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Abstract

In this work we deal with best approximation in (;;j, 1 <p<oon>2 For
1 < p < 0, let b, denote the best £7-approximation to f € R™ from a closed,
convex subset K of R", f ¢ K, and let h* be a best uniform approximation to
ffrom K. Incase that h* — f = (p1,p2,+- .pn)s |pj| = p TOrj =1,2,--- |m,
we show that the behavior of ||h, — h*|| as p — oo depends on a property of

separation of the set K from the £ -ball {z € R" : ||z — f|| < p} at h* — f. Feits 6 Caneses @
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Let (wy, wo, ..., w,) be afixed vector ilR"™, withw; > 0,j € I, :=={1,2,...,n},
n > 2. Forz = (z(1),x(2),...,z(n)) € R" we define

P

[2lpw = (ijlw(j)!”) , 1<p<oo, and
j=1

lall = max [+(5)].
Also we defineV := 7 w;.
Throughout the papefs will always be a nonempty, closed, convex subset
of R*. For f ¢ R™\K, we will say thath,,, € K,1 < p < oo, is a best
(, ,~approximation tof from K’ if

1f = Ppawllpw < [1f = Pllpw Vh e K.

The existence of at least one bégt, —approximation tof from K is a
known fact forl < p < oo. Likewise, there always exists a best uniform
approximation tof from K, i.e., anh* € K that satisfies

If =R <|[f—nl VheK.

We will henceforth assum¢ = 0 and0 ¢ K. This causes no loss of
generality, since all relevant properties are translation invariamt<ifp < oo,
there is a unique begf , —approximation. In this case, the next theoren [
characterizes the be&t, —approximation td) from K.
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Theorem 1.1 (Characterization of the best’}  -approximation). Let K be
a closed, convex subset &f', 0 ¢ K. Thenh,,, 1 < p < oo, is a best
¢, ,—approximation td) from K if and only if for allh € K,

@) 3 wilhyw() = )l () sen by (7)) <0, ifp > 1.

(12) > wi(hw(l) = h())sen(hiw() < Y wilh()l, fp=1,
jER(th) jEZ(hl’w)
where, ifg € R", Z(g) :={j € I, : g(j) = 0} and R(g) := I, \ Z(g).
It is also known L, 6, 7] that if K is an affine subspace, then

(1.3) plggo hpw="h",

where in this casé* is a particular best uniform approximation@drom K,
calledstrict uniform approximation]2, 7] and whose definition is also valid in
any closed, conveX. In [3, &] it is proved that there exists a constalit > 0
such thap || h,,, — h*|| < M for all p > 1. Moreover, from [ ] it is deduced
that there are constanig,, /M, > 0 and0 < a < 1, depending ork, such that

My a? <pllhy, —h*|| < Mya? forallp > 1.

In [2, 7] it is shown that if K is not an affine subspace, thép,, does not
necessarily converge to the strict uniform approximation, thoigd is always
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valid whenever* is the unique best uniform approximationidrom K. In

[6, 7] we can find sufficient conditions oR" under which (.9 is satisfied. In
any case, the convergencergf, asp — oo to a best uniform approximation is
known as thePolya algorithm [11]. The purpose of this paper is to study the

behavior of||h, ., — h*|| asp — oo whenh* is a best uniform approximation to
0 from K andh* satisfiegh*(j)| =p >0V j € I,.
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A useful concept in order to get a first general result on the rate of convergence
of the Polya algorithm is strong uniqueness. It was established in 1963 by New-
man and Shapirol[]] in the context of the uniform approximation to continuous
functions by means of elements of a Haar space, although we could define it in
any normed space.

Rate of Convergence of the

Definition 2.1. Let h* € K be a best uniform approximation tbe R" from Discrete Polya Algorithm from
K. We say thah* is strongly uniquef there existsy > 0 such that Convex Sets. A Particular Case
M. Marano, J. Navas and
(2.1) [ = b7 < ~([[al] = [[R7]]) VA e K. L, Qe
It is obyiou_s that ifh* is strongly unique, theh* is the unique best uniform Title Page
approximation td € R” from K.
Contents
Theorem 2.1. If the best uniform approximatioh* to 0 from K is strongly
unique, them ||h,,., — h*|| is bounded for alp > 1. « dd
Proof. We first note that for every € K, < >
) ) Go Back
(2.2) me [[hf| < [[h]lpw < N7 [|R]], Close
wherem := minje, {w,}. Quit
Let~y > 0 satisfy €.1). Then for anyp > 1, Page 6 of 21
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Applying (2.2) and the definition of best;  -approximation, we have

* 1 *
Ppwll = 1127 < — Nhp ol pw — 1A7]]
me
1 * *
< — |27 [paw = [[27]
mre
N 1
P
< [(—) - 1] Tl
m
Rate of Convergence of the
(N — m) Hh*” Discrete Polya Algorithm from
< - Convex Sets. A Particular Case
mp
_ M. Marano, J. Navas and
From 2.3) we finally conclude that J.M. Quesada
N —m)||h*
pllhpw — R < il - Il forallp > 1. Title Page
= Contents
. i . 44 44
The above inequality improves the proposaldhdnd [3].
< >
Go Back
We henceforth suppose that € K is a best uniform approximation to Close
from K, where|h*(j)| = p > 0for all j € I,,. Under these conditions we Quit
will analyze the behaviour offh, ., — h*|| asp — oo. In Theorem2.3, our
. : P, o Page 7 of 21
main result, we will prove that the converse of Theorgm— which is gen-
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p} N K = {h € K : ||h]| = p}, itis easy to see that there is a hyperplane
{(x(l),x(Z), ca(n)) s Y agsen(h () 2(j) = p}, with 0 < a; < 1, all

j € I,,and)_7 a; = 1, that separate&” from the ball{z € R" : [[z| < p}
ath*,i.e.,> 7 a;sgn(h*(j)) h(j) > pforallh € K.

Definition 2.2. We will say that

Rate of Convergence of the
Discrete Polya Algorithm from
Convex Sets. A Particular Case

™= {(93(1), 2(2),..,x(n)) : Z a;sgn(h”(5)) =(j) = ,0}

is a hyperplane thastrongly separate&” from the ball{z € R" : ||z|| < p} at

h*, or equivalently, thatr is astrongly separating hyperplanerat if M. Marano, J. Navas and
J.M. Quesada
2.4 O0<a;<1,aljel,, =1
(2.4) a; J ; a; Title Page
and Contents
n 44 44
(2.5) > ajsen(h* () h(j) = p VheK. < >
j=1
) Go Back
In the proofs of Lemm&.2 and Theorem<.3 and 2.4 we will assume
h*(j) = 1forall j € I,. This causes no loss of generality, since we can Cllese
replaceK by the closed, convex set Quit
- - 1 Page 8 of 21
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Lemma 2.2. If py ||hy, . — R*|| is bounded forp, — oo, then there exists a
strongly separating hyperplane at.

Proof. Sincelim,, . hy, »(j) = h*(j) = 1, all j € I,, we can suppose
hy.w(j) > 0, all j € I, and, without loss of generality, all,. Then, for
everyp, the formula of characterizatioi (1) can be expressed in the form

> willp(i) = hODRGL () <0 Vh € K.

PE,w

Dividing by ||A,, . ||2% .. fOr everyp, we obtain

Pr,w?
n : Dk .
(2.6) ij( G ) "I 51 vhek
j=1 ||hpk7prk7w h‘pk,w(j)
Keeping in mind that
wihpr () < hpwllpsw < 107 N5 w =N, J € I,

and after passage to a subsequence, we can suppokg that), all j € I,,, and
]|hpk7w||pk ., are convergent. Now, by hypothesig,|h,, ..(j) — 1| is bounded
forall j € I,, and allp,. Hence we get

lim A2k () = Hm EXp(pi(hp,w(j) —1)) >0, alljel,.

P —00 Pr—0C

Writing

h . Pk
a; = lim w <p’“—(‘7)) . J €I,
Pr—00 ||hpk7w ||pk w
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we therefore deduce that< a; < 1, all j € I,, and}_7_ a; = 1. Taking
limits asp, — oo in (2.6), we finally conclude that

Y a;jh(j)=1 VheK
j=1

Then{(x(l),:c(Q), cx(n) =00 aa(f) = 1} is a strongly separating hy-
perplane ab*. O

Theorem 2.3. The following statements are equivalent:

(&) The best uniform approximation ofrom K, ~*, is strongly unique.
(0) pl|lhpw — h*|| is bounded for alp > 1.
(©) pk |lhp,.w — h*] is bounded for a sequengg — oco.

(d) There exists a strongly separating hyperplané’at

Proof. (a)= (b) is Theoren®.1 (b) = (c) is obvious. (c)}= (d) is Lemma2.2.
To complete the theorem, we now prove ) (a). Suppose that there is a
strongly separating hyperplaneat »* = (1,1,...,1). Leth € K. Observe
that||h|| > 1. Let I denote the subset of indicg I, such thah(j) > 1, and
let7, :=I,\ L. Forallj € I we haveh(j) — 1| = h(j) —1 < ||h]| — 1. On
the other hand, if € I, , then|h(j) — 1| = 1 — h(j). Moreover, the inequality

> ai(h(i) —1) =0

i€ln
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implies

a;(1—=h(j)) <

S ai(h(i) - 1)

i€ In i

< > ai(h(i) - 1)
il

< (Il -0 a

iel,l

< (Al =D = ay).

Thus, for allj € I,, we have

1
h(j) - 1| < | ———1 hll—1) = hll—1
) = 11 < (e = 1) (Wl = 1) =2 (1] = 1),
and soflh — 1| < y((11] - [°]). 0

Our goal now is to show that, under the conditions of Theoke®neither
h, . = h* for all p or there exist constant¥/;, M, > 0 such that

My < pllhpw — B*|| < My forallp > 1.

On the other hand, if there exists no strongly separating hyperpldrie thien
the following example iR?, wherelim, .. h,.,, = h*, shows that the rate of
convergence is as slow as we want.

Example 2.1.Leta : [1,400) — (0, 1] be a continuous strictly decreasing
function such thaty(1) = 1 andtlim a(t) = 0andlets : (0,1] — [1,+00)
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denote its inverse function, that will also be a strictly decreasing function. We

define
1
f(z):= 1+/ (1-1)%09dt, 0<z<1,

and letK be the convex hull of the sétr,y) € R? : y = f(z),z € [0,1]}.

Observe thabt* = (1, 1) is the unique best uniform approximation(tg 0)
from K. Moreover, the functiory is smooth, convex and’(1) = 0. This
implies that the strongly separating hyperplang‘aioes not exist.

Leth, = (1 —¢,,1+6,) be the besp-approximation tq0, 0) from K, with
£y, 0, | 0@asp — oo. Since the slopes of the curye= f(z) and thel,-ball
coincide ath,, we have

w — Blep)
(1+9,)p-t P
and therefore

1—¢,

2.7 lim £P)/(=1) — 1im =
( ) p—00 p p—r00 1 +6p

If ¢, < a(p), theng(e,) > B(a(p)) = p, which contradicts4.7). Then, forp
large, we have, > a(p). This shows that the rate of convergencé:pto h*
asp — oo can be as slow as we want.

Theorem 2.4. The following conditions are equivalent
(@) hypn=nh"forallp>1,

(b) Ay = h* for somepy > 1,
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(c) the hyperplane

(2.8) 7= {<x<1>,as<2>, () = 3 san( () () = p}

j=1
is a strongly separating hyperplane fi.

Proof. (a) = (b) is obvious. (b)= (c) follows immediately from Theorerh. 1.
Indeed, ifh,, ., = h* for somep, > 1, then from (..2) if py > 1 or (1.2) if
po = 1, we have

(2.9) Zw(h*(j) — h(j))sgn(h*(j)) <0 Vhe K,

which is equivalent to the fact thatis a strongly separating hyperplanehat
Also from (1.1) and (L.2), the inequality 2.9) implies thath,,, = h* for all
p > 1and so (c)= (a). O

Theorem 2.5. Suppose that,,, # h* for somep > 1 and there exists a
strongly separating hyperplane at. Then there are constanf&/;, M, > 0
such that

My < pllhpw — R[] < My forallp > 1.

Proof. Assume that there exists a strongly separating hyperplahg athere
h*(j) = 1forall j € I,,. From Theoren®.3, there is a constant/; > 0 such
that

pllhpw — W] < Ma.
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Therefore, to prove the theorem it is sufficient to show &>, {p |7, —
h*||} > 0. Suppose the contrary. In order to get a contradiction, we only need
to consider the two following exhaustive cases:

1. There exists a sequengg — oo such thalim,, ... px||h,, —~*|| = 0. In
this casdim,, .. p |hp, w(j) — 1| = 0 for all j € I,,. This implies that
hPx  (j) — 1 asp, — oo and

Pr,w
h w q Pk .
CL; — lim w; ( Pk (]) ) — ﬂ

Prp—00 ||hpk,wHPk7w

=1,2,...,n
N ’ J T T Rate of Convergence of the
Discrete Polya Algorithm from

Letf=(a+1,...,a+1,a—1,...

which means (see the proof of Lemrh&) that the hyperplane2(8), with
h*(j) = p = 1 forall j € I,, is a strongly separating hyperplanehat
From Theoren?.4 (c), h,,, = h* for all p > 1, which contradicts the
hypothesis of the theorem.

. There exists a sequengg — po, 1 < py < oo, such that

limy, —po Pk || hppw — ¥ = 0. Sincehy, ., — hy,w, We deduce that
tho,w - h*H = hmpk—>1’0 ”hmmw - h*” = 0 and SOhPo,w = h*. Now,
using the statement (b) of Theoréini, we conclude that, ,, = h*, for
all p > 1. A contradiction.

O

,a — 1) € R", and letK be the convex set

N\
v~ v~
s n—r
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of the nondecreasing vectorsiit, i.e.
K={heR": h(i)<h(j)Vi,jel, i<j}.

In this case, the (unique) best uniform approximatiofi tmm K is the element
h* = (a,a,...,a). Thush,, — h* asp — oco. Furthermore, it is easy to see
that

hpw = (Tpw, Tpaws - - Tpw) €ER", 1 < p < o0,

for somez,, ,, satisfyinga — 1 < z,,, <a+ 1.
In order to translaté* to a vertex of the/Z -ball, we consider the closed,
convex set

K ={heR": h(j)=h(j) = f(j),j € I, h€ K}.
In this way we obtain
e f=(0,0,...,0);
o h*=h*—f= (—1,...,—1,1;;3).

T n—r

To simplify the notation, we will writer; = sgr(}i*(j)),j € I,,. Now, we are
interested in obtaining a strongly separating hyperplaié,ate., a hyperplane

= {(z(l),x(Z), ox(n)) Zaj o;x(j) = 1}

J=1

such that
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(P1) 0 <a; < l,allyje,,andd fa; =1;
(P2) Y0 0ja;h(j) > 1V h e K.

Proposition 2.6. LetS := ) w;. Then the above hyperplane with
j=1

w
CLj_—lf1<]<T a; =

5¢ ifr+1<j<n,

_ v
2(N = 5)

satisfies(p1) and (p2), and therefore it is a strongly separating hyperplane at

h*.

Proof. By definition,0 < a; < 1 for all j € I,,. Furthermore,

“ _ : 11
Seuii=Ye =355+ Y gtg =55t

7=1

Then (pl1) holds.

Since
& . " w n W
o osa f) = —(a+ )Y gp+la=1) 30 gt =1,
J=1 j=1 j=r+1
(p2) is equivalent to
(2.10) Zcrj a;h(j) >0 VheK.
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But if 4 is a nondecreasing vector, theéhX0 is immediate because

S wih() < h(r) Y w; = Sh(r)

and . .
> h(i) = h(r) Y w; = (N = S)h(r),
j=r+1 Jj=r+1
and therefore
n . 1 I8 - 1 n '
> oja;h(j) = ~5g Z w;h(j) + 3V =29) > wih(h)
j=1 j j=r+1
1

Z__Sh( )+ 2(N —9)

59 (N — S)h(r) =0.
This concludes the proof. O

From Propositior?2.6 we deduce that it = N/2, then

(2.11) {@(1),95(2), () Yo %x(j) - 1}

is a strongly separating hyperplaneiat and from Theoren? .4 this is equiva-
lent tohpw =h*foralll <p < oo. In the case that # N/2, we claim that

hpw — h* asp — oo exactly at a rat&) . From Propositior?.6 and The-
orems2.4and2.5we only need to show thaIZ(l]) is not a strongly separating
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hyperplane ab*. This last assertion is true sinc2.10, with a; = w;/N, all
j € I,, implies

(2.12) > wih(j) =Y wih(j) VheK.
j=r+1 Jj=1
On the other hand, it < N/2 thenh = (-1, —1) € K does not
satisfy .12, and an analogous conclusion is vaI|d folt (1,1,...,1) e K
if S > N/2. This proves the claim. Rate of Convergence of the

Discrete Polya Algorithm from
In what follows we obtain these same results calculating directly the best convex SetSyA Pg,t.cu.ar Case

¢, ,—approximations tgf from K, namely,h, ., = (Tpw, Tpw) - - - > Tpw)- LIS V. Marano. 3. Navas and
easy to check that J.M. Quesada
1 g 1\ 2
pﬂu:a_l—i_a(N 5) —t(N*S) 1< p<oo. Title Page
L+ (N—S) ! Contents
Then we immediately conclude that$f= N/2, thenh, ,, = h* for p > 1, and <« >
if S # N/2,thenh,, — h* asp — co. Moreover, we can calculate the rate of < >
convergence. Indeed,
Go Back
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_l (5
oM\ NZS)

The rate of convergence is exac(])y(%).
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