
Journal of Inequalities in Pure and
Applied Mathematics

http://jipam.vu.edu.au/

Volume 3, Issue 4, Article 50, 2002

RATE OF CONVERGENCE OF THE DISCRETE POLYA ALGORITHM FROM
CONVEX SETS. A PARTICULAR CASE

M. MARANO, J. NAVAS, AND J.M. QUESADA

DEPARTAMENTO DEMATEMÁTICAS

UNIVERSIDAD DE JAÉN

PARAJE LAS LAGUNILLAS

CAMPUS UNIVERSITARIO

23071 JAÉN, SPAIN

mmarano@ujaen.es

jnavas@ujaen.es

jquesada@ujaen.es

Received 4 December, 2001; accepted 28 May, 2002
Communicated by A. Babenko

ABSTRACT. In this work we deal with best approximation in`n
p , 1 < p ≤ ∞, n ≥ 2. For

1 < p < ∞, let hp denote the best̀np -approximation tof ∈ Rn from a closed, convex subset
K of Rn, f 6∈ K, and leth∗ be a best uniform approximation tof from K. In case thath∗ − f
= (ρ1, ρ2, · · · , ρn), |ρj | = ρ for j = 1, 2, · · · , n, we show that the behavior of‖hp − h∗‖ as
p →∞ depends on a property of separation of the setK from the`n

∞-ball {x ∈ Rn : ‖x−f‖ ≤
ρ} ath∗ − f .
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1. I NTRODUCTION

Let (w1, w2, . . . , wn) be a fixed vector inRn, with wj > 0, j ∈ In := {1, 2, . . . , n}, n ≥ 2.
Forx = (x(1), x(2), . . . , x(n)) ∈ Rn we define

‖x‖p,w :=

(
n∑

j=1

wj|x(j)|p
) 1

p

, 1 ≤ p < ∞, and

‖x‖ := max
1≤j≤n

|x(j)|.

Also we defineN :=
∑n

j=1 wj.
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Throughout the paper,K will always be a nonempty, closed, convex subset ofRn. For
f ∈ Rn\K, we will say thathp,w ∈ K, 1 ≤ p < ∞, is a best̀ n

p,w-approximation tof from K if

‖f − hp,w‖p,w ≤ ‖f − h‖p,w ∀h ∈ K.

The existence of at least one best`n
p,w−approximation tof from K is a known fact for1 ≤

p < ∞. Likewise, there always exists a best uniform approximation tof from K, i.e., an
h∗ ∈ K that satisfies

‖f − h∗‖ ≤ ‖f − h‖ ∀h ∈ K.

We will henceforth assumef = 0 and0 6∈ K. This causes no loss of generality, since all rele-
vant properties are translation invariant. If1 < p < ∞, there is a unique best`n

p,w−approximation.
In this case, the next theorem [14] characterizes the best`n

p,w−approximation to0 from K.

Theorem 1.1 (Characterization of the best`n
p,w-approximation). Let K be a closed, convex

subset ofRn, 0 6∈ K. Thenhp,w, 1 ≤ p < ∞, is a best̀ n
p,w−approximation to0 from K if and

only if for all h ∈ K,

(1.1)
n∑

j=1

wj(hp,w(j)− h(j))|hp,w(j)|p−1sgn(hp,w(j)) ≤ 0, if p > 1.

(1.2)
∑

j∈R(h1,w)

wj (h1,w(j)− h(j)) sgn(h1,w(j)) ≤
∑

j∈Z(h1,w)

wj |h(j)|, if p = 1,

where, ifg ∈ Rn, Z(g) := {j ∈ In : g(j) = 0} andR(g) := In \ Z(g).

It is also known [1, 6, 7] that ifK is an affine subspace, then

(1.3) lim
p→∞

hp,w = h∗,

where in this caseh∗ is a particular best uniform approximation to0 from K, calledstrict
uniform approximation [12, 7] and whose definition is also valid in any closed, convexK. In
[3, 8] it is proved that there exists a constantM > 0 such thatp ‖hp,w − h∗‖ ≤ M for all
p > 1. Moreover, from [13] it is deduced that there are constantsM1, M2 > 0 and0 ≤ a ≤ 1,
depending onK, such that

M1 ap ≤ p ‖hp,w − h∗‖ ≤ M2 ap for all p > 1.

In [2, 7] it is shown that ifK is not an affine subspace, thenhp,w does not necessarily converge
to the strict uniform approximation, though (1.3) is always valid wheneverh∗ is the unique best
uniform approximation to0 from K. In [6, 7] we can find sufficient conditions onK under
which (1.3) is satisfied. In any case, the convergence ofhp,w asp → ∞ to a best uniform
approximation is known as thePolya algorithm [11]. The purpose of this paper is to study the
behavior of‖hp,w − h∗‖ asp → ∞ whenh∗ is a best uniform approximation to0 from K and
h∗ satisfies|h∗(j)| = ρ > 0 ∀ j ∈ In.

2. RELATION BETWEEN STRONG UNIQUENESS AND RATE OF CONVERGENCE

A useful concept in order to get a first general result on the rate of convergence of the Polya
algorithm is strong uniqueness. It was established in 1963 by Newman and Shapiro [10] in the
context of the uniform approximation to continuous functions by means of elements of a Haar
space, although we could define it in any normed space.

Definition 2.1. Let h∗ ∈ K be a best uniform approximation to0 ∈ Rn from K. We say that
h∗ is strongly uniqueif there existsγ > 0 such that

(2.1) ‖h− h∗‖ ≤ γ(‖h‖ − ‖h∗‖) ∀h ∈ K.
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It is obvious that ifh∗ is strongly unique, thenh∗ is the unique best uniform approximation to
0 ∈ Rn from K.

Theorem 2.1. If the best uniform approximationh∗ to 0 from K is strongly unique, then
p ‖hp,w − h∗‖ is bounded for allp ≥ 1.

Proof. We first note that for everyh ∈ K,

(2.2) m
1
p ‖h‖ ≤ ‖h‖p,w ≤ N

1
p ‖h‖,

wherem := minj∈In{wj}.
Let γ > 0 satisfy (2.1). Then for anyp ≥ 1,

(2.3) ‖hp,w − h∗‖ ≤ γ(‖hp,w‖ − ‖h∗‖).

Applying (2.2) and the definition of best`n
p,w-approximation, we have

‖hp,w‖ − ‖h∗‖ ≤ 1

m
1
p

‖hp,w‖p,w − ‖h∗‖

≤ 1

m
1
p

‖h∗‖p,w − ‖h∗‖

≤

[(
N

m

) 1
p

− 1

]
‖h∗‖

≤ (N −m)‖h∗‖
m p

.

From (2.3) we finally conclude that

p ‖hp,w − h∗‖ ≤ γ(N −m)‖h∗‖
m

for all p ≥ 1.

�

The above inequality improves the proposal in [4] and [5].

2.1. The Particular Case |h∗(j)| = ρ > 0, j = 1, 2, . . . , n. We henceforth suppose that
h∗ ∈ K is a best uniform approximation to0 from K, where|h∗(j)| = ρ > 0 for all j ∈ In.
Under these conditions we will analyze the behaviour of‖hp,w−h∗‖ asp →∞. In Theorem 2.3,
our main result, we will prove that the converse of Theorem 2.1 – which is generally not true –
is valid in this particular case. Since{x ∈ Rn : ‖x‖ ≤ ρ} ∩K = {h ∈ K : ‖h‖ = ρ}, it is easy

to see that there is a hyperplane
{

(x(1), x(2), . . . , x(n)) :
∑n

j=1 aj sgn(h∗(j)) x(j) = ρ
}

, with

0 ≤ aj ≤ 1, all j ∈ In, and
∑n

j=1 aj = 1, that separatesK from the ball{x ∈ Rn : ‖x‖ ≤ ρ}
ath∗, i.e.,

∑n
j=1 aj sgn(h∗(j)) h(j) ≥ ρ for all h ∈ K.

Definition 2.2. We will say that

π :=

{
(x(1), x(2), . . . , x(n)) :

n∑
j=1

aj sgn(h∗(j)) x(j) = ρ

}
is a hyperplane thatstrongly separatesK from the ball{x ∈ Rn : ‖x‖ ≤ ρ} at h∗, or equiva-
lently, thatπ is astrongly separating hyperplane ath∗, if

(2.4) 0 < aj < 1, all j ∈ In,

n∑
j=1

aj = 1
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and

(2.5)
n∑

j=1

aj sgn(h∗(j)) h(j) ≥ ρ ∀h ∈ K.

In the proofs of Lemma 2.2 and Theorems 2.3 and 2.4 we will assumeh∗(j) = 1 for all
j ∈ In. This causes no loss of generality, since we can replaceK by the closed, convex set{

h̃ ∈ Rn : h̃(j) =
1

ρ
h(j) sgn(h∗(j)), j ∈ In, h ∈ K

}
.

Lemma 2.2. If pk ‖hpk,w − h∗‖ is bounded forpk →∞, then there exists a strongly separating
hyperplane ath∗.

Proof. Sincelimpk→∞ hpk,w(j) = h∗(j) = 1, all j ∈ In, we can supposehpk,w(j) > 0, all
j ∈ In and, without loss of generality, allpk. Then, for everypk the formula of characterization
(1.1) can be expressed in the form

n∑
j=1

wj(hpk,w(j)− h(j))hpk−1
pk,w (j) ≤ 0 ∀h ∈ K.

Dividing by ‖hpk,w‖pk
pk,w, for everypk we obtain

(2.6)
n∑

j=1

wj

(
hpk,w(j)

‖hpk,w‖pk,w

)pk h(j)

hpk,w(j)
≥ 1 ∀h ∈ K.

Keeping in mind that

wjh
pk
pk,w(j) ≤ ‖hpk,w‖pk

pk,w ≤ ‖h∗‖pk
pk,w = N, j ∈ In,

and after passage to a subsequence, we can suppose thathpk
pk,w(j), all j ∈ In, and‖hpk,w‖pk

pk,w

are convergent. Now, by hypothesis,pk |hpk,w(j) − 1| is bounded for allj ∈ In and allpk.
Hence we get

lim
pk→∞

hpk
pk,w(j) = lim

pk→∞
Exp(pk(hpk,w(j)− 1)) > 0, all j ∈ In.

Writing

aj = lim
pk→∞

wj

(
hpk,w(j)

‖hpk,w‖pk,w

)pk

, j ∈ In,

we therefore deduce that0 < aj < 1, all j ∈ In, and
∑n

j=1 aj = 1. Taking limits aspk →∞ in
(2.6), we finally conclude that

n∑
j=1

aj h(j) ≥ 1 ∀h ∈ K.

Then
{

(x(1), x(2), . . . , x(n)) :=
∑n

j=1 ajx(j) = 1
}

is a strongly separating hyperplane ath∗.

�

Theorem 2.3.The following statements are equivalent:

(a) The best uniform approximation to0 fromK, h∗, is strongly unique.
(b) p ‖hp,w − h∗‖ is bounded for allp ≥ 1.
(c) pk ‖hpk,w − h∗‖ is bounded for a sequencepk →∞.
(d) There exists a strongly separating hyperplane ath∗.
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Proof. (a)⇒ (b) is Theorem 2.1. (b)⇒ (c) is obvious. (c)⇒ (d) is Lemma 2.2. To complete the
theorem, we now prove (d)⇒ (a). Suppose that there is a strongly separating hyperplaneπ at
h∗ = (1, 1, . . . , 1). Leth ∈ K. Observe that‖h‖ ≥ 1. LetI+

n denote the subset of indicesj in In

such thath(j) ≥ 1, and letI−n := In\I+
n . For allj ∈ I+

n we have|h(j)−1| = h(j)−1 ≤ ‖h‖−1.
On the other hand, ifj ∈ I−n , then|h(j)− 1| = 1− h(j). Moreover, the inequality∑

i∈In

ai(h(i)− 1) ≥ 0

implies

aj(1− h(j)) ≤
∑

i∈In,i6=j

ai(h(i)− 1)

≤
∑
i∈I+

n

ai(h(i)− 1)

≤ (‖h‖ − 1)
∑
i∈I+

n

ai

≤ (‖h‖ − 1)(1− aj).

Thus, for allj ∈ In we have

|h(j)− 1| ≤
(

1

mini∈In ai

− 1

)
(‖h‖ − 1) := γ(‖h‖ − 1),

and so‖h− h∗‖ ≤ γ(‖h‖ − ‖h∗‖). �

Our goal now is to show that, under the conditions of Theorem 2.3, eitherhp,w = h∗ for all p
or there exist constantsM1, M2 > 0 such that

M1 ≤ p ‖hp,w − h∗‖ ≤ M2 for all p ≥ 1.

On the other hand, if there exists no strongly separating hyperplane ath∗, then the following
example inR2, wherelimp→∞ hp,w = h∗, shows that the rate of convergence is as slow as we
want.

Example 2.1. Let α : [1, +∞) → (0, 1] be a continuous strictly decreasing function such that
α(1) = 1 and lim

t→∞
α(t) = 0 and letβ : (0, 1] → [1, +∞) denote its inverse function, that will

also be a strictly decreasing function. We define

f(x) := 1 +

∫ 1

x

(1− t)β(1−t)dt, 0 ≤ x ≤ 1,

and letK be the convex hull of the set{(x, y) ∈ R2 : y = f(x), x ∈ [0, 1]}.
Observe thath∗ = (1, 1) is the unique best uniform approximation to(0, 0) from K. More-

over, the functionf is smooth, convex andf ′(1) = 0. This implies that the strongly separating
hyperplane ath∗ does not exist.

Let hp = (1 − εp, 1 + δp) be the bestp-approximation to(0, 0) from K, with εp, δp ↓ 0 as
p →∞. Since the slopes of the curvey = f(x) and thè p-ball coincide athp, we have

(1− εp)
p−1

(1 + δp)p−1
= εβ(εp)

p

and therefore

(2.7) lim
p→∞

εβ(εp)/(p−1)
p = lim

p→∞

1− εp

1 + δp

= 1.
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If εp ≤ α(p), thenβ(εp) ≥ β(α(p)) = p, which contradicts (2.7). Then, forp large, we have
εp > α(p). This shows that the rate of convergence ofhp to h∗ asp →∞ can be as slow as we
want.

Theorem 2.4.The following conditions are equivalent

(a) hp,w = h∗ for all p ≥ 1,
(b) hp0,w = h∗ for somep0 ≥ 1,
(c) the hyperplane

(2.8) π :=

{
(x(1), x(2), . . . , x(n)) :

n∑
j=1

sgn(h∗(j))
wj

N
x(j) = ρ

}

is a strongly separating hyperplane ath∗.

Proof. (a) ⇒ (b) is obvious. (b)⇒ (c) follows immediately from Theorem 1.1. Indeed, if
hp0,w = h∗ for somep0 ≥ 1, then from (1.1) ifp0 > 1 or (1.2) if p0 = 1, we have

(2.9)
n∑

j=1

wj(h
∗(j)− h(j)) sgn(h∗(j)) ≤ 0 ∀h ∈ K,

which is equivalent to the fact thatπ is a strongly separating hyperplane ath∗. Also from (1.1)
and (1.2), the inequality (2.9) implies thathp,w = h∗ for all p ≥ 1 and so (c)⇒ (a). �

Theorem 2.5. Suppose thathp,w 6= h∗ for somep ≥ 1 and there exists a strongly separating
hyperplane ath∗. Then there are constantsM1, M2 > 0 such that

M1 ≤ p ‖hp,w − h∗‖ ≤ M2 for all p ≥ 1.

Proof. Assume that there exists a strongly separating hyperplane ath∗, whereh∗(j) = 1 for all
j ∈ In. From Theorem 2.3, there is a constantM2 > 0 such that

p ‖hp,w − h∗‖ ≤ M2.

Therefore, to prove the theorem it is sufficient to show thatinfp≥1{p ‖hp,w − h∗‖} > 0. Sup-
pose the contrary. In order to get a contradiction, we only need to consider the two following
exhaustive cases:

(1) There exists a sequencepk → ∞ such thatlimpk→∞ pk‖hpk
− h∗‖ = 0. In this case

limpk→∞ pk |hpk,w(j)−1| = 0 for all j ∈ In. This implies thathpk
pk,w(j) → 1 aspk →∞

and

a∗j = lim
pk→∞

wj

(
hpk,w(j)

‖hpk,w‖pk,w

)pk

=
wj

N
, j = 1, 2, . . . , n,

which means (see the proof of Lemma 2.2) that the hyperplane (2.8), withh∗(j) =
ρ = 1 for all j ∈ In, is a strongly separating hyperplane ath∗. From Theorem 2.4 (c),
hp,w = h∗ for all p ≥ 1, which contradicts the hypothesis of the theorem.

(2) There exists a sequencepk → p0, 1 ≤ p0 < ∞, such thatlimpk→p0 pk ‖hpk,w − h∗‖ = 0.
Sincehpk,w → hp0,w, we deduce that‖hp0,w − h∗‖ = limpk→p0 ‖hpk,w − h∗‖ = 0 and so
hp0,w = h∗. Now, using the statement (b) of Theorem 2.4, we conclude thathp,w = h∗,
for all p ≥ 1. A contradiction.

�
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2.2. A Numerical Example in Isotonic Approximation.
Let f = (a + 1, . . . , a + 1︸ ︷︷ ︸

r

, a− 1, . . . , a− 1︸ ︷︷ ︸
n−r

) ∈ Rn, and letK be the convex set of the nonde-

creasing vectors inRn, i.e.

K = {h ∈ Rn : h(i) ≤ h(j) ∀ i, j ∈ In, i < j} .

In this case, the (unique) best uniform approximation tof fromK is the elementh∗ = (a, a, . . . , a).
Thushp,w → h∗ asp →∞. Furthermore, it is easy to see that

hp,w = (xp,w, xp,w, . . . , xp,w) ∈ Rn, 1 < p < ∞,

for somexp,w satisfyinga− 1 ≤ xp,w ≤ a + 1.
In order to translateh∗ to a vertex of thèn

∞-ball, we consider the closed, convex set

K̃ = {h̃ ∈ Rn : h̃(j) = h(j)− f(j) , j ∈ In, h ∈ K}.

In this way we obtain

• f̃ = (0, 0, . . . , 0);
• h̃∗ = h∗ − f = (−1, . . . ,−1︸ ︷︷ ︸

r

, 1, . . . , 1︸ ︷︷ ︸
n−r

).

To simplify the notation, we will writeσj = sgn(h̃∗(j)), j ∈ In. Now, we are interested in
obtaining a strongly separating hyperplane ath̃∗, i.e., a hyperplane

π :=

{
(x(1), x(2), . . . , x(n)) :

n∑
j=1

aj σj x(j) = 1

}
such that

(p1) 0 < aj < 1, all j ∈ In, and
∑n

1 aj = 1;
(p2)

∑n
j=1 σj aj h̃(j) ≥ 1 ∀ h̃ ∈ K̃.

Proposition 2.6. LetS :=
r∑

j=1

wj. Then the above hyperplaneπ, with

aj =
wj

2 S
if 1 ≤ j ≤ r, aj =

wj

2(N − S)
if r + 1 ≤ j ≤ n,

satisfies(p1) and(p2), and therefore it is a strongly separating hyperplane ath̃∗.

Proof. By definition,0 < aj < 1 for all j ∈ In. Furthermore,
n∑

j=1

σj aj h̃∗(j) =
n∑

j=1

aj =
r∑

j=1

wj

2 S
+

n∑
j=r+1

wj

2(N − S)
=

1

2
+

1

2
= 1.

Then (p1) holds.
Since

n∑
j=1

σj aj f(j) = −(a + 1)
r∑

j=1

wj

2 S
+ (a− 1)

n∑
j=r+1

wj

2(N − S)
= −1,

(p2) is equivalent to

(2.10)
n∑

j=1

σj aj h(j) ≥ 0 ∀h ∈ K.
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But if h is a nondecreasing vector, then (2.10) is immediate because
r∑

j=1

wjh(j) ≤ h(r)
r∑

j=1

wj = S h(r) and
n∑

j=r+1

h(j) ≥ h(r)
n∑

j=r+1

wj = (N − S)h(r),

and therefore
n∑

j=1

σj aj h(j) = − 1

2 S

r∑
j=1

wjh(j) +
1

2(N − S)

n∑
j=r+1

wjh(j)

≥ − 1

2S
S h(r) +

1

2(N − S)
(N − S)h(r) = 0.

This concludes the proof. �

From Proposition 2.6 we deduce that ifS = N/2, then

(2.11)

{
(x(1), x(2), . . . , x(n)) :

n∑
j=1

σj
wj

N
x(j) = 1

}

is a strongly separating hyperplane ath̃∗, and from Theorem 2.4 this is equivalent toh̃p,w = h̃∗

for all 1 ≤ p < ∞. In the case thatS 6= N/2, we claim that̃hp,w → h̃∗ asp → ∞ exactly

at a rateO
(

1
p

)
. From Proposition 2.6 and Theorems 2.4 and 2.5 we only need to show that

(2.11) is not a strongly separating hyperplane ath̃∗. This last assertion is true since (2.10), with
aj = wj/N , all j ∈ In, implies

(2.12)
n∑

j=r+1

wjh(j) ≥
r∑

j=1

wjh(j) ∀h ∈ K.

On the other hand, ifS < N/2 thenh = (−1,−1, . . . ,−1) ∈ K does not satisfy (2.12), and an
analogous conclusion is valid forh = (1, 1, . . . , 1) ∈ K if S > N/2. This proves the claim.

In what follows we obtain these same results calculating directly the best`n
p,w−approx-

imations tof from K, namely,hp,w = (xp,w, xp,w, . . . , xp,w). It is easy to check that

xp,w =
a− 1 + a

(
S

N−S

) 1
p +

(
S

N−S

) 1
p

1 +
(

S
N−S

) 1
p

, 1 < p < ∞.

Then we immediately conclude that ifS = N/2, thenhp,w = h∗ for p > 1, and if S 6= N/2,
thenhp,w → h∗ asp →∞. Moreover, we can calculate the rate of convergence. Indeed,

lim
p→∞

hp,w(j)− h∗(j)

1/p
= lim

p→∞

( S
N−S )

1/p
−1

1+( S
N−S )

1/p

1/p
=

1

2
lim
p→∞

(
S

N−S

) 1
p − 1

1/p
=

1

2
ln

(
S

N − S

)
.

The rate of convergence is exactlyO
(

1
p

)
.
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