
volume 6, issue 3, article 78,
2005.

Received 02 June, 2005;
accepted 20 June, 2005.

Communicated by: C.P. Niculescu

Abstract

Contents

JJ II

J I

Home Page

Go Back

Close

Quit

Journal of Inequalities in Pure and
Applied Mathematics

NEWTON’S INEQUALITIES FOR FAMILIES OF COMPLEX
NUMBERS

VLADIMIR V. MONOV
Institute of Information Technologies
Bulgarian Academy of Sciences
1113 Sofia, Bulgaria.

EMail : vmonov@iit.bas.bg

c©2000Victoria University
ISSN (electronic): 1443-5756
182-05

Please quote this number (182-05) in correspondence regarding this paper with the Editorial Office.

mailto:cniculescu@central.ucv.ro
http://jipam.vu.edu.au/
mailto:vmonov@iit.bas.bg
http://www.vu.edu.au/


Newton’s Inequalities for
Families of Complex Numbers

Vladimir V. Monov

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 2 of 17

J. Ineq. Pure and Appl. Math. 6(3) Art. 78, 2005

http://jipam.vu.edu.au

Abstract

We prove an extension of Newton’s inequalities for self-adjoint families of com-
plex numbers in the half plane Re z > 0. The connection of our results with
some inequalities on eigenvalues of nonnegative matrices is also discussed.
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1. Introduction
The well known inequalities of Newton represent quadratic relations among the
elementary symmetric functions ofn real variables. One of the various conse-
quences of these inequalities is the arithmetic mean-geometric mean (AM-GM)
inequality for real nonnegative numbers. The classical book [2] contains differ-
ent proofs and a detailed study of these results. In the more recent literature,
reference [5] offers new families of Newton-type inequalities and an extended
treatment of various related issues.

This paper presents an extension of Newton’s inequalities involving ele-
mentary symmetric functions of complex variables. In particular, we consider
n−tuples of complex numbers which are symmetric with respect to the real axis
and obtain a complex variant of Newton’s inequalities and the AM-GM inequal-
ity. Families of complex numbers which satisfy the inequalities of Newton in
their usual form are also studied and some relations with inequalities on matrix
eigenvalues are pointed out.

Let X be ann-tuple of real numbersx1, . . . , xn. The i-th elementary sym-
metric function ofx1, . . . , xn will be denoted byei(X ), i = 0, . . . , n, i.e.

e0(X ) = 1, ei(X ) =
∑

1≤ν1<···<νi≤n

xν1xν2 . . . xνi
, i = 1, . . . , n.

By Ei(X ) we shall denote the arithmetic mean of the products inei(X ), i.e.

Ei(X ) =
ei(X )(

n
i

) , i = 0, . . . , n.

Newton’s inequalities are stated in the following theorem [2, Ch. IV].
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Theorem 1.1. If X is an n-tuple of real numbersx1, . . . , xn, xi 6= 0, i =
1, . . . , n then

(1.1) E2
i (X ) > Ei−1(X )Ei+1(X ), i = 1, . . . , n− 1

unless all entries ofX coincide.

The requirement thatxi 6= 0 actually is not a restriction. In general, for real
xi, i = 1, . . . , n

E2
i (X ) ≥ Ei−1(X )Ei+1(X ), i = 1, . . . , n− 1

and only characterizing all cases of equality is more complicated.
Inequalities (1.1) originate from the problem of finding a lower bound for

the number of imaginary (nonreal) roots of an algebraic equation. Such a lower
bound is given by the Newton’s rule:Given an equation with real coefficients

a0x
n + a1x

n−1 + · · ·+ an = 0, a0 6= 0

the number of its imaginary roots cannot be less than the number of sign changes
that occur in the sequence

a2
0,

(
a1(
n
1

))2

− a2(
n
2

) · a0(
n
0

) , . . . ,( an−1(
n

n−1

))2

− an(
n
n

) · an−2(
n

n−2

) , a2
n.

According to this rule, if all roots are real, then all entries in the above sequence
must be nonnegative which yields Newton’s inequalities.

A chain of inequalities, due to Maclaurin, can be derived from (1.1), e.g. see
[2] and [5].
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Theorem 1.2. If X is ann-tuple of positive numbers, then

(1.2) E1(X ) > E
1/2
2 (X ) > · · · > E1/n

n (X )

unless all entries ofX coincide.

The above theorem implies the well known AM-GM inequalityE1(X ) ≥
E

1/n
n (X ) for everyX with nonnegative entries.
Newton did not give a proof of his rule and subsequently inequalities (1.1)

and (1.2) were proved by Maclaurin. A proof of (1.1) based on a lemma of
Maclaurin is given in Ch. IV of [2] and an inductive proof is presented in Ch.
II of [ 2]. In the same reference it is also shown that the differenceE2

i (X ) −
Ei−1(X )Ei+1(X ) can be represented as a sum of obviously nonnegative terms
formed by the entries ofX which again proves (1.1). Yet another equality which
implies Newton’s inequalities is the following.

Let f(z) =
∑n

i=0 aiz
n−i be a monic polynomial withai ∈ C, i = 1, . . . , n.

For eachi = 1, . . . , n− 1 such thatai+1 6= 0, we have

(1.3)

(
ai(
n
i

))2

− ai−1(
n

i−1

) · ai+1(
n

i+1

) =
1

i(i + 1)2

(
i+1∏
k=1

λk

)2∑
j<k

(
λ−1

j − λ−1
k

)2
,

whereλk, k = 1, . . . , i+1 are zeros of the(n−i−1)-st derivativef (n−i−1)(z) of
f(z). Indeed, letek, k = 0, . . . , i+1 denote the elementary symmetric functions
of λ1, . . . , λi+1. Since

f (n−i−1)(z) =
i+1∑
k=0

(n− k)!

(i + 1− k)!
akz

i+1−k,
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we have

ek = (−1)k (i + 1)!(n− k)!

n!(i + 1− k)!
ak, k = 0, . . . , i + 1

and hence

(1.4)

(
ai(
n
i

))2

− ai−1(
n

i−1

) · ai+1(
n

i+1

) =
e2

i+1

i(i + 1)2

(
i

(
ei

ei+1

)2

− 2(i + 1)
ei−1

ei+1

)

which gives equality (1.3).
Now, if all zeros off(z) are real, then by the Rolle theorem all zeros of each

derivative off(z) are also real and thus Newton’s inequalities follow from (1.3).
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2. Complex Newton’s Inequalities
In what follows, we shall considern-tuples of complex numbersz1, . . . , zn de-
noted byZ. As in the real case,ei(Z) will be the i-th elementary symmetric
function ofZ andEi(Z) = ei(Z)

/(
n
i

)
, i = 0, . . . , n. In the next theorem, it is

assumed thatZ satisfies the following two conditions.

Re zi ≥ 0, i = 1, . . . , n whereRe zi = 0 only if zi = 0;(C1)

Z is self-conjugate, i.e. the non-real entries ofZ appear in complex(C2)

conjugate pairs.

Note thatZ satisfies (C2) if and only if all elementary symmetric functions
of Z are real. Conditions (C1) and (C2) together imply thatei(Z) ≥ 0, i =
0, . . . , n.

Theorem 2.1. Let Z be ann-tuple of complex numbersz1, . . . , zn satisfying
conditions (C1) and (C2) and let−ϕ ≤ arg zi ≤ ϕ, i = 1, . . . , n where0 ≤
ϕ < π/2. Then

(2.1) c2E2
i (Z) ≥ Ei−1(Z)Ei+1(Z), i = 1, . . . , n− 1

and

(2.2) cn−1E1(Z) ≥ cn−2E
1/2
2 (Z) ≥ · · · ≥ cE

1/(n−1)
n−1 (Z) ≥ E1/n

n (Z)

wherec = (1 + tan2 ϕ)1/2.
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Proof. Let Wϕ be defined by

Wϕ = {z ∈ C : −ϕ ≤ arg z ≤ ϕ}

and consider the polynomial

(2.3) f(z) =
n∏

i=1

(z − zi) =
n∑

i=0

aiz
n−i

with coefficients

(2.4) ai = (−1)i

(
n

i

)
Ei(Z), i = 0, . . . , n.

If for somei = 1, . . . , n− 1, Ei+1(Z) = 0 then the corresponding inequality in
(2.1) is obviously satisfied. For eachi = 1, . . . , n−1 such thatEi+1(Z) 6= 0 let
λ1, . . . , λi+1 denote the zeros off (n−i−1)(z). As in (1.4), it is easily seen that

(2.5) c2E2
i (Z)− Ei−1(Z)Ei+1(Z)

=
1

i(i + 1)2

(
i+1∏
k=1

λk

)2
i(1 + tan2 ϕ)

(
i+1∑
k=1

λ−1
k

)2

− 2(i + 1)
∑
j<k

λ−1
j λ−1

k

 .

Let αk = Re λ−1
k andβk = Im λ−1

k , k = 1, . . . , i + 1. Since the zeros off(z)
lie in the convex areaWϕ, by the Gauss-Lucas theorem,λk, and henceλ−1

k ,
k = 1, . . . , i + 1 also lie inWϕ which implies that

(2.6) αk ≥
|βk|

tan ϕ
, k = 1, . . . , i + 1.
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Using (2.6) and the inequalityRe λ−1
j λ−1

k ≤ αjαk + |βj| |βk| in (2.5), it is
obtained

c2E2
i (Z)− Ei−1(Z)Ei+1(Z)

≥ 1

i(i + 1)2

(
i+1∏
k=1

λk

)2∑
j<k

(
(αj − αk)

2 + (|βj| − |βk|)2
)
,

which proves (2.1).
Inequalities (2.2) can be obtained from (2.1) similarly as in the real case.

From (2.1) we have

c2E2
1c

4E4
2 · · · c2iE2i

i ≥ E0E2(E1E3)
2 · · · (Ei−1Ei+1)

i

which givesci(i+1)Ei+1
i ≥ Ei

i+1, or equivalently

cE1 ≥ E
1/2
2 , cE

1/2
2 ≥ E

1/3
3 , . . . , cE

1/(n−1)
n−1 ≥ E1/n

n .

Multiplying each inequalitycE1/i
i ≥ E

1/(i+1)
i+1 by cn−i−1 for i = 1, . . . , n − 2,

we obtain (2.2).

Inequalities (2.2) yield a complex version of the AM-GM inequality, i.e.

(2.7) cn−1E1(Z) ≥ E1/n
n (Z)

for everyZ satisfying conditions (C1) and (C2). It is easily seen that a case
of equality occurs in (2.1), (2.2) and (2.7) if n = 2 andZ consists of a pair of
complex conjugate numbersz1 = α + iβ andz2 = α − iβ with tan ϕ = β/α.
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Another simple observation is that under the conditions of Theorem2.1, in-
equalities (2.1) also hold for−Z given by−z1, . . . ,−zn. This follows immedi-
ately sinceEi(−Z) = (−1)iEi(Z), i = 0, . . . , n.

The next theorem indicates that ifZ satisfies an additional condition then one
can findn-tuples of complex numbers satisfying a complete analog of Newton’s
inequalities.

Theorem 2.2. Let Z be ann-tuple of complex numbersz1, . . . , zn satisfying
condition (C2) and let

(2.8) E2
1(Z)− E2(Z) > 0.

Then there is a realr ≥ 0 such that the shiftedn-tupleZα

(2.9) z1 − α, z2 − α, . . . , zn − α

satisfies

(2.10) E2
i (Zα) > Ei−1(Zα)Ei+1(Zα), i = 1, . . . , n− 1

for all real α with |α| ≥ r.

Proof. The complex numbers (2.9) are zeros of the polynomial

f(z + α) =
f (n)(α)

n!
zn +

f (n−1)(α)

(n− 1)!
zn−1 + · · ·+ f(α),

wheref(z) is given by (2.3) and (2.4). Thus

Ei(Zα) =
(−1)i(

n
i

) · f (n−i)(α)

(n− i)!
, i = 0, . . . , n.
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By writing f (n−i)(α) in the form

f (n−i)(α) = (n− i)!
i∑

k=0

(
n− k

n− i

)
akα

i−k, i = 0, . . . , n

and taking into account (2.4), it is obtained

(2.11) Ei(Zα) = (−1)i

i∑
k=0

(−1)k

(
i

k

)
Ek(Z)αi−k, i = 0, . . . , n

Now, using (2.11) one can easily find that

(2.12) E2
i (Zα)− Ei−1(Zα)Ei+1(Zα)

= 0 · α2i + 0 · α2i−1 +
(
E2

1(Z)− E2(Z)
)
α2i−2+

· · ·+ E2
i (Z)− Ei−1(Z)Ei+1(Z).

From (2.8) and (2.12), it is seen that for eachi = 1, . . . , n − 1 there isri ≥ 0
such that the right-hand side of (2.12) is greater than zero for all|α| ≥ ri.
Hence, inequalities (2.10) are satisfied for all|α| ≥ r, wherer = max{ri : i =
1, . . . , n− 1}.

If α in the above proposition is chosen such thatRe(zi−α) > 0, i = 1, . . . , n
then all the elementary symmetric functions ofZα are positive and inequalities
(2.10) yield

(2.13) E1(Zα) > E
1/2
2 (Zα) > · · · > E1/n

n (Zα).

In this case, the AM-GM inequality forZα follows from (2.13).
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3. Newton’s Inequalities on Matrix Eigenvalues
In a recent work [3] the inequalities of Newton are studied in relation with the
eigenvalues of a special class of matrices, namely M-matrices. Ann × n real
matrixA is an M-matrix iff [1]

(3.1) A = αI − P,

whereP is a matrix with nonnegative entries andα > ρ(P ), whereρ(P ) is the
spectral radius (Perron root) ofP. LetZ andZα denote then−tuplesz1, . . . , zn

andα− z1, . . . , α− zn of the eigenvalues ofP andA, respectively. In terms of
this notation, it is proved in [3] that

(3.2) E2
i (Zα) ≥ Ei−1(Zα)Ei+1(Zα), i = 1, . . . , n− 1

for all α > ρ(P ), i.e. the eigenvalues ofA satisfy Newton’s inequalities. The
proof is based on inequalities involving principal minors ofA and nonnegativity
of a quadratic form. As a consequence of (3.2) and the property of M-matrices
that Ei(Zα) > 0, i = 1, . . . , n, the eigenvalues ofA satisfy the AM-GM in-
equality, a fact which can be directly seen from

detA ≤
n∏

i=1

aii ≤

(
1

n

n∑
i=1

aii

)n

,

whereaii > 0, i = 1, . . . , n are the diagonal entries ofA, the first inequality is
the Hadamard inequality for M-matrices and the second inequality is the usual
AM-GM inequality.
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In view of Theorem2.2above, it is easily seen that one can find other matrix
classes described in the form (3.1) and satisfying Newton’s inequalities. In
particular, ifZ denotes then−tuple of the eigenvalues of a real matrixB =
[bij], i, j = 1, . . . , n then the left hand side of (2.8) can be written as

(3.3) E2
1(Z)− E2(Z) =

1

n2

(
n∑

i=1

bii

)2

− 2

n(n− 1)

∑
i<j

(biibjj − bijbji).

By the first inequality of Newton applied tob11, . . . , bnn, it follows from (3.3)
that condition (2.8) is satisfied if

(3.4) bijbji ≥ 0, 1 ≤ i < j ≤ n

with at least one strict inequality. According to Theorem2.2, in this case there
is r ≥ 0 such that the eigenvalues ofA = αI − B satisfy (2.10) for |α| ≥ r. It
should be noted that matrices satisfying (3.4) include the class of weakly sign
symmetric matrices.

Next, we consider the inequalities of Loewy, London and Johnson [1] (LLJ
inequalities) on the eigenvalues of nonnegative matrices and point out a close
relation with Newton’s inequalities.

Let A ≥ 0 denote an entry-wise nonnegative matrixA = [aij], i, j =
1, . . . , n, tr A be the trace ofA, i.e. tr A =

∑n
i=1 aii and letSk denote the

k−th power sum of the eigenvaluesz1, . . . , zn of A :

Sk =
n∑

i=1

zk
i , k = 1, 2, . . . .
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Due to the nonnegativity ofA, we have

(3.5) tr(Ak) ≥
n∑

i=1

ak
ii

and sinceSk = tr(Ak), it follows thatSk ≥ 0 for eachk = 1, 2, . . . . The LLJ
inequalities actually show something more, i.e.

(3.6) nm−1Skm ≥ (Sk)
m, k, m = 1, 2, . . .

or equivalently,

(3.7) nm−1 tr
(
(Ak)m

)
≥
(
tr(Ak)

)m
, k, m = 1, 2, . . . .

Equalities hold in (3.6) and (3.7) if A is a scalar matrixA = αI. Obviously, in
order to prove (3.7) it suffices to show that

(3.8) nm−1 tr(Am) ≥ (tr A)m, m = 1, 2, . . .

for everyA ≥ 0. The key to the proof of (3.8) are inequalities

(3.9) nm−1

n∑
i=1

xm
i −

(
n∑

i=1

xi

)m

≥ 0, m = 1, 2, . . .

which hold for nonnegativex1, . . . , xn and can be deduced from Hölder’s in-
equalities, e.g. see [1], [4]. SinceA ≥ 0, (3.9) together with (3.5) imply (3.8).
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From the point of view of Newton’s inequalities, it can be easily seen that
the casem = 2 in (3.9) follows from

E2
1(X )− E2(X ) =

1

n2(n− 1)

(
(n− 1) e2

1(X )− 2n e2(X )
)

=
1

n2(n− 1)

n
n∑

i=1

x2
i −

(
n∑

i=1

xi

)2


=
1

n2(n− 1)

∑
i<j

(xi − xj)
2 ≥ 0.

Thus, (3.9) holds form = 1 (trivially), m = 2 and the rest of the inequalities can
be obtained by induction onm. Also, following this approach, the inequalities
in (3.6) for m = 2 andk = 1, 2, . . . can be obtained directly from

n
n∑

i=1

z2k
i −

(
n∑

i=1

zk
i

)2

= (n− 1) e2
1(Zk)− 2n e2(Zk)

= (n− 1)

(
n∑

i=1

a
[k]
ii

)2

− 2n
∑
i<j

(
a

[k]
ii a

[k]
jj − a

[k]
ij a

[k]
ji

)

≥ (n− 1)

(
n∑

i=1

a
[k]
ii

)2

− 2n
∑
i<j

a
[k]
ii a

[k]
jj

=
∑
i<j

(
a

[k]
ii − a

[k]
jj

)2

≥ 0
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whereZk is then−tuple zk
1 , . . . , z

k
n of the eigenvalues ofAk anda

[k]
ij denotes

the (i, j)−th element ofAk, i, j = 1, . . . , n, k = 1, 2, . . . . Clearly, equalities
hold if and only ifAk is a scalar matrix.
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