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ABSTRACT. In this article, we consider an unconstrained minimization formulation of the non-
linear complementarity problem NCP(f) when the underlying functions areH-differentiable
but not necessarily locally Lipschitzian or directionally differentiable. We show how, under
appropriate regularity conditions on anH-differential off , minimizing the merit function cor-
responding tof leads to a solution of the nonlinear complementarity problem. Our results give
a unified treatment of such results forC1-functions, semismooth-functions, and for locally Lip-
schitzian functions. We also show a result on the global convergence of a derivative-free descent
algorithm for solving nonsmooth nonlinear complementarity problem.
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1. I NTRODUCTION

We consider the nonlinear complementarity problem, denoted by NCP(f), which is to find a
vectorx̄ ∈ Rn such that

(1.1) x̄ ≥ 0, f(x̄) ≥ 0 and〈f(x̄), x̄〉 = 0,

wheref : Rn → Rn, and〈·, ·〉 denotes the usual inner product inRn. This problem has a
number of important applications in many fields, e.g., in operations research, economic equi-
librium models and engineering sciences (in the form of contact problems, obstacle problems,
equilibrium models,...), see [5], [17] for a more detailed description. Also, NCP(f) serves as
a general framework for linear, quadratic, and nonlinear programming. Many methods have
been developed for the solution of the nonlinear complementarity problem, see, e.g., [8], [11],
[16], [17], and the references therein. Among these, one of the most popular approaches that
has been studied extensively is to reformulate the NCP(f) as an unconstrained minimization
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2 M. A. TAWHID

problem through some merit function, see e.g., the survey paper by Fischer [8]. A function
Ψ : Rn → [0,∞) is said to be a merit function for NCP(f) provided that

(1.2) Ψ(x̄) = 0 ⇔ x̄ solves NCP(f).

This leads to the following minimization problem:

(1.3) min
x∈Rn

Ψ(x).

NCP(f) is solvable if and only if the minimization problem (1.3) has a minimum value of zero.
One way of constructing such a function is to define the so-called NCP function as follows:

A functionφ : R2 → R is called an NCP function if

φ(a, b) = 0 ⇔ ab = 0, a ≥ 0, b ≥ 0.

We callφ a nonnegative NCP function ifφ(a, b) ≥ 0 on R2. Givenφ for the problem NCP(f),
we define

(1.4) Φ(x) =


φ(x1, f1(x))

...
φ(xi, fi(x))

...
φ(xn, fn(x))


and callΦ(x) an NCP function for NCP(f). We callΦ a nonnegative NCP function for NCP(f)
if φ is nonnegative. If the NCP function is nonnegative, then we define the merit functionΨ at
x by

(1.5) Ψ(x) :=
n∑

i=1

Φi(x) =
n∑

i=1

φ(xi, fi(x)),

whereΦ : Rn → Rn andφ : R2 → R.
In this paper, we consider the following nonnegative NCP functions:

(1)

Φi(x) = φ(xi, fi(x))(1.6)

=
α

2
max2{0, xi fi(x)}+

1

2
[φFB(xi, fi(x))]2

:=
α

2
max2{0, xi fi(x)}+

1

2

[
xi + fi(x)−

√
x2

i + fi(x)2

]2

whereφFB : R2 → R is called the Fischer-Burmeister function andα ≥ 0 is a real
parameter.

(2)

Φi(x) = φ(xi, fi(x))(1.7)

:= xifi(x) +
1

2α

[
max2{0, xi − αfi(x)}

+max2{0, fi(x)− αxi} − x2
i − fi(x)2

]
,

and whereα > 1 is any fixed parameter.

Yamada, Yamashita, and Fukushima [35] proposed the NCP function in (1.6) to solve the
NCP in (1.1). In (1.6), whenα = 0, the NCP function reduced to the squared Fischer-
Burmeister function. The NCP function in (1.7) was proposed by Mangasarian and Solodov
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[23]. Forf a C1 function, Yamada, Yamashita, and Fukushima [35] proved that theΨ(x) cor-
responding to the NCP function in (1.6) is aC1 and nonnegative merit function. Forf a C1

function, Mangasarian and Solodov [23] proved that theΨ(x) based on the NCP function in
(1.7) is aC1 and nonnegative merit function. Jiang [19] generalized some results in [23] to the
case where the considered function is directionally differentiable.

In this paper, we extend/generalize these results to nonsmooth functions which admitH-
differentiability, but are not necessarily locally Lipschitzian or directionally differentiable. Our
results are applicable to any nonnegative NCP functions satisfying Lemma 3.4, but for sim-
plicity, we consider the Yamada, Yamashita, and Fukushima function (1.6) and the implicit
Lagrangian function (1.7).

The basic motivations of using the concepts ofH-differentiability andH-differential are:
H-differentiability implies continuity, any superset of anH-differential is anH-differential,
andH-differentials enjoy simple sum, product, chain rules, a mean value theorem and a second
order Taylor-like expansion, and inverse and implicit function theorems, see [13], [14], [15]. An
H-differentiable function is not necessarily locally Lipschitzian or directionally differentiable.
The Fréchet derivative of a differentiable function, the Clarke generalized Jacobian of a locally
Lipschitzian function [1], the Bouligand differential of a semismooth function [27], and theC-
differential of Qi [28] are particular instances ofH-differentials; moreover, the closure of the
H-differential is an approximate Jacobian [18].

For some applications ofH-differentiability to optimization problems, nonlinear comple-
mentarity problems and variational inequalities, see e.g. [31], [34] and [33].

The paper is organized as follows. In Section 2, we recall some definitions and basic facts
which are needed in the subsequent analysis. In Section 3, we describe theH-differential of
the Yamada, Yamashita, and Fukushima function, implicit Lagrangian function and their merit
functions. Also, we show how, under appropriate regularity -conditions on anH-differential
of f , finding local/global minimum ofΨ (or a ‘stationary point’ ofΨ) leads to a solution of
the given nonlinear complementarity problem. Our results unify/extend various similar results
proved in the literature forC1, locally Lipschitzian, and semismooth functions [3], [4], [7],
[9], [12], [17], [19], [20], [22], [23], [35], [36]. Moreover, we present a result on the global
convergence of a derivative-free descent algorithm for solving a nonsmooth nonlinear comple-
mentarity problem.

2. PRELIMINARIES

Throughout this paper, we consider vectors inRn as column vectors. Vector inequalities are
interpreted componentwise. We denote the inner-product between two vectorsx andy in Rn by
eitherxT y or 〈x, y〉. For a matrixA, Ai denotes the ith row ofA. For a differentiable function
f : Rn → Rm,∇f(x̄) denotes the Jacobian matrix off at x̄.

We need the following definitions from [2], [26].

Definition 2.1. A matrix A ∈ Rn×n is calledP0 (P) if ∀x ∈ Rn, x 6= 0, there existsi such
thatxi 6= 0 andxi (Ax)i ≥ 0 (> 0), or equivalently, every principle minor ofA is nonnegative
(respectively, positive).

2.1. H-differentiability and H-differentials. We now recall the following definition from
Gowda and Ravindran [15].

Definition 2.2. Given a functionF : Ω ⊆ Rn → Rm whereΩ is an open set inRn andx∗ ∈ Ω,
we say that a nonempty subsetT (x∗) (also denoted byTF (x∗)) of Rm×n is anH-differential of
F at x∗ if for every sequence{xk} ⊆ Ω converging tox∗, there exist a subsequence{xkj} and
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a matrixA ∈ T (x∗) such that

(2.1) F (xkj)− F (x∗)− A(xkj − x∗) = o(||xk
j − x∗||).

We say thatF is H-differentiable atx∗ if F has anH-differential atx∗.

Remark 1. As observed in [34], if a functionF : Ω ⊆ Rn → Rm is H-differentiable at a point
x̄, then there exist a constantL > 0 and a neighbourhoodB(x̄, δ) of x̄ with

(2.2) ||F (x)− F (x̄)|| ≤ L||x− x̄||, ∀x ∈ B(x̄, δ).

Conversely, if condition (2.2) holds, thenT (x̄) := Rm×n can be taken as anH-differential of
F at x̄. We thus have, in (2.2), an alternate description ofH-differentiability. However, as we
see in the sequel, it is the identification of an appropriateH-differential that becomes important
and relevant.

Clearly any function locally Lipschitzian at̄x will satisfy (2.2). For real valued functions,
condition (2.2) is known as the ‘calmness’ ofF at x̄. This concept has been well studied in the
literature of nonsmooth analysis (see [30, Chapter 8]).

In the rest of this section we show that the Fréchet derivative of a Fréchet differentiable
function, the Clarke generalized Jacobian of a locally Lipschitzian function, the Bouligand
subdifferential of a semismooth function, and theC-differential of aC-differentiable function
are particular instances ofH-differentials [15].

2.2. Fréchet differentiable functions. Let F : Rn → Rm be Fréchet differentiable atx∗ ∈ Rn

with a Fréchet derivative matrix (= Jacobian matrix derivative){∇F (x∗)} so that

F (x)− F (x∗)−∇F (x∗)(x− x∗) = o(||x− x∗||).

ThenF is H-differentiable with{∇F (x∗)} as anH-differential.

2.3. Locally Lipschitzian functions. Let F : Ω ⊆ Rn → Rm be locally Lipschitzian at each
point of an open setΩ. Forx∗ ∈ Ω, define the Bouligand subdifferential ofF atx∗ by

∂BF (x∗) = {lim∇F (xk) : xk → x∗, xk ∈ ΩF},

whereΩF is the set of all points inΩ whereF is Fréchet differentiable. Then, the (Clarke)
generalized Jacobian [1]

∂F (x∗) = co∂BF (x∗)

is anH-differential ofF atx∗.

2.4. Semismooth functions.Consider a locally Lipschitzian functionF : Ω ⊆ Rn → Rm that
is semismooth atx∗ ∈ Ω [24], [27], [29]. This means that for any sequencexk → x∗, and for
anyVk ∈ ∂F (xk),

F (xk)− F (x∗)− Vk(x
k − x∗) = o(||xk − x∗||).

Then the Bouligand subdifferential

∂BF (x∗) = {lim∇F (xk) : xk → x∗, xk ∈ ΩF}

is anH-differential ofF atx∗. In particular, this holds ifF is piecewise smooth, i.e., there exist
continuously differentiable functionsFj : Rn → Rm such that

F (x) ∈ {F1(x), F2(x), . . . , FJ(x)} ∀x ∈ Rn.
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2.5. C-differentiable functions. LetF : Rn → Rn beC-differentiable [28] in a neighborhood
D of x∗. This means that there is a compact upper semicontinuous multivalued mappingx 7→
T (x) with x ∈ D andT (x) ⊂ Rn×n satisfying the following condition at anya ∈ D: For any
V ∈ T (x),

F (x)− F (a)− V (x− a) = o(||x− a||).

Then,F is H-differentiable atx∗ with T (x∗) as anH-differential.

Remark 2. While the Fréchet derivative of a differentiable function, the Clarke generalized Ja-
cobian of a locally Lipschitzian function [1], the Bouligand differential of a semismooth func-
tion [27], and theC-differential of aC-differentiable function [28] are particular instances of
H-differentials, the following simple example, taken from [13], shows that anH-differentiable
function need not be locally Lipschitzian and/or directionally differentiable. Consider onR,

F (x) = x sin

(
1

x

)
for x 6= 0 andF (0) = 0.

ThenF is H-differentiable onR with

T (0) = [−1, 1] andT (c) =

{
sin

(
1

c

)
− 1

c
cos

(
1

c

)}
for c 6= 0.

We note thatF is not locally Lipschitzian around zero. We also see thatF is neither Fréchet
differentiable nor directionally differentiable.

3. THE M AIN RESULTS

For a givenH-differentiable functionf : Rn → Rn, consider the associated Yamada, Ya-
mashita, and Fukushima function/implicit Lagrangian function (or any nonnegative NCP func-
tion satisfying Lemma 3.4)Φ and the corresponding merit functionΨ :=

∑n
i=1 Φi. It should be

recalled that

Ψ(x̄) = 0 ⇔ Φ(x̄) = 0 ⇔ x̄ solves NCP(f).

3.1. H-differentials of some NCP/merit functions. First, we compute theH-differential of
the merit functionΨ as given in (1.5). In what follows,e denotes the vector of ones.

Theorem 3.1.SupposeΦ is H-differentiable at̄x with TΦ(x̄) as anH-differential.
ThenΨ :=

∑n
i=1 Φi is H-differentiable at̄x with anH-differential given by

TΨ(x̄) = {eT B : B ∈ TΦ(x̄)}.

Proof. To describe anH-differential ofΨ as given in (1.5), letθ(x) = x1 + · · · + xn. Then
Ψ = θ ◦Φ so that by the chain rule forH-differentiability, we haveTΨ(x̄) = (Tθ ◦TΦ)(x̄) as an
H-differential ofΨ at x̄. SinceTθ(x̄) = {eT}, we have

TΨ(x̄) = {eT B : B ∈ TΦ(x̄)}.

This completes the proof. �

Now, we describe theH-differential of the implicit Lagrangian function.

Theorem 3.2. Suppose thatf : Rn → Rn is H-differentiable atx̄ with T (x̄) as anH-
differential. ConsiderΦ as in (1.7). Then the implicit Lagrangian functionΨ :=

∑n
i=1 Φi
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is H-differentiable with anH-differentialTΨ(x̄) consisting of all vectors of the formvT A + wT

with A ∈ T (x̄), v andw are column vectors with entries defined by

vi = x̄i +
1

α
[−α max{0, x̄i − αfi(x̄)}+ max{0, fi(x̄)− αx̄i} − fi(x̄)] ,(3.1)

wi = fi(x̄) +
1

α
[max{0, x̄i − αfi(x̄)} − x̄i − α max{0, fi(x̄)− αx̄i}] .

Proof. First we show that anH-differential of

(3.2) Φ(x) := x ∗ f(x) +
1

2α

[
max2{0, x− αf(x)}+ max2{0, f(x)− αx} −x2 − f(x)2

]
is given by

TΦ(x̄) = {B = V A + W : A ∈ T (x̄), V = diag(vi) andW = diag(wi)

wherevi, wi satisfy(3.1)}.

Let g(x) = max{0, x − αf(x)}, h(x) = max{0, f(x) − αx}. For eachA ∈ T (x̄), let A′ and
A′′ be matrices such that fori = 1, . . . , n,

(3.3) A′
i ∈


{ei − αAi} if x̄i − αfi(x̄) > 0

{0, ei − αAi} if x̄i − αfi(x̄) = 0

{0} if x̄i − αfi(x̄) < 0,

and

(3.4) A′′
i ∈


{Ai − αei} if fi(x̄)− αx̄i > 0

{0, Ai − αei} if fi(x̄)− αx̄i = 0

{0} if fi(x̄)− αx̄i < 0.

Then it can be easily verified thatTg(x̄) = {A′|A ∈ T (x̄)} andTh(x̄) = {A′′|A ∈ T (x̄)} are
H-differentials ofg andh, respectively. Now simple calculations show thatTΦ(x̄) consists of
matrices of the form

(3.5) B = [diag(x̄) A + diag(f(x̄))]

+
1

2α
[2 diag(g(x̄)) A′ + 2 diag(h(x̄)) A′′ − 2 diag(x̄)− 2 diag(f(x̄))] ,

whereA′ andA′′ for A ∈ T (x̄) are defined by (3.3) and (3.4), respectively.
Sincegi(x) = 0 whenxi − αfi(x) ≤ 0, we have

diag(g(x̄)) A′ = diag(g(x̄))(I − αA).

Similarly, diag(h(x̄)) A′′ = diag(h(x̄))(A− αI).
Therefore, (3.5) becomes

(3.6) B =

[
diag(x̄) +

1

α
[−α diag(max{0, x̄− αf(x̄)}) + diag(max{0, f(x̄)− αx̄})

− diag(f(x̄))
]
A +

[
diag(f(x̄)) +

1

α
[diag(max{0, x̄− αf(x̄)})

−α diag(max{0, f(x̄)− αx̄})]
]

= V A + W,
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whereV andW are diagonal matrices with diagonal entries given by (3.1). By Theorem 3.1,
we have

(3.7) TΨ(x̄) = {eT (V A + W ) = vT A + wT : A ∈ T (x̄), v andw are vectors inRn

with components defined by (3.1)}.

This completes the proof. �

We describe theH-differential of the Yamada, Yamashita, and Fukushima function.

Theorem 3.3. Suppose thatf : Rn → Rn is H-differentiable atx̄ with T (x̄) as anH-
differential. Consider the associated Yamada, Yamashita, and Fukushima function

(3.8) Φ(x) =
α

2
[x ∗ f(x)]2+ +

1

2

[
x + f(x)−

√
x2 + f(x)2

]2

,

where all the operations are performed componentwise,x+ = max{0, x} andα ≥ 0 is a real
parameter. Let

J(x̄) = {i : fi(x̄) = 0 = x̄i} andK(x̄) = {i : x̄i > 0, fi(x̄) > 0}.

Then theH-differential ofΦ is given by

TΦ(x̄) = {V A + W : (A, V, W, d) ∈ Γ},

whereΓ is the set of all quadruples(A, V, W, d) with A ∈ T (x̄), ||d|| = 1, V = diag(vi) and
W = diag(wi) are diagonal matrices with

vi =



φFB(x̄i, fi(x̄))

(
1− fi(x̄)√

x̄2
i +fi(x̄)2

)
+ α x̄2

i fi(x̄) wheni ∈ K(x̄)

φFB(di, Ai d)

(
1− Aid√

d2
i +(Aid)2

)
wheni ∈ J(x̄)

andd2
i + (Aid)2 > 0

φFB(x̄i, fi(x̄))

(
1− fi(x̄)√

x̄2
i +fi(x̄)2

)
+ α x̄2

i fi(x̄) wheni 6∈ J(x̄) ∪K(x̄)

arbitrary wheni ∈ J(x̄)
andd2

i + (Aid)2 = 0,

(3.9)

wi =



φFB(x̄i, fi(x̄))

(
1− x̄i√

x̄2
i +fi(x̄)2

)
+ α x̄i f

2
i (x̄) wheni ∈ K(x̄)

φFB(di, Ai d)

(
1− di√

d2
i +(Aid)2

)
wheni ∈ J(x̄)

andd2
i + (Aid)2 > 0

φFB(x̄i, fi(x̄))

(
1− fi(x̄)√

x̄2
i +fi(x̄)2

)
+ α x̄i f

2
i (x̄) wheni 6∈ J(x̄) ∪K(x̄)

arbitrary wheni ∈ J(x̄)
andd2

i + (Aid)2 = 0.

Proof. Similar to the calculation and analysis of Examples 5-7 in [34]. �
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Remark 3.
• The calculation in Theorem 3.3 relies on the observation that the following is anH-

differential of the one variable functiont 7→ t+ at anyt̄:

∆(t̄) =


{1} if t̄ > 0

{0, 1} if t̄ = 0

{0} if t̄ < 0.

• By Theorem 3.1, theH-differentialTΨ(x̄) of Ψ(x̄) =
∑n

i=1 Φi(x) on the basis of the
square Fischer-Burmeister function consists of all vectors of the formvT A + wT with
A ∈ T (x̄), v andw are column vectors with entries defined by (3.9).

We conclude this subsection with the following lemma that will be needed in the sequel. The
proof is similar to Lemma 3.1 of [12].

Lemma 3.4.Suppose thatf : Rn → Rn is H-differentiable at̄x withT (x̄) as anH-differential.
Suppose thatΦ is defined as in Theorems 3.2 – 3.3,H-differentiable with anH-differential
TΦ(x̄) as given by

(3.10) TΦ(x̄) = {V A + W : A ∈ T (x̄), V = diag(vi) andW = diag(wi)},
andΨ is H-differentiable with anH-differentialTΨ(x̄). ThenΦ is nonnegative and the follow-
ing properties hold:

(3.11)

(i) x̄ solves NCP(f)⇔ Φ(x̄) = 0.

(ii) For i ∈ {1, . . . , n}, vi wi ≥ 0.

(iii) For i ∈ {1, . . . , n}, Φi(x̄) = 0 ⇔ (vi, wi) = (0, 0).

(iv) For i ∈ {1, . . . , n} with x̄i ≥ 0 andf(x̄i) ≥ 0, we havevi ≥ 0.

(v) If 0 ∈ TΨ(x̄), thenΦ(x̄) = 0 ⇔ v = 0.


In the following subsection, we show that under appropriate regularity conditions, a vectorx̄

is a solution of the NCP(f) if and only if zero belongs toTΨ(x̄) (when the underlying functions
areH-differentiable.)

3.2. Minimizing the merit function under regularity (strict regularity) conditions. We
generalize the concept of a regular (strictly regular) point from [3], [6], [22], [25].

For a givenH-differentiable functionf andx̄ ∈ Rn, we define the following index sets:

P(x̄) := {i : vi > 0}, N (x̄) := {i : vi < 0},

C(x̄) := {i : vi = 0}, R(x̄) := P(x̄) ∪N (x̄),

wherevi are the entries ofV in (3.10) (e.g.,vi is defined in Theorems 3.2 – 3.3).

Definition 3.1. Considerf , Φ as in (1.6) or (1.7), andΨ as (1.5). A vectorx∗ ∈ Rn is called
strictly regular if, for every nonzero vectorz ∈ Rn such that

(3.12) zC = 0, zP > 0, zN < 0,

there exists a vectors ∈ Rn such that

(3.13) sP ≥ 0, sN ≤ 0, sC = 0, and

(3.14) sT AT z > 0 for all A ∈ T (x∗).
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Remark 4. It is possible forΦ in Definition 3.1 to be any nonnegative NCP function satisfying
Lemma 3.4.

Theorem 3.5. Supposef : Rn → Rn is H-differentiable atx̄ with an H-differential T (x̄).
AssumeΦ is defined as in Theorems 3.2 – 3.3. Assume thatΨ :=

∑n
i=1 Φi(x̄) isH-differentiable

at x̄ with anH-differential given by

TΨ(x̄) = {vT A + wT : (A, v, w) ∈ Ω},

whereΩ is the set all triples(A, v, w) with A ∈ T (x̄), v and w are vectors inRn satisfying
properties (ii), (iii), and (v) in (3.11).

Thenx̄ solves NCP(f) if and only if0 ∈ TΨ(x̄) andx̄ is a strictly regular point.

Proof. The ‘if’ part of the theorem follows easily from the definitions. Now suppose that0 ∈
TΨ(x̄) andx̄ is a strictly regular point. Then for somevT A + wT ∈ TΨ(x̄),

(3.15) 0 = vT A + wT ⇒ AT v + w = 0.

We claim thatΦ(x̄) = 0. Assume the contrary that̄x is not a solution of NCP(f). Then by
property(v) in (3.11), we havev as a nonzero vector satisfyingvC = 0, vP > 0, vN < 0. Since
x̄ is a strictly regular point, andviwi ≥ 0 by property(ii) in (3.11), by taking a vectors ∈ Rn

satisfying (3.13) and (3.14), we have

(3.16) sT AT v > 0

and

(3.17) sT w = sT
CwC + sT

PwP + sT
NwN ≥ 0.

Thus we havesT (AT v + w) = sT AT v + sT w > 0. We reach a contradiction to (3.15). Hence,
x̄ is a solution of NCP(f). �

Now we state a consequence of the above theorem.

Theorem 3.6. Supposef : Rn → Rn is H-differentiable atx̄ with an H-differential T (x̄).
AssumeΦ is defined as in Theorems 3.2 – 3.3.

Assume thatΨ :=
∑n

i=1 Φi(x̄) is H-differentiable at̄x with anH-differential given by

TΨ(x̄) = {vT A + wT : (A, v, w) ∈ Ω},

whereΩ is the set all triples(A, v, w) with A ∈ T (x̄), v and w are vectors inRn satisfying
properties (ii), (iii), and (v) in (3.11).

Further suppose thatT (x̄) consists of positive-definite matrices. Then

Φ(x̄) = 0 ⇔ 0 ∈ TΨ(x̄).

Proof. The proof follows by takings = z in Definition 3.1 for a strictly regular point and by
using Theorem 3.5. �

Before we state the next theorem, we recall a definition from [32].

Definition 3.2. Consider a nonempty setC in Rn×n. We say that a matrixA is a row repre-
sentative ofC if for each indexi = 1, 2, . . . , n, theith row of A is theith row of some matrix
C ∈ C. We say thatC has therow-P0-property(row-P-property) if every row representative of
C is aP0-matrix (P-matrix). We say thatC has thecolumn-P0-property(column-P-property)
if CT = {AT : A ∈ C} has therow-P0-property(row-P-property).
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Theorem 3.7. Supposef : Rn → Rn is H-differentiable atx̄ with an H-differential T (x̄).
AssumeΦ is defined as in Theorems 3.2 – 3.3. Assume thatΨ :=

∑n
i=1 Φi(x̄) isH-differentiable

at x̄ with anH-differential given by

TΨ(x̄) = {vT A + wT : (A, v, w) ∈ Ω},
whereΩ is the set all triples(A, v, w) with A ∈ T (x̄), v and w are vectors inRn satisfying
properties (ii), (iii), and (v) in (3.11).

Further, suppose thatT (x̄) has the column-P-property. Then

x̄ solves NCP(f) if and only if0 ∈ TΨ(x̄).

Proof. In view of Theorem 3.5, it is enough to show thatx̄ is a strictly regular point. To see this,
let v be a nonzero vector satisfying (3.12). SinceT (x̄) has the column-P-property, by Theorem
2 in [32], there exists an indexj such thatvj

[
AT v

]
j

> 0 ∀A ∈ T (x̄). Chooses ∈ Rn so that

sj = vj andsi = 0 for all i 6= j. ThensT AT v = vj

[
AT v

]
j

> 0 ∀A ∈ T (x̄). Hencex̄ is a
strictly regular point. �

Theorem 3.8. Supposef : Rn → Rn is H-differentiable atx̄ with an H-differential T (x̄).
Assume thatΦ is defined as in Theorems 3.2 – 3.3. SupposeΨ :=

∑n
i=1 Φi is H-differentiable

at x̄ with anH-differential given by

TΨ(x̄) = {vT A + wT : (A, v, w) ∈ Ω},
whereΩ is the set all triples(A, v, w) with A ∈ T (x̄), v and w are vectors inRn satisfying
properties (iii) and (v) in (3.11), andvi wi > 0 wheneverΦi(x̄) 6= 0.

Further, suppose thatT (x̄) consists ofP0-matrices. Then

Φ(x̄) = 0 ⇔ 0 ∈ TΨ(x̄).

Proof. The proof is similar to that of Theorem 3.7. �

As a consequence of the above theorem, we have the following corollary.

Corollary 3.9. Let f : Rn → Rn be locally Lipschitzian. LetΦ be the square Fischer-
Burmeister function. Suppose thatΨ :=

∑n
i=1 Φi(x̄). Further, assume that∂Bf(x̄) has the

column-P0-property. Then
Ψ(x̄) = 0 ⇔ 0 ∈ ∂Ψ(x̄).

Proof. We note that by Corollary 1 in [34], every matrix in∂f(x̄) = co ∂Bf(x̄) is aP0-matrix.
In fact, by applying Theorem 3.8 withTf (x) = ∂f(x) and using a result by Fischer in [9] that
∂Ψ(x) ⊆ TΨ(x) for all x, we obtain the result. �

Remark 5.
• The usefulness of Corollary 3.9 is seen when the functionf is piecewise smooth, in

which case∂Bf(x̄) consists of a finite number of matrices.
• It is noted that in [31]f : Rn → Rn is aP0(P)-function if f is H-differentiable onRn

and for everyx ∈ Rn, anH-differentialTf (x) consists ofP0(P)-matrices. A simple
consequence of this result is the following:

Corollary 3.10. Supposef : Rn → Rn isH-differentiable at̄x with anH-differentialT (x̄). As-
sume thatΦ is defined as in Theorems 3.2 – 3.3. Suppose thatΨ :=

∑n
i=1 Φi is H-differentiable

at x̄ with anH-differential given by

TΨ(x̄) = {vT A + wT : (A, v, w) ∈ Ω},
whereΩ is the set all triples(A, v, w) with A ∈ T (x̄), v and w are vectors inRn satisfying
properties (iii) and (v) in (3.11), andvi wi > 0 wheneverΦi(x̄) 6= 0.

J. Inequal. Pure and Appl. Math., 10(3) (2009), Art. 68, 14 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


NONSMOOTHCOMPLEMENTARITY PROBLEMS 11

Further, suppose thatf is aP0-function. Then

Φ(x̄) = 0 ⇔ 0 ∈ TΨ(x̄).

4. DERIVATIVE -FREE DESCENT M ETHOD

We present a derivative-free descent method which does not require the computation of the
derivatives of the functionf involved in the NCP and the merit functionΨ.

Descent direction methods were proposed for whenf is smooth by the authors in [12], [36]
for solving NCP functions in (1.6) and (1.7), respectively. The author in [9] obtained similar
results for whenf is locally Lipschitzian.

Now our goal is to formulate the derivative-free line search algorithm according to [10], [12].
We define the search directions(x) := −∇2Ψ1(x, f(x)), for all x ∈ Rn where

Ψ(x) = Ψ1(x, f(x)) :=
n∑

i=1

Φi(x̄) =
n∑

i=1

φ(xi, fi(x)) as in (1.6) and (1.7).

Then we define the functionθ : Rn → R by

θ(x) = ∇1Ψ1(x, f(x))T∇2Ψ1(x, f(x)),

where∇1Ψ1 and∇2Ψ1 denote the partial derivatives ofΨ1 with respect to the first variable and
the second variable.

Here is the algorithm.

Algorithm 4.1. Givenα, β ∈ (0, 1), x0 ∈ Rn, for k = 0, 1, 2, ..., do the following steps:

(i) If Ψ(xk) = 0, stop.
(ii) Setsk = s(xk) and choosetk ∈ {αj|j ∈ N} as large as possible such that

Ψ(xk + tks
k) ≤ Ψ(xk)− βtkθ(x

k).

(iii) Setxk+1 = xk + tks
k. Return to(i).

The following definition is needed in Theorem 4.1.

Definition 4.1 ([10]). A functionf : Rn → Rn is called comonotone atx ∈ Rn in the direction
u ∈ Rn if there existsν(x,u) > 0 so that the following inequality holds:

〈f(x + tu)− f(x), u〉 ≥ ν(x,u)||f(x + tu)− f(x)||,

for all t ≥ 0 sufficiently small.

The following theorem shows the convergence of Algorithm 4.1.

Theorem 4.1.Supposef : Rn → Rn is H-differentiable and a monotone map. Iff is comono-
tone at eachx ∈ Rn in each directionu ∈ Rn for which the relation

lim sup
t↓0

||f(x + tu)− f(x)||/t = +∞

is satisfied , then Algorithm 4.1 is well defined and any accumulation point of the sequence{xk}
generated by Algorithm 4.1 solves the nonlinear complementarity problem.

Proof. SinceH-differentiability implies continuity as noted in [15], the result now follows from
Theorem 5.1 in [10]. �
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Remark 6. Note that an accumulation point of the sequence{xk} generated by Algorithm 4.1
exists if the level set

L(x0) := {x ∈ Rn|Ψ(x) ≤ Ψ(x0)}
is bounded. The boundedness ofL(x0) can be established under the assumption thatf is a
uniformP-function, see [9], [19].

Remark 7. Note that the following property does not hold for an implicit Lagrangian function,

(4.1) viwi = 0 ; vi = 0 = wi for all i.

For example, when
fi(x)− αxi > 0 and xi − αfi(x) ≤ 0.

For the Yamada, Yamashita and Fukushima function, we have

(4.2) viwi = 0 ⇐⇒ vi = 0 = wi for all i.

The property (4.2) is important in proving the convergence of our algorithm. Thus, the inter-
ested reader can show that the proof of Theorem 5.1 in [10] is not applicable to an NCP function
based on an implicit Lagrangian function due to the property (4.1). Therefore, we cannot prove
the convergence of the algorithm in [10] for an NCP function based on an implicit Lagrangian
function because the proof of Theorem 5.1 relies on the property (4.2). Our algorithm is appli-
cable to the Yamada, Yamashita and Fukushima function and any NCP function possessing the
same properties as the Yamada, Yamashita, and Fukushima function.

5. CONCLUDING REMARKS

We considered a nonlinear complementarity problem corresponding toH-differentiable func-
tions, with an associated nonnegative NCP functionΦ and a merit functionΨ(x̄) :=

∑n
i=1 Φi(x̄)

and showed that under certain regularity conditions the global/local minimum or a stationary
point ofΨ is a solution of NCP(f).

For nonlinear complementarity problems based on the implicit Lagrangian function or/and
the Yamada, Yamashita, and Fukushima function, our results recover/extend various results
stated for nonlinear complementarity problems when the underlying functions are continuously
differentiable (locally Lipschitzian, semismooth, and directionally differentiable). Our results
are applicable to any nonnegative NCP function satisfying Lemma 3.4, but for simplicity, we
consider the Yamada, Yamashita, and Fukushima function and the implicit Lagrangian function.
Indeed, as far as the author is aware, solving nonlinear complementarity problems on the basis
of the Yamada, Yamashita, and Fukushima function is considered new when the underlying
functions areH-differentiable.

It worth noting that anH-differentiable function need not be locally Lipschitzian/ direction-
ally differentiable; hence the approaches taken in [9], [19] are not applicable to NCP(f) when
the underlying functions are merelyH-differentiable.

We note here that similar methodologies underH-differentiability can be carried out for the
following NCP functions:

(1)

φ1(a, b) :=
1

2
min2{a, b}.

(2)

φ2(a, b) :=
1

2
[(ab)2 + min2{0, a}+ min2{0, b}].
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(3)

φ3(a, b) :=
1

2
[φβ(a, b)]2 =

1

2

[
a + b−

√
(a− b)2 + βab

]2

φ1 andφ2 were introduced by Kanzow [20]. The NCP functionφβ was proposed by
Kanzow and Kleinmichel [21].
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