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ABSTRACT. In this work we deal with best approximation ffj, 1 < p < oo, n > 2. For
1 < p < oo, leth, denote the begt}-approximation tof € R" from a closed, convex subset
K of R", f ¢ K, and leth* be a best uniform approximation fofrom K. In case that* — f

= (p1,p2, - ,pn)s |pjl = p fOorj =1,2,--- n, we show that the behavior ¢f, — »*| as
p — oo depends on a property of separation of thef§étom the(? -ball {x € R" : ||z — f|| <
p}ath* — f.

Key words and phrasesBest uniform approximation, Rate of convergence, Polya Algorithm, Strong uniqueness.

2000Mathematics Subject Classificat 086D15.

1. INTRODUCTION

Let (wy, ws, ..., w,) be afixed vector iR", with w; > 0, j € I, :=={1,2,...,n},n > 2.
Forz = (z(1),2(2),...,2(n)) € R™ we define

P

]| pw = (Z%Iﬂﬁl”) , 1<p<oo, and
j=1

o = max la(j)].

Also we defineV =} 7 w;.
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2 M. MARANO, J. NaVAS, AND J.M. QUESADA

Throughout the papers will always be a nonempty, closed, convex subseRof For
f € R\ K, we will say thath,,,, € K,1 < p < oo, is a best; ,-approximation tof from K if

Hf - hp,w‘p,w < Hf - h”p,w VheK.

The existence of at least one bést, —approximation tof from K is a known fact forl <
p < oo. Likewise, there always exists a best uniform approximatiorf foom K, i.e., an
h* € K that satisfies

If =R <[f=hl VheK.
We will henceforth assumg = 0 and0 ¢ K. This causes no loss of generality, since all rele-
vant properties are translation invariantl I« p < oo, there is a unique beét , —approximation.
In this case, the next theorem [14] characterizes thedjgstapproximation td) from K.

Theorem 1.1 (Characterization of the beéf , -approximation) Let K be a closed, convex
subset o™, 0 ¢ K. Thenh,,,,, 1 < p < oo, is a best’;] ,,—approximation td) from K’ if and
onlyifforallh € K,

(1.1) ij(hp,w(j) = W)y ()P sg0(hp (7)) <0, ifp>1.

(1.2) > wi (hw(h) — b)) senlhiw() < Y wilh(i)l, fp=1,
JER(h1,w) JEZ(h1,w)
where, ifg € R", Z(g) :={j € I, : g(j) = 0} and R(g) := I, \ Z(g).
Itis also knownl[1| B, [7] that i< is an affine subspace, then
(1.3) lim hy,, = ",

p—0o0

where in this casé* is a particular best uniform approximation @ofrom K, called strict
uniform approximation [12,17] and whose definition is also valid in any closed, coRvebn
[3, 8] it is proved that there exists a constadt > 0 such thatp||h,,, — h*|| < M for all
p > 1. Moreover, from[[13] it is deduced that there are constamf{s)M, > 0 and0 < a < 1,
depending o, such that

My ad® <pllhpw —h*|| < Mya? forallp > 1.

In [2,[7] itis shown that ifX" is not an affine subspace, thiy),, does not necessarily converge
to the strict uniform approximation, thoudh ([L.3) is always valid whengvés the unique best
uniform approximation td from K. In [6, 7] we can find sufficient conditions o under
which (1.3) is satisfied. In any case, the convergencg,qf asp — oo to a best uniform
approximation is known as tHeolya algorithm [11]]. The purpose of this paper is to study the
behavior of||h, ., — h*|| asp — oo whenh* is a best uniform approximation tbfrom K and
h* satisfiegh*(j)| = p >0V € I,.

2. RELATION BETWEEN STRONG UNIQUENESS AND RATE OF CONVERGENCE

A useful concept in order to get a first general result on the rate of convergence of the Polya
algorithm is strong uniqueness. It was established in 1963 by Newman and Shapiro [10] in the
context of the uniform approximation to continuous functions by means of elements of a Haar
space, although we could define it in any normed space.

Definition 2.1. Let h* € K be a best uniform approximation toe R" from K. We say that
h* is strongly uniquef there existsy > 0 such that

(2.1) [ = h* | <Al = [R7]]) Vh e K.
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It is obvious that ifa* is strongly unique, theh* is the unique best uniform approximation to
0 € R™ from K.

Theorem 2.1. If the best uniform approximatioh* to 0 from K is strongly unique, then
p ||hpw — h*|| is bounded for alp > 1.

Proof. We first note that for every € K,
(2.2) me [[h|| < [|Allpw < N7 [[R],

wherem := minje, {w,}.
Let~ > 0 satisfy [2.1). Then for any > 1,

(2.3) 1pw = B[] < A([[Apo | = [[R7]])-
Applying (2.2) and the definition of beé} , -approximation, we have
* 1 *
1Ppll = A1 < — N p.llpw = (127
mp
1 * *
< — 177 llpw — 17
mpe
N\? .
< [(—) - 1] 17|
m
o V—mp
mp

From (2.3) we finally conclude that

P llhpw — 17| < 2 forall p > 1.

(N —m)[|p"]

The above inequality improves the proposalin [4] and [5].

2.1. The Particular Case |h*(j)| = p > 0,5 = 1,2,...,n. We henceforth suppose that

h* € K is a best uniform approximation tofrom K, where|h*(j)| = p > 0 for all j € I,.

Under these conditions we will analyze the behaviouffgf,, —h*|| asp — co. In Theorem 2.3,

our main result, we will prove that the converse of Theofem 2.1 — which is generally not true —
is valid in this particular case. Sinde € R" : ||z|| < p} N K = {h € K : |h|| = p}, itis easy

to see that there is a hyperpla{1(ar(1), 2(2),...,2(n)) : 375 ajsgn(h*(4)) #(j) = p}, with
0<a;<1,allje I, andd " a; = 1, that separate&” from the ball{z € R" : [|z|| < p}
ath*,i.e.,> 7 ajsgn(h*(j)) h(j) > pforallh € K.

Definition 2.2. We will say that

™= {@;(1),3;(2), csa(n)) Y agsgn(h(5)) o(j) = p}

=1

is a hyperplane thatrongly separate&’ from the ball{x € R" : ||z|| < p} at h*, or equiva-
lently, thatr is astrongly separating hyperplane Aat, if

(2.4) O<a;<l,alljel, Y aj=1

=1
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and
(2.5) >_assen(h () h(j) = p VheK.

In the proofs of Lemma 2|2 and Theorems|2.3 2.4 we will asstifye = 1 for all
j € I,,. This causes no loss of generality, since we can replabg the closed, convex set

~ 1
{here i) = Lusenr (), g€ o ne K}
Lemma 2.2. If py, ||, . — h*|| is bounded fop, — oo, then there exists a strongly separating

hyperplane at*.

Proof. Sincelim,, .. by, w(j) = h*(j) = 1, all j € I,, we can supposg,, .,(j) > 0, all
j € I, and, without loss of generality, all.. Then, for every, the formula of characterization
(1.7) can be expressed in the form

> " wi(hp,w(5) — R(G))RELG) <0 YhEK.
j=1

Dividing by || A, .« [I: ., for everyp, we obtain
" h ; Pk h(i

(2.6) ij( e () ) U 1 vhek
j=1 ||hpk7w||pk1w hpk,w(.])

Keeping in mind that
Wikt (7)< ol < I07IBEw = N, j € L,

Pr,w k,W Pk, w

and after passage to a subsequence, we can suppo#éithat), all j € I,,, and||hy, . |PF
are convergent. Now, by hypothesis, |, .,(j) — 1| is bounded for allj € I,, and all py.
Hence we get

lim AP (j) = lim EXp(pk(hp,(j) —1)) >0, alljeI,.

Pr—00 Pt Pr—00
Writing
: hpew () \™
a; = lim w; | —————— , J €I,
Pr—00 thk,prk,w

we therefore deduce that< a; < 1, all j € I,,, and)_7_, a; = 1. Taking limits ag — ooin
(2-8), we finally conclude that

> ajh(j)=1 VheK
j=1

Thens (z(1),z(2),...,z(n)) :=> " _,a;x(j) =1 is a strongly separating hyperplanehat
=1
O

Theorem 2.3. The following statements are equivalent:

(&) The best uniform approximation @ofrom K, h*, is strongly unique.
(b) pllhpw — h*| is bounded for alp > 1.

(©) pi |hpe.w — B*|| is bounded for a sequengg — co.

(d) There exists a strongly separating hyperplané‘at
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Proof. (a)= (b) is Theorem 2]1. (b}> (c) is obvious. (c)= (d) is Lemmd2ZR. To complete the
theorem, we now prove (& (a). Suppose that there is a strongly separating hyperplate
h*=(1,1,...,1). Leth € K. Observe thath| > 1. Let/, denote the subset of indicg# I,
suchthat(j) > 1,andlet/; := I,\I,. Forallj € It we haveh(j)—1| = h(j)—1 < ||h|—1.
On the other hand, if € I, then|h(j) — 1| = 1 — h(j). Moreover, the inequality

Z a;(h(i) —1) =20
implies "
o;(1-n(j) < > a(h(i)—1)

i€ 1 i)

> ailh(i) = 1)

iel;r

(1Pl =1) ) a

it

(IRl = 1)@ = ay).

IN

IN

IN

Thus, for allj € I,, we have

) - 11 < ( ~ 1) (Al = 1) =1l = 2,
and sol|h — h*[| < y([[Al] — [|P7]])- O
Our goal now is to show that, under the conditions of Thedremn 2.3, €ithge= 1" for all p
or there exist constanty/;, M, > 0 such that
My < p||hpw —h*[| < M, forallp > 1.

On the other hand, if there exists no strongly separating hyperplakie tten the following
example inR?, wherelim, ., h,., = h*, shows that the rate of convergence is as slow as we
want.

Example 2.1.Let« : [1,4+00) — (0, 1] be a continuous strictly decreasing function such that
a(l)y =1 andtlim a(t) = 0andletg : (0,1] — [1,+o00) denote its inverse function, that will

also be a strictly decreasing function. We define

mMiN;eg, a;

1
f(z) =1 +/ (1-1)%09at, 0<z<1,

and letK be the convex hull of the sétz,y) € R? : y = f(z),z € [0, 1]}.

Observe that* = (1, 1) is the unique best uniform approximation(ta 0) from K. More-
over, the functionf is smooth, convex andf(1) = 0. This implies that the strongly separating
hyperplane at* does not exist.

Leth, = (1 —¢,,1 + 6,) be the besp-approximation ta0, 0) from K, with ¢,,,0, | 0 as
p — oo. Since the slopes of the curye= f(x) and the/,-ball coincide at1,, we have

(1 —gy)"!

A 6/3(510)
I+t 7
and therefore
1—¢
2.7 lim e2E)/ (1) _ P _
“0 fm e b,
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If e, < a(p), thens(e,) > B(a(p)) = p, which contradicts (2]7). Then, forlarge, we have
e, > a(p). This shows that the rate of convergencépto ~* asp — oo can be as slow as we
want.

Theorem 2.4. The following conditions are equivalent

(@) hy, =h*forallp>1,
(b) hpyw = h* for somepy > 1,
(c) the hyperplane

(28 we{@ﬂ%ﬂ%~wﬂmw§:wmmuﬁ%dﬁ—p}

j=1
is a strongly separating hyperplane /.

Proof. (a) = (b) is obvious. (b)= (c) follows immediately from Theorein 1.1. Indeed, if
Py = h* for somepy > 1, then from [(1.1L) ifpy > 1 or (1.2) if po = 1, we have

(2.9) Zw(h*(j) — h(j))sgn(h*(j)) <0 Vhe K,

which is equivalent to the fact thatis a strongly separating hyperplanehat Also from (1.1)
and [1.2), the inequality (2.9) implies thiaj,, = 1* for all p > 1 and so (c)= (a). O

Theorem 2.5. Suppose that, ,, # h* for somep > 1 and there exists a strongly separating
hyperplane at.*. Then there are constanid,, /M, > 0 such that

My < pllhpw —P*|| < My forallp > 1.

Proof. Assume that there exists a strongly separating hyperplaing ahereh*(j) = 1 for all
j € I,. From Theorem 2|3, there is a constaft > 0 such that

P g — ]l < M.

Therefore, to prove the theorem it is sufficient to show th&t-,{p ||h,.. — ~*||} > 0. Sup-
pose the contrary. In order to get a contradiction, we only need to consider the two following
exhaustive cases:

(1) There exists a sequenpg — oo such thatlim,, .. pi||h,, — h*|| = 0. In this case
limy, o0 Pk [Py, (i) — 1| = 0forall j € I,. This implies that?lt  (j) — 1aspy — oo
and

: Pk
a; = lim w (—hp’“’w(‘]) ) :ﬂ, j=12,...,n,
Pr—00 ”hpk,prk,w N
which means (see the proof of Lemina]2.2) that the hyperp[ang (2.8),mifh =
p = 1forall j € I,, is a strongly separating hyperplanehat From Theorem 24 (c),
h,. = h* forall p > 1, which contradicts the hypothesis of the theorem.

(2) There exists a sequenge— po, 1 < py < oo, such thatim,,, ., px ||y, — 2*|| = 0.
Sinceh,, ., — hy, ., We deduce thdth,, , — h*|| = lim,, ., ||Ap,.0 — 2*|| = 0 and so
hpyw = h*. Now, using the statement (b) of Theorgm| 2.4, we conclude/that= hr*,
for all p > 1. A contradiction.

O
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2.2. A Numerical Example in Isotonic Approximation.
Letf=(a+1,...,a+1,a—1,...,a—1) € R", and letK be the convex set of the nonde-

-~ -~
n—r

creasing vectors iiR", i.e.
K={heR": h(i) <h(j)Vi,j €1, i<j}.

In this case, the (unique) best uniform approximatiofi taom K is the elememt* = (a, qa, ..., a).
Thush,,, — h* asp — oo. Furthermore, it is easy to see that

hpw = (Tpaw, Tpaws -+ Tpw) €ER™, 1 < p < 00,

for somez,, ,, satisfyinga — 1 < z,,, <a+ 1.
In order to translaté* to a vertex of the”2 -ball, we consider the closed, convex set

K ={heR" : h(j) = h(j) = f(j), j € Ln, h € K},
In this way we obtain

o [=(0,0,...,0);
e N =h'—f=(-1,...,—1,1,...,1).
N——

To simplify the notation, we will writer; = sgn(h*(4)), j € I,. Now, we are interested in
obtaining a strongly separating hyperplanéati.e., a hyperplane

= {(x(l),x(Z), —.z(n)) Zaj o;x(]) = 1}

7j=1
such that
(p1) 0 <a; <1, allj € I, andZ1 aj = 1;
(p2) > 1ajajh( )>1VheK.

Proposition 2.6. LetS := ) w;. Then the above hyperplane with
j=1

P if1<5j<r, a;=

w—IfT+1< <n,
Y I T (N - 8) J

satisfiespl) and (p2), and therefore it is a strongly separating hyperplané’at

Proof. By definition,0 < a; < 1 for all j € I,,. Furthermore,

“ " w; - : 1 1
Z“ﬂ%h Zaﬂ ;%+j;lﬁ+@:§+§zl-

Then (pl) holds.

Since
= o0 £ = S LSS W
Jj=1 j=1 j=r+1
(p2) is equivalent to
(2.10) Zaja] )>0 VheK.
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But if » is a nondecreasing vector, thén (2.10) is immediate because

D> wih(j) < ij = S h(r) and Z h(j) = h(r) Y w;= (N = S)h(r),

j=r+1 j=r+1
and therefore

Dooih) = ~5g N uhli) + gy =gy 3 whl)

j=r+1
1
> —— — (N — = 0.
> 2SSh() (N—S)(N S)h(r) =0
This concludes the proof. O
From Propositiof 2]6 we deduce thasif= N/2, then
n W -
(2.11) {(x(l),x(Z),,x(n)) : ;Ujﬁjl'(j) = 1}

is a strongly separating hyperplane7za1 and from Theore4 this is equivalent?igw = b
forall 1 < p < co. In the case that # N/2, we claim thath,,, — h* asp — oo exactly
at a rateO ( ) From Proposmor.6 and Theore.2 4 @ 2.5 we only need to show that

) is not a strongly separating hyperplang*atThis last assertion is true sm 10) with
aj =w;/N,all j € I, implies
(2.12) > wih(j) = wih(j) VheEK.
j=r+1 j=1

On the other hand, i < N/2thenh = (—1,—1,...,—1) € K does not satisfy (2.12), and an
analogous conclusion is valid far= (1,1,...,1) € K if S > N/2. This proves the claim.

In what follows we obtain these same results calculating directly the djestapprox-
imations tof from K, namely,h, ., = (Zp.w, Tpw; - - - Tpw)- It iS €asy to check that

1
-1 S \»p
- +a (525 )”+(Ns)p7 | < p< oo

1

L+ (355)
Then we immediately conclude that$f= N/2, thenh,,, = h* forp > 1, and if S # N/2,
thenh, ., — h* asp — oo. Moreover, we can calculate the rate of convergence. Indeed,

(%)1/1?71

N o N/ S p —1
foy To) =@ ) 1 ()T 1 S Y
p—00 1/p p—00 1/p 2 p—oo 1/p T2 N-S

The rate of convergence is exacﬂ&(%).
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