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1. I NTRODUCTION

The theory of variational inequalities is a branch of the mathematical sciences dealing with
general equilibrium problems. It has a wide range of applications in economics, operations
research, industry, physical, and engineering sciences. Many research papers have been written
lately, both on the theory and applications of this field. Important connections with main areas
of pure and applied sciences have been made, see for example [1, 12, 13] and the references
cited therein.

One of the typical formulations of the variational inequality problem found in the literature
is the following

(VI) Find a pointx∗ ∈ C andy∗ ∈ F (x∗) satisfying 〈y∗, x− x∗〉 ≥ 0, for all x ∈ C,

whereC is a subset of a Hilbert spaceH and F : H ⇒ H is a set-valued mapping. A
tremendous amount of research has been done in the case whereC is convex, both on the
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2 MESSAOUDBOUNKHEL, LOTFI TADJ, AND ABDELOUAHED HAMDI

existence of solutions of (VI) and the construction of solutions, see for example [7, 13, 15, 19].
Only the existence of solutions of (VI) has been considered in the case whereC is nonconvex,
see for instance [5]. To the best of our knowledge, nothing has been done concerning the
construction of solutions in this case.

In this paper we first generalize problem (VI) to take into account the nonconvexity of the
setC and then construct a suitable algorithm to solve the generalized (VI). Note that (VI) is
usually a reformulation of some minimization problem of some functional over convex sets.
For this reason, it does not make sense to generalize (VI) by just replacing the convex sets by
nonconvex ones. Also, a straightforward generalization to the nonconvex case of the techniques
used when setC is convex cannot be done. This is because these techniques are strongly based
on properties of the projection operator over convex sets and these properties do not hold in
general whenC is nonconvex. Based on the above two arguments, and to take advantage of the
techniques used in the convex case, we propose to reformulate problem (VI) whenC is convex
as the following equivalent problem

(VP) Find a pointx∗ ∈ C : F (x∗) ∩ −N(C; x∗) 6= ∅,

whereN(C; x) denotes the normal cone ofC atx in the sense of convex analysis. Equivalence
of problems (VI) and (VP) will be proved in Proposition 2.3 below. The corresponding problem
whenC is not convex will be denoted (NVP). This reformulation allows us to consider the
resolution of problem (NVP) as the desired suitable generalization of the problem (VI). We
point out that the resolution of (VI) withC nonconvex is not, at least from our point of view, a
good way for such generalization. Our idea of the generalization is inspired from [5] (see also
[18]) where the authors studied the existence of generalized equilibrium.

In the present paper we make use of some recent techniques and ideas from nonsmooth analy-
sis [5, 6] to overcome the difficulties that arise from the nonconvexity of the setC. Specifically,
we will be considering the class of uniformly prox-regular sets (see Definition 2.1) which is
sufficiently large to include the class of convex sets,p-convex sets (see [8]),C1,1 submanifolds
(possibly with boundary) ofH, the images under aC1,1 diffeomorphism of convex sets, and
many other nonconvex sets (for more details see [8, 10]).

The paper is organized as follows: In Section 2 we recall some definitions and notation,
and prove some useful results that will be needed in the paper. In Section 3 we propose an
algorithm to solve problem (NVP) and prove its well-definedness and its convergence under
the uniform prox-regularity assumption onC and the strong monotonicity assumption onF .
The results proved in Section 3 are extended in Section 4 in two ways: In the first one, we
assume thatF = F1 + F2, whereF1 is a strongly monotone set-valued mapping andF2 is
a Hausdorff Lipschitz set-valued mapping not necessarily monotone. In this caseF is not
necessarily strongly monotone. In the second one, the setC is assumed to be a set-valued
mapping ofx. In this case, problem (NVP) becomes

(SNVP) Find a pointx∗ ∈ C(x∗) : F (x∗) ∩ −N(C(x∗); x∗) 6= ∅.

2. PRELIMINARIES

Throughout the paper,H will be a Hilbert space. LetC be a nonempty closed subset of
H. We denote bydC (·) or d(·, C) the usual distance function to the subsetC, i.e., dC(x) :=
infu∈C ‖x− u‖. We recall (see [11]) thatthe proximal normal coneof C atx is given by

NP (C; x) := {ξ ∈ H : ∃α > 0 s.t.x ∈ ProjC(x + αξ)},

where
ProjC(x) := {x′ ∈ S : dC(x) = ‖x− x′‖}.
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ITERATIVE SCHEMES FORVARIATIONAL PROBLEMS 3

Equivalently (see for example [11]),NP (C; x) can be defined as the set of allξ ∈ H for which
there existσ, δ > 0 such that

〈ξ, x′ − x〉 ≤ σ‖x′ − x‖2 for all x′ ∈ (x + δIB) ∩ C.

Note that the above inequality is satisfied locally. In Proposition 1.1.5 of [11], the authors give
a characterization ofNP (C; x) where the inequality is satisfied globally. For completeness, we
reproduce that proposition as the following:-

Lemma 2.1. Let C be a nonempty closed subset inH, thenξ ∈ NP (C; x) if and only if there
existsσ > 0 such that

〈ξ, x′ − x〉 ≤ σ‖x′ − x‖2 for all x′ ∈ C.

We recall also (see [9]) that theClarke normal coneis given by

NC(C; x) = co [NP (C; x)],

whereco[S] means the closure of the convex hull ofS. It is clear that one always hasNP (C; x) ⊂
NC(C; x). The converse is not true in general. Note thatNC(C; x) is always a closed and
convex cone and thatNP (C; x) is always a convex cone but may be nonclosed (see [9, 11]).
Furthermore, ifC is convex all the existing normal cones coincide with the normal cone in the
sense of convex analysisNCon(C; x) given by

NCon(C; x) := {y ∈ H : 〈y, x′ − x〉 ≤ 0, for all x′ ∈ C}.
We will present an algorithm to solve problem (NVP). The algorithm is an adaptation of

the standard projection algorithm that we reproduce below for completeness (for more details
concerning this type of projection and convergence analysis in the convex case we refer the
reader to [13] and the references therein).

Algorithm 2.1.

(1) Selectx0 ∈ H, y0 ∈ F (x0), and ρ > 0.
(2) Forn ≥ 0, compute: zn+1 = xn − ρyn and select:xn+1 ∈ ProjC(zn+1), yn+1 ∈

F (xn+1).

It is well known that the projection algorithm above has been introduced in the convex case
([13]) and its convergence proved. Observe that Algorithm 2.1 is well defined provided the
projection onC is not empty. The convexity assumption onC, made by researchers considering
Algorithm 2.1, is not required for its well definedness because it may be well defined, even in
the nonconvex case (for example whenC is a closed subset of a finite dimensional space, or
when C is a compact subset of a Hilbert space, etc.). Rather, convexity is required for its
convergence analysis. Our adaptation of the projection algorithm is based on the following two
observations:

(1) The sequence of points{zn}n that it generates must be sufficiently close toC.
(2) The projection operatorProjC(·) must be Lipschitz on an open set containing the se-

quence of points{zn}n.

Recently, a new class of nonconvex sets, calleduniformly prox-regular sets(see [17, 6])
(called proximally smooth sets in the original paper [10]), has been introduced and studied
in [10]. It has been successfully used in many nonconvex applications such as optimization,
economic models, dynamical systems, differential inclusions, etc. For such applications see
[2, 3, 4, 5, 6]. This class seems particularly well suited to overcome the difficulties which arise
due to the nonconvexity assumption onC. We take the following characterization proved in
[10] as a definition of this class. We point out that the original definition was given in terms of
the differentiability of the distance function (see [10]).
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Definition 2.1. For a givenr ∈]0, +∞], a subsetC is uniformly prox-regular with respect tor
(we will say uniformlyr-prox-regular)(see [10]) if and only if every nonzero proximal normal
to C can be realized by anr-ball. This means that for all̄x ∈ C and all0 6= ξ ∈ NP (C; x̄) one
has 〈

ξ

‖ξ‖
, x− x̄

〉
≤ 1

2r
‖x− x̄‖2,

for all x ∈ C.

We make the convention1
r

= 0 for r = +∞. Recall that forr = +∞ the uniformr-prox-
regularity ofC is equivalent to the convexity ofC, which makes this class of great importance.

The following proposition summarizes some important consequences of the uniform prox-
regularity needed in the sequel. For the proof of these results we refer the reader to [10, 17].

Proposition 2.2. Let C be a nonempty closed subset inH and letr ∈]0, +∞]. If the subsetC
is uniformlyr-prox-regular then the following hold:

i) For all x ∈ H with dC(x) < r, one hasProjC(x) 6= ∅;
ii) Let r′ ∈ (0, r). The operatorProjC is Lipschitz with rank r

r−r′
onCr′;

iii) The proximal normal cone is closed as a set-valued mapping.
iv) For all x ∈ C and all0 6= ξ ∈ NP (C; x) one has〈

ξ

‖ξ‖
, x′ − x

〉
≤ 2

r
‖x′ − x‖2 + dC(x′),

for all x′ ∈ H with dC(x′) < r.

As a direct consequence of Part (iii) of Proposition 2.2, we haveNC(C; x) = NP (C; x). So,
we will denoteN(C; x) := NC(C; x) = NP (C; x) for such a class of sets.

In order to make clear the concept ofr-prox-regular sets, we state the following concrete
example: The union of two disjoint intervals[a, b] and [c, d] is r-prox-regular withr = c−b

2
.

The finite union of disjoint intervals is alsor-prox-regular and ther depends on the distances
between the intervals (for more concrete examples and for a general study of the class ofr-
prox-regular sets we refer to a forthcoming paper by the first author).

The following proposition establishes the relationship between (VI) and (VP) in the convex
case.

Proposition 2.3. If C is convex, then (VI)⇐⇒ (VP).

Proof. It follows directly from the above definition ofNCon(C; x). �

The next proposition shows that the nonconvex variational problem (NVP) can be rewritten
as the following nonconvex variational inequality:

(NVI) Find x∗ ∈ C y∗ ∈ F (x∗) s.t. 〈y∗, x− x∗〉+
‖y∗‖
2r

‖x− x∗‖2 ≥ 0, x ∈ C.

Proposition 2.4. If C is r-prox-regular, then (NVI)⇐⇒ (NVP).

Proof. (=⇒) Let x∗ ∈ C be a solution of (NVI), i.e., there existsy∗ ∈ F (x∗) such that

〈y∗, x− x∗〉+
‖y∗‖
2r

‖x− x∗‖2 ≥ 0, for all x ∈ C.

If y∗ = 0, then we are done because the vector zero always belongs to any normal cone. If
y∗ 6= 0, then, for allx ∈ C, one has〈

−y∗

‖y∗‖
, x− x∗

〉
≤ 1

2r
‖x− x∗‖2.
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Therefore, by Lemma 2.1 one gets−y∗

‖y∗‖ ∈ N(C; x∗) and so−y∗ ∈ N(C; x∗), which completes
the proof of the necessity part.

(⇐=) It follows directly from the definition of prox-regular sets in Definition 2.1. �

In what follows we will letC be a uniformlyr′-prox-regular subset ofH with r′ > 0 and we
will let r ∈ (0, r′). Now, we are ready to present our adaptation of Algorithm 2.1 to the uniform
prox-regular case.

3. M AIN RESULTS

3.1. F Strongly Monotone. Our first algorithm 3.1 below is proposed to solve problem (NVP).

Algorithm 3.1.

(1) Selectx0 ∈ C, y0 ∈ F (x0), and ρ > 0.
(2) For n ≥ 0, compute:zn+1 = xn − ρyn and select:xn+1 ∈ ProjC(zn+1), yn+1 ∈

F (xn+1).

In our analysis we need the following assumptions onF :

AssumptionsA1.
(1) F : H ⇒ H is strongly monotone onC with constantα > 0, i.e., there existsα > 0

such that∀x, x′ ∈ C

〈y − y′, x− x′〉 ≥ α‖x− x′‖2, ∀y ∈ F (x), y′ ∈ F (x′).

(2) F has nonempty compact values inH and is Hausdorff Lipschitz continuous onC with
constantβ > 0, i.e., there existsβ > 0 such that∀x, x′ ∈ C

H(F (x), F (x′)) ≤ β‖x− x′‖.
HereH stands for the Hausdorff distance relative to the norm associated with the Hilbert
spaceH defined by

H(A, B) := max{sup
a∈A

dB(a), sup
b∈B

dA(b)}.

(3) The constantsα andβ satisfy the following inequality:

αζ > β
√

ζ2 − 1,

whereζ = r′

r′−r
.

Theorem 3.1. Assume thatA1 holds and that for each iteration the parameterρ satisfies the
inequalities

α

β2
− ε < ρ < min

{
α

β2
+ ε,

r

‖yn‖+ 1

}
,

whereε =

√
(αζ)2−β2(ζ2−1)

ζβ2 , then the sequences{zn}n, {xn}n, and{yn}n generated by Algo-
rithm 3.1 converge strongly to somez∗, x∗, andy∗ respectively, andx∗ is a solution of (NVP).

Proof. From Algorithm 3.1, we have

‖zn+1 − zn‖ =
∥∥(xn − ρyn)−

(
xn−1 − ρyn−1

)∥∥
=

∥∥xn − xn−1 − ρ(yn − yn−1)
∥∥ .

As the elements{xn}n belong toC by construction and by using the fact thatF is strongly
monotone and Hausdorff Lipschitz continuous onC, we have:〈

yn − yn−1, xn − xn−1
〉
≥ α

∥∥xn − xn−1
∥∥2

,
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and ∥∥yn − yn−1
∥∥ ≤ H(F (xn), F (xn−1)) ≤ β

∥∥xn − xn−1
∥∥

respectively. Note that∥∥xn − xn−1 − ρ(yn − yn−1)
∥∥2

=
∥∥xn − xn−1

∥∥2 − 2ρ
〈
yn − yn−1, xn − xn−1

〉
+ ρ2

∥∥yn − yn−1
∥∥2

.

Thus, we obtain∥∥xn − xn−1 − ρ(yn − yn−1)
∥∥2

≤
∥∥xn − xn−1

∥∥2 − 2ρα
∥∥xn − xn−1

∥∥2
+ ρ2β2

∥∥xn − xn−1
∥∥2

,

i.e., ∥∥xn − xn−1 − ρ(yn − yn−1)
∥∥2 ≤ (1− 2ρα + ρ2β2)

∥∥xn − xn−1
∥∥2

.

So, ∥∥xn − xn−1 − ρ(yn − yn−1)
∥∥ ≤ √

1− 2ρα + ρ2β2
∥∥xn − xn−1

∥∥ .

Finally, we deduce directly that:∥∥zn+1 − zn
∥∥ ≤ √

1− 2ρα + ρ2β2
∥∥xn − xn−1

∥∥ .

Now, by the choice ofρ in the statement of the theorem,ρ < r
‖yn‖+1

, we can easily check that
the sequence of points{zn}n belongs toCr := {x ∈ H : dC(x) < r}. Consequently, the
Lipschitz property of the projection operator onCr mentioned in Proposition 2.2, yields∥∥xn+1 − xn

∥∥ =
∥∥ProjC(zn+1)− ProjC(zn)

∥∥
≤ ζ

∥∥zn+1 − zn
∥∥

≤ ζ
√

1− 2ρα + ρ2β2
∥∥xn − xn−1

∥∥ .

Let ξ = ζ
√

1− 2ρα + ρ2β2. Our assumption(3) in A1 and the choice ofρ in the statement
of the theorem yieldξ < 1. Therefore, the sequence{xn}n is a Cauchy sequence and hence it
converges strongly to some pointx∗ ∈ H. By using the continuity of the operatorF , the strong
convergence of the sequences{yn}n and{zn}n follows directly from the strong convergence of
{xn}n.

Let y∗ andz∗ be the limits of the sequences{yn}n and{zn}n respectively. It is obvious that
z∗ = x∗−ρy∗ with x∗ ∈ C, y∗ ∈ F (x∗). We wish to show thatx∗ is the solution of our problem
(NVP).

By construction we have, for alln ≥ 0,

xn+1 ∈ ProjC(zn+1) = ProjC(xn − ρyn),

which gives, by the definition of the proximal normal cone,

(xn − xn+1)− ρyn ∈ N(C; xn+1).

Using the closedness property of the proximal normal cone in (iii) of Proposition 2.2 and by
lettingn →∞ we get

ρy∗ ∈ −N(C; x∗).

Finally, asy∗ ∈ F (x∗) we conclude that−N(C; x∗)∩F (x∗) 6= ∅ with x∗ ∈ C. This completes
the proof. �
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Remark 3.2. If C is given in an explicit form, then we select, for the starting point,x0 in
C. However, if we do not know the explicit form ofC, then the choice ofx0 ∈ C may
not be possible. Assume we know, instead, an explicit form of aδ-neighborhood ofC, with
δ < r/2. So, we start with a pointx0 in theδ-neighborhood and instead of Algorithm 3.1, we
use Algorithm 3.2 below. The convergence analysis of Algorithm 3.2 can be conducted along
the same lines under the following choice ofρ:

α

β2
− ε < ρ < min

{
α

β2
+ ε,

δ

‖yn‖+ 1

}
.

Indeed, ifx0 ∈ δ-neighborhood ofC, thenz1 := x0 − ρy0 and so

d(z1, C) ≤ d(x0, C) + ρ‖y0‖ < δ +
δ

‖y0‖+ 1
‖y0‖ < δ + δ = 2δ < r.

Therefore, we can projectz1 onC to getx1 ∈ C, and then all subsequent points of the sequence
xn will be in C.

Algorithm 3.2.

(1) Selectx0 ∈ C + δB, with 0 < 2δ < r, y0 ∈ F (x0), and ρ > 0.
(2) For n ≥ 0, compute:zn+1 = xn − ρyn and select:xn+1 ∈ ProjC(zn+1), yn+1 ∈

F (xn+1).

Remark 3.3. An inspection of the proof of Theorem 3.1 shows that the sequence{yn}n is
bounded. We state two sufficient conditions ensuring the boundedness of the sequence{yn}n:

(1) The set-valued mappingF is bounded onC.
(2) The setC is bounded and the set-valued mappingF has the linear growth property on

C, that is,
F (x) ⊂ α1(1 + ‖x‖)B,

for someα1 and for allx ∈ C.

3.2. F Not Necessarily Strongly Monotone.We end this section by noting that our result in
Theorem 3.1 can be extended (see Theorem 3.4 below) to the caseF = F1 + F2 whereF1 is
a Hausdorff Lipschitz set-valued mapping, strongly monotone onC andF2 is only a Hausdorff
Lipschitz set-valued mapping onC, but not necessarily monotone. It is interesting to point
out that, in this case,F is not necessarily strongly monotone onC and so the following result
cannot be covered by our previous result. In this case Algorithm 3.1 becomes:

Algorithm 3.3.

(1) Selectx0 ∈ C, y0 ∈ F1(x
0), w0 ∈ F2(x

0) andρ > 0.
(2) For n ≥ 0, compute:zn+1 = xn − ρ(yn + wn) and select:xn+1 ∈ ProjC(zn+1),

yn+1 ∈ F1(x
n+1), wn+1 ∈ F2(x

n+1).

The following assumptions onF1 andF2 are needed for the proof of the convergence of
Algorithm 3.3.

AssumptionsA2.

(1) F1 is strongly monotone onC with constantα > 0.
(2) F1 andF2 have nonempty compact values inH and are Hausdorff Lipschitz continuous

onC with constantβ > 0 andη > 0, respectively.
(3) The constantsα, ζ, η, andβ satisfy the following inequality:

αζ > η +
√

(β2 − η2)(ζ2 − 1).
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Theorem 3.4. Assume thatA2 holds and that for each iteration the parameterρ satisfies the
inequalities

αζ − η

ζ(β2 − η2)
− ε < ρ < min

{
αζ − η

ζ(β2 − η2)
+ ε,

1

ηζ
,

r

‖yn + wn‖+ 1

}
,

whereε =

√
(αζ−η)2−(β2−η2)(ζ2−1)

ζ(β2−η2)
, then the sequences{zn}n, {xn}n, and{yn}n generated by

Algorithm 3.3 converge strongly to somez∗, x∗, and y∗ respectively, andx∗ is a solution of
(NVP) associated to the set-valued mappingF = F1 + F2.

Proof. The proof follows the same lines as the proof of Theorem 3.1 with slight modifications.
From Algorithm 3.3, we have∥∥zn+1 − zn

∥∥ =
∥∥[xn − ρ(yn + wn)]−

[
xn−1 − ρ(yn−1 + wn−1

]∥∥
≤

∥∥xn − xn−1 − ρ(yn − yn−1)
∥∥ + ρ

∥∥wn − wn−1
∥∥ .

As the elements{xn}n belong toC by construction and by using the fact thatF1 is strongly
monotone and Hausdorff Lipschitz continuous onC, we have:〈

yn − yn−1, xn − xn−1
〉
≥ α

∥∥xn − xn−1
∥∥2

,

and ∥∥yn − yn−1
∥∥ ≤ H(F1(x

n), F1(x
n−1)) ≤ β

∥∥xn − xn−1
∥∥ .

Note that∥∥xn − xn−1 − ρ(yn − yn−1)
∥∥2

=
∥∥xn − xn−1

∥∥2 − 2ρ
〈
yn − yn−1, xn − xn−1

〉
+ ρ2

∥∥yn − yn−1
∥∥2

.

Thus, a simple computation yields∥∥xn − xn−1 − ρ(yn − yn−1)
∥∥2 ≤ (1− 2ρα + ρ2β2)

∥∥xn − xn−1
∥∥2

.

On the other hand, sinceF2 is Hausdorff Lipschitz continuous onC, we have∥∥wn − wn−1
∥∥ ≤ H(F2(x

n), F2(x
n−1)) ≤ η

∥∥xn − xn−1
∥∥ .

Finally, ∥∥zn+1 − zn
∥∥ ≤ √

1− 2ρα + ρ2β2
∥∥xn − xn−1

∥∥ + ρη
∥∥xn − xn−1

∥∥ .

Now, by the choice ofρ in the statement of the theorem and the Lipschitz property of the
projection operator onCr mentioned in Proposition 2.2, we have∥∥xn+1 − xn

∥∥ =
∥∥ProjC(zn+1)− ProjC(zn)

∥∥
≤ ζ

∥∥zn+1 − zn
∥∥

≤ ζ
(√

1− 2ρα + ρ2β2 + ρη
) ∥∥xn − xn−1

∥∥ .

Let ξ = ζ
(√

1− 2ρα + ρ2β2 + ρη
)

. Our assumption(3) in A2 and the choice ofρ in the

statement of the theorem yieldξ < 1. Therefore, the proof is completed. �

Remark 3.5.
(1) Theorem 3.4 generalizes the main result in [15] to the case whereC is nonconvex.
(2) As we have observed in Remark 3.2, Algorithm 3.3 may also be adapted to the case

where the starting pointx0 is selected in aδ-neighborhood of the setC with 0 < 2δ < r.
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4. EXTENSION

In this section we are interested in extending the results obtained so far to the case where
the setC, instead of being fixed, is a set-valued mapping. Besides being a more general case,
it also has many applications, see for example [1]. The problem that will be considered is the
following:

(SNVP) Find a pointx∗ ∈ C(x∗) : F (x∗) ∩ −N(C(x∗); x∗) 6= ∅.

This problem will be called the Set-valued Nonconvex Variational Problem (SNVP). We need
the following proposition which is an adaptation of Theorem 4.1 in [6] (see also Theorem 2.1
in [4]) to our problem. We recall the following concept of Lipschitz continuity for set-valued
mappings: A set-valued mappingC is said to be Lipschitz if there existsκ > 0 such that

|d(y, C(x))− d(y′, C(x′))| ≤ ‖y − y′‖+ κ‖x− x′‖,

for all x, x′, y, y′ ∈ H. In such a case we also say thatC is Lipschitz continuous with constant
κ. It is easy to see that for set-valued mappings the above concept of Lipschitz continuity is
weaker than the Hausdorff Lipschitz continuity.

Proposition 4.1. Let r ∈]0, +∞] and let C : H ⇒ H be a Lipschitz set-valued mapping
with uniformlyr-prox-regular values, then, the following closedness property holds: “For any
xn → x∗, yn → y∗, andun → u∗ with yn ∈ C(xn) andun ∈ N(C(xn); yn), one hasu∗ ∈
N(C(x∗); y∗)”.

Proof. Let xn → x∗, yn → y∗, andun → u∗ with yn ∈ C(xn) andun ∈ N(C(xn); yn). If
u∗ = 0, then we are done. Assume thatu∗ 6= 0 (henceun 6= 0 for n large enough). Observe
first thaty∗ ∈ C(x∗) becauseC is Lipschitz continuous. Asyn → y∗, for n sufficiently large,
yn ∈ y∗ + r

2
B. Therefore, the uniformr-prox-regularity of the images ofC and Proposition 2.2

(iv) give 〈
un

‖un‖
, z − yn

〉
≤ 2

r
‖z − yn‖2 + dC(xn)(z),

for all z ∈ H with dC(xn)(z) < r. This inequality still holds forn sufficiently large and for all
z ∈ y∗ + δB with 0 < δ < r

2
, because for suchz,

dC(xn)(z) ≤ ‖z − y∗‖+ ‖y∗ − yn‖ ≤ δ +
r

2
< r.

Consequently, the continuity of the distance function with respect to both variables (becauseC
is Lipschitz continuous) and the above inequality give, by lettingn → +∞,〈

u∗

‖u∗‖
, z − y∗

〉
≤ 2

r
‖z − y∗‖2 + dC(x∗)(z) for all z ∈ y∗ + δB.

Hence, 〈
u∗

‖u∗‖
, z − y∗

〉
≤ 2

r
‖z − y∗‖2 for all z ∈ (y∗ + δB) ∩ C(x∗).

This ensures, by the equivalent definition (given on page 2) of the proximal normal cone, that
u∗

‖u∗‖ ∈ N(C(x∗); y∗) and sou∗ ∈ N(C(x∗); y∗). This completes the proof of the proposition.
�

In all that follows,C will be a set-valued mapping with nonempty closedr′-prox-regular
values for somer′ > 0. We will also letr ∈ (0, r′) andζ = r′

r′−r
.
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4.1. F Strongly Monotone. The next algorithm, Algorithm 4.1, solves problem (SNVP).

Algorithm 4.1.

(1) Selectx0 ∈ C(x0), y0 ∈ F (x0), and ρ > 0.
(2) Forn ≥ 0, compute:zn+1 = xn − ρyn and select:xn+1 ∈ ProjC(xn)(z

n+1), yn+1 ∈
F (xn+1).

We make the following assumptions on the set-valued mappingsF andC:

AssumptionsA3.

(1) F has nonempty compact values and is strongly monotone with constantα > 0.
(2) F is Hausdorff Lipschitz continuous andC is Lipschitz continuous with constantsβ > 0

and0 < κ < 1 respectively.
(3) For some constant0 < k < 1, the operatorProjC(·)(·) satisfies the condition∥∥ProjC(x)(z)− ProjC(y)(z)

∥∥ ≤ k ‖x− y‖ , for all x, y, z ∈ H.

(4) Letλ be a sufficiently small positive constant such that0 < λ < r(1−κ)
1+3κ

.
(5) The constantsα, β, ζ andk satisfy:

αζ > β
√

ζ2 − (1− k)2.

Theorem 4.2. Assume thatA3 holds and that for each iteration the parameterρ satisfies the
inequalities

α

β2
− ε < ρ < min

{
α

β2
+ ε,

λ

‖yn‖+ 1

}
,

whereε =

√
(αζ)2−β2[ζ2−(1−k)2])

ζβ2 , then the sequences{zn}n, {xn}n, and {yn}n generated by
Algorithm 4.1 converge strongly to somez∗, x∗, and y∗ respectively, andx∗ is a solution of
(SNVP).

We prove the following lemma needed in the proof of Theorem 4.2. It is of interest in its own
right.

Lemma 4.3. Under the hypothesis of Theorem 4.2, the sequences of points{xn}n and{zn}n

generated by Algorithm 4.1 are such that:

zn andzn+1 ∈ [C(xn)]r := {y ∈ H : dC(xn)(y) < r}, for all n ≥ 1.

Proof. Observe that by the definition of the algorithm,

d(z1, C(x0)) = d(x0 − ρy0, C(x0)) ≤ d(x0, C(x0)) + ρ‖y0‖ ≤ λ.

Forn = 1, we have by (2),(3), and (4) ofA3,

d(z2, C(x1)) = d(x1 − ρy1, C(x1))

≤ d(x1, C(x1))− d(x1, C(x0)) + ρ‖y1‖
≤ κ‖x1 − x0‖+ λ,

and by the Lipschitz continuity ofC, once again, and the first inequality of this proof we get

d(z1, C(x1)) ≤ d(z1, C(x0)) + κ‖x1 − x0‖
= d(x0 − ρy0, C(x0)) + κ‖x1 − x0‖
≤ λ + κ‖x1 − x0‖.
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On the other hand, we have

‖x1 − x0‖ ≤ ‖x1 − z1‖+ ‖z1 − x0‖
= d(z1, C(x0)) + ‖z1 − x0‖
= d(x0 − ρy0, C(x0)) + ρ‖y0‖ < 2λ.

Thus, we see that bothd(z2, C(x1)) andd(z1, C(x1)) are less than2κλ + λ which is itself
strictly less thanr. Similarly, we have for generaln,

d(zn+1, C(xn)) ≤ d(xn, C(xn)) + ρ‖yn‖ ≤ κ‖xn − xn−1‖+ λ

and

d(zn, C(xn)) ≤ d(zn, C(xn−1)) + κ‖xn − xn−1‖
≤ κ‖xn−1 − xn−2‖+ λ + κ‖xn − xn−1‖.

On the other hand,

‖xn − xn−1‖ ≤ ‖xn − zn‖+ ‖zn − xn−1‖
≤ d(zn, C(xn−1)) + λ

≤ d(xn−1, C(xn−1))− d(xn−1, C(xn−2)) + 2λ

≤ κ‖xn−1 − xn−2‖+ 2λ.

Hence, using that‖x1 − x0‖ < 2λ, we get

‖xn − xn−1‖ ≤ 2λ(1− κn)

1− κ
.

Therefore,

d(zn+1, C(xn)) ≤ 2κλ(1− κn)

1− κ
+ λ

≤ λ
1 + κ− 2κn+1

1− κ

<
λ(1 + 3κ)

1− κ
< r,

and

d(zn, C(xn)) ≤ κ
∥∥xn−1 − xn−2

∥∥ + λ + κ
∥∥xn − xn−1

∥∥
≤ (κ2 + κ)

∥∥xn−1 − xn−2
∥∥ + 2λκ + λ

≤ (κ2 + κ)
2λ(1− κn−1)

1− κ
+ 2λκ + λ

≤ λ(1 + 3κ)

1− κ
< r.

This completes the proof. �

Proof of Theorem 4.2.Following the proof of Theorem 3.1 and using the fact thatF is strongly
monotone and Hausdorff Lipschitz continuous, we get, from Algorithm 4.1,

‖zn+1 − zn‖ ≤
√

1− 2ρα + ρ2β2‖xn − xn−1‖.
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On the other hand, by Lemma 4.3, we havezn andzn+1 ∈ [C(xn)]r and so Proposition 2.2
yields thatProjC(xn)(z

n) andProjC(xn)(z
n+1) are not empty, and the operatorProjC(xn)(·) is

ζ-Lipschitz on[C(xn)]r. Then, by the assumption (3) inA3,

‖xn+1 − xn‖ = ‖ProjC(xn)(z
n+1)− ProjC(xn−1)(z

n)‖
≤ ‖ProjC(xn)(z

n+1)− ProjC(xn)(z
n)‖+ ‖ProjC(xn)(z

n)− ProjC(xn−1)(z
n)‖

≤ ζ‖zn+1 − zn‖+ k‖xn − xn−1‖

≤
[
ζ
√

1− 2ρα + ρ2β2 + k
]
‖xn − xn−1‖.

Let ξ = ζ
√

1− 2ρα + ρ2β2 + k. Our assumptions (4) and (5) inA3 and the choice ofρ in the
statement of the theorem yieldξ < 1. As in the proof of Theorem 3.1, we can prove that the
sequences{xn}n, {yn}n, and{zn}n strongly converge to somex∗, y∗, z∗ ∈ H, respectively. It
is obvious to see thatz∗ = x∗ − ρy∗ with x∗ ∈ C(x∗), y∗ ∈ F (x∗). We wish to show thatx∗ is
the solution of our problem (SNVP).

By construction we have, for alln ≥ 0,

xn+1 ∈ ProjC(xn)(z
n+1) = ProjC(xn)(x

n − ρyn),

which gives, by the definition of the proximal normal cone,

(xn − xn+1)− ρyn ∈ N(C(xn); xn+1).

Using the closedness property of the proximal normal cone in Proposition 4.1 and by letting
n →∞ we get

ρy∗ ∈ −N(C(x∗); x∗).

Finally, asy∗ ∈ F (x∗) we conclude that−N(C(x∗); x∗) ∩ F (x∗) 6= ∅ with x∗ ∈ C(x∗). This
completes the proof. �

4.2. F Not Necessarily Strongly Monotone.We extend Theorem 4.2 to the caseF = F1+F2,
whereF1 is a Hausdorff Lipschitz set-valued mapping strongly monotone andF2 is only a
Hausdorff Lipschitz set-valued mapping. In this case Algorithm 4.1 becomes:

Algorithm 4.2.

(1) Selectx0 ∈ C(x0), y0 ∈ F1(x
0), w0 ∈ F2(x

0) and ρ > 0.
(2) Forn ≥ 0, compute:zn+1 = xn − ρ(yn + wn) and select:xn+1 ∈ ProjC(xn)(z

n+1),
yn+1 ∈ F1(x

n+1), wn+1 ∈ F2(x
n+1).

The following assumptions onF1 andF2 are needed for the proof of the convergence of
Algorithm 4.2.

AssumptionsA4.
(1) The assumptions on the set-valued mappingC are as inA3.
(2) F1 is strongly monotone with constantα > 0.
(3) F1 andF2 have nonempty compact values and are Hausdorff Lipschitz continuous with

constantβ > 0 andη > 0, respectively.
(4) The constantsα, β, η, ζ, andk satisfy the following inequality:

αζ > (1− k)η +
√

(β2 − η2)[ζ2 − (1− k)2].

Theorem 4.4. Assume thatA4 holds and that for each iteration the parameterρ satisfies the
inequalities

αζ − (1− k)η

ζ(β2 − η2)
− ε < ρ < min

{
αζ − (1− k)η

ζ(β2 − η2)
+ ε,

1− k

ζη
,

r

‖yn + wn‖+ 1

}
,
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whereε =

√
[αζ−(1−k)η]2−(β2−η2)[ζ2−(1−k)2]

ζ(β2−η2)
, then the sequences{zn}n, {xn}n, and {yn}n gen-

erated by Algorithm 4.2 converge strongly to somez∗, x∗, and y∗ respectively, andx∗ is a
solution of (SNVP) associated to the set-valued mappingF = F1 + F2.

Proof. As we adapted the proof of Theorem 3.1 to prove Theorem 3.4, we can adapt, in a similar
way, the proof of Theorem 4.2 to prove Theorem 4.4. �

Remark 4.5.
(1) Theorem 4.4 generalizes Theorem 3.4 in [14] to the case whereC is nonconvex.
(2) As we have observed in Remark 3.2, Algorithms 4.1 and 4.2 may be also adapted to the

case where the starting pointx0 is selected in aδ-neighborhood of the setC(x0) with
0 < 2δ < r.

Example 4.1.In many applications (see for example [1]) the set-valued mappingC has the form
C(x) = S +f(x), whereS is a fixed closed subset inH andf is a point-to-point mapping from
H to H. In this case, assumption (3) onC in A3 and the Lipschitz continuity ofC are satisfied
provided the mappingf is Lipschitz continuous. Indeed, it is not hard (using the relation below)
to show that, iff is γ-Lipschitz then the set-valued mappingC is γ-Lipschitz and satisfies the
assumption (3) inA3 with k = 2γ. Using the well known relation

x̄ ∈ ProjS+v(ū) ⇐⇒ x̄− v ∈ ProjS(ū− v),

Algorithms 4.1 and 4.2 can be rewritten in simpler forms. For example, Algorithm 4.2 becomes

Algorithm 4.3.

(1) Selectx0 ∈ (I − f)−1(S), y0 ∈ F1(x
0), w0 ∈ F2(x

0) and ρ > 0.
(2) Forn ≥ 0, compute:zn+1 = xn−f(xn)−ρ(yn+wn) and select:xn+1 ∈ ProjS(zn+1)+

f(xn), yn+1 ∈ F1(x
n+1), wn+1 ∈ F2(x

n+1).

HereI is the Identity operator fromH to H.

5. CONCLUSION

The algorithms proposed here can be extended to solve the following general variational
problem:

(g−SNVP) Find a pointx∗ ∈ H with g(x∗) ∈ C(x∗) : F (x∗) ∩ −N(C(x∗); g(x∗)) 6= ∅,
whereg : H → H is a point-to-point mapping. It is obvious that (g−SNVP) coincides with
(SNVP) wheng = I. An important reason for considering this general variational problem
(g−SNVP) is to extend all (or almost all) the types of variational inequalities existing in the
literature in the convex case to the nonconvex case by the same way presented in this paper.
For instance, when the set-valued mappingC is assumed to have convex values the general
variational problem (g−SNVP) coincides with the so-calledgeneralized multivalued quasi-
variational inequalityintroduced by Noor [16] and studied by himself and many other authors.
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