functions of Figure 3.1 attaining the upper bound in equation (3.1)

are simply related to this bound. LetV be the upper bound listed in equation (3.1). Thenα = V
andβ = 1/2 for 1/5 ≤ y < 1/4, α = 1/(2V ) for 1/4 ≤ y < 1/3, α = V for 1/3 ≤ y < 1/2
and α = 2V for 1/2 ≤ y < 1.

As with equation (1.1) an inequality for square-summable functions which are non-negative
and unimodal in(a, b] can be written using equation (3.1) or equation (3.2).

4. CONCAVE FUNCTIONS

A similar Monte Carlo analysis was performed for the subset of non-negative unimodal pulses
which are concave, i.e. have a second derivative which is zero or negative at all points in the
interval. The stepwise forms of Figure 3.1 are then excluded. Preliminary results suggested that
the concave pulse maximising the autocorrelation for any fixed lag is symmetric. Subsequently
109 random symmetric concave sequences of lengthP = 14 were generated. The observed
maximum autocorrelations of these sequences for lagsp = 1, . . . , 13 are marked on Figure 2.1
together with the trivial bound of 1 for lag zero. The results forp ≥ 7 suggest that the maximum
autocorrelation for lagt/T ≥ 1/2 lies on the straight line ‘bound = 1 − t/T ’ and the max-
imising function is uniform. Forp < 7 the maximum autocorrelations appear to lie just below
the short-dashed line. The corresponding sequences suggest that the maximising function is of
the form shown normalised in Figure 4.1, where outside a central curved section the function is
linear. With an increase iny, the quantitiesγ andδ increase and the absolute slope of the linear
regions decreases. Asy decreases the function approaches a half-cycle of a sinusoid.

The cross marks lie close to the short-dashed line in Figure 2.1. This suggests that for a
concave function the inequality

(4.1) 0 ≤ A(t) <≈

{
cos
(

π
T/t+1

)
0 < t

T
< 1

2

1− t
T

1
2
≤ t

T
≤ 1

may be more useful than equation (1.2).
As with equation (1.1) an inequality for square-summable functions which are non-negative

and concave in some interval(a, b] can be written using this result.
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Figure 4.1: The concave function maximising the autocorrelation at lagy ≡ t/T for y < 1/2.

5. SUMMARY

The autocorrelation of any square-summable pulsef(x) of durationT at lagt is bounded by∣∣∣∣∣
∫ T−t

0
f(x) f(x + t) dx∫ T

0
f 2(x) dx

∣∣∣∣∣ ≤ cos

(
π

dT/te+ 1

)
0 < t ≤ T,

which is equation (1.2). Similarly, the right-hand side is a bound on the autocorrelation of a
pulse at a lag which is at least a proportiont/T of the pulse duration.

The magnitude of the bound is depicted by the stepwise solid line of Figure 2.1. If only
non-negative and unimodal pulses are permitted then, using a Monte-Carlo method, suggested
bounds are given by equation (3.1), the upper bound is shown by the long-dashed line of Fig-
ure 2.1 and approximate bounds are given by equation (3.2). If only pulses which are non-
negative and concave are permitted then, using a Monte-Carlo method, approximate bounds are
given by equation (4.1).

The importance of the sine and cosine functions in this analysis is evident. The pulses and se-
quences attaining the bounds are constrained by half-cycles of a sinusoid. As the lag approaches
zero each upper bound approaches 1 according tocos(πt/T ) and the shape of pulse maximis-
ing the correlation approaches in some sense a half-cycle of a sinusoid, which is unimodal and
concave.

Each of these inequalities can be modified to apply to real functions square-summable on
some interval. For any such functionf(x) and interval(a, b] the appropriate inequality is∣∣∣∣∣

∫ b−t

a
f(x) f(x + t) dx∫ b

a
f 2(x) dx

∣∣∣∣∣ ≤ cos

(
π⌈

b−a
t

⌉
+ 1

)
0 < t ≤ b− a,

which is equation (1.1).
In addition, bounds on the autocorrelation of any real sequence{fn} of lengthP at lagp are

given by ∣∣∣∣∣
∑P−p

n=1 fnfn+p∑P
n=1 f 2

n

∣∣∣∣∣ ≤ cos

(
π

dP/pe+ 1

)
,

which is equation (2.7). Forp = 1 the extreme correlations are given by equation (2.5) and the
corresponding sequences by equation (2.6).
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