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ABSTRACT. LetR denote the subclass of normalised analytic univalent functfoshefined by
f(z) =2+ >, ,a,2" and satisfy

Re{f'(z)} >0

wherez € D = {z : |2] < 1}. The object of the present paper is to introduce the functional
lagay — a3|. For f € R, we give sharp upper bound fara, — ).
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1. INTRODUCTION

Let A denote the class of normalised analytic functigrns the form
(1.1) f(z) = Zanz”,
n=0
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wherez € D = {z : |2] < 1}. In[9], Noonan and Thomas stated that ¢t Hankel
determinant off is defined forg > 1 by

Qp, Qp41 An4q+1
Qpt+1 Gp42 0 Opggd2

H,(n) = , : : :
Untg—1 Qntq " QAnt2g-2

Now, letS denote the subclass gf consisting of functiong’ of the form

(1.2) f2) =2+ an2"

which are univalent irD.
A classical theorem of Fekete and Szegdo [1] considered the Hankel determirfaat®for

g =2andn =1,

a; G2

az as

They made an early study for the estimate$agf— pa2| whena, = 1 andy real. The well-
known result due to them states thaf iE S, then

( 4y — 3, if pu>1,

Hy(1) =

jas — pad < 1+ 2exp (F2), 0 0<p<,

[ 3—4p, if u<O0.

Hummel [3,/4] proved the conjecture of V. Singh thaf — a3| < 3 for the clas< of convex
functions. Keogh and Merkes|[5] obtained sharp estimate&:for pa3| when f is close-to-
convex, starlike and convex iR.

Here, we consider the Hankel determinanffaf S for ¢ = 2 andn = 2,

a2 as
asz Gy

Hy(2) =

Now, we are working on the functional,a, — @3|. In this earlier work, we find a sharp upper
bound for the functiondl,a, — @3] for f € R. The subclas® is defined as the following.

Definition 1.1. Let f be given by[(T.R). Therf € R if it satisfies the inequality
(1.3) Re{f'(z)} >0, (z€D).

The subclas® was studied systematically by MacGredor [8] who indeed referred to numer-
ous earlier investigations involving functions whose derivative has a positive real part.

We first state some preliminary lemmas which shall be used in our proof.

2. PRELIMINARY RESULTS

Let P be the family of all function® analytic inD for which Re{p(z)} > 0 and
(2.1) p(2) =1+ iz +cp2® + -
forz € D.
Lemma 2.1([10]). If p € P then|c,| < 2 for eachk.
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Lemma 2.2([2]). The power series fas(z) given in {2.1) converges iP to a function inP if
and only if the Toeplitz determinants

2 c1 Co e Cp
C-1 2 1 o Gl
(2.2) D, =| . . . . o, n=123,...
Cn Copy1 Cony2 - 2

andc_; = ¢, are all nonnegative. They are strictly positive exceppfan = >/, prpo(e*2),
pr > 0, t real andt, # t; for k # j; in this caseD,, > 0 forn < m — 1 andD,, = 0 for
n > m.

This necessary and sufficient condition is due to Carathéodory and Toeplitz and can be found
in [2].

3. MAIN RESULT
Theorem 3.1.Let f € R. Then

W

lasay — a§| < —.

Ne)

The result obtained is sharp.

Proof. We refer to the method by Libera and Zlotkiewicz[[6, 7]. Sirfce R, it follows from

(1.3) that
(3.1) f'(2) = p(2)
for somez € D. Equating coefficients in (3.1) yields

2&2 = C
(32) 3@3 = Cy .
4&4 = C3

From (3.2), it can be easily established that

|azas — ag| =

8 9

Ci1C3 C% ’

We make use of Lem.2 to obtain the proper boun#gh — %‘ We may assume without
restriction that; > 0. We begin by rewriting[(2]2) for the cases= 2 andn = 3.

2 C1 C2
D2 =|lc 2 ¢ |=8+ 2R€{C%Cg} - 2|CQ‘2 — 40% > O,
EQ C1 2

which is equivalent to
(3.3) 20 =5 +x(d — )
for somer, |z| < 1. ThenD3 > 0 is equivalent to
(des —derca + 34— A) + e1(20 — AP <2 (4= ) =226, — &
and this, with[(3.B), provides the relation
(3.4) des =+ 24— A)err — (4 — A +2(4 — A) (1 — |z]?)z,
for some value of, |z| < 1.
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Suppose, now, that = c andc € [0, 2]. Using [3.B) along with (3]4) we get

cies  C A A=A A-AB2+ A2 c(d—-A)1 - z]?)2
8 9| |288 144 288 16
and an application of the triangle inequality shows that
2
C1C3 Cy
3.5 — - =
A ocd—c) AFA—-cA)p  (c—2)(c—16)(4 — A?)p?
< —
— 288 N 16 - 144 i 288
= F(p)
with p = |z| < 1. We assume that the upper bound for [3.5) attains at the interior point of
p € [0,1] andc € [0, 2], then

) (- 16— )
Flp)=—g— 144 '

We note thatF’(p) > 0 and consequently’ is increasing and/ax, F(p) = F(1), which
contadicts our assumption of having the maximum value at the interior poinédf), 1]. Now
let

A ocd—-c*) AFA—-c)  (c—2)(c—16)(4 —?)

Ge=FUO=58+ 55 *—1m * 238 ’
then )
G'(c) = % —0
impliesc = 0 which is a contradiction. Observe that
—5 — 3¢c?
G"(c) = — <.
(€) 36

Thus any maximum points @ must be on the boundary efe [0, 2]. However,G(c) > G(2)
and thusG has maximum value at= 0. The upper bound fof (3.5) correspondste- 1 and
¢ = 0, in which case

cies  C < 4
8 9]~ 9
Equality is attained for functions iR given by
1+ 22
/ J—
f (Z) - 1— ZQ'
This concludes the proof of our theorem. O
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