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ABSTRACT. Maximum entropy principles in nonextensive statistical physics are revisited as an
application of the Tsallis relative entropy defined for non-negative matrices in the framework of
matrix analysis. In addition, some matrix trace inequalities related to the Tsallis relative entropy
are studied.
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1. I NTRODUCTION

In 1988, Tsallis introduced the one-parameter extended entropy for the analysis of a physi-

cal model in statistical physics [10]. In our previous papers, we studied the properties of the

Tsallis relative entropy [5, 4] and the Tsallis relative operator entropy [17, 6]. The problems on

the maximum entropy principle in Tsallis statistics have been studied for classical systems and

quantum systems [9, 11, 2, 1]. Such problems were solved by the use of the Lagrange multipli-

ers formalism. We give a new approach to such problems, that is, we solve them by applying the

non-negativity of the Tsallis relative entropy without using the Lagrange multipliers formalism.

In addition, we show further results on the Tsallis relative entropy.
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In the present paper, the set ofn × n complex matrices is denoted byMn(C). That is, we

deal withn× n matrices because of Lemma 2.2 in Section 2. However some results derived in

the present paper also hold for the infinite dimensional case. In the sequel, the set of all density

matrices (quantum states) is represented by

Dn(C) ≡ {X ∈ Mn(C) : X ≥ 0, Tr[X] = 1} .

X ∈ Mn(C) is called by a non-negative matrix and denoted byX ≥ 0, if we have〈Xx, x〉 ≥ 0

for all x ∈ Cn. That is, for a Hermitian matrixX, X ≥ 0 means that all eigenvalues ofX

are non-negative. In addition,X ≥ Y is defined byX − Y ≥ 0. For−I ≤ X ≤ I andλ ∈
(−1, 0) ∪ (0, 1), we denote the generalized exponential function byexpλ (X) ≡ (I + λX)1/λ.

As the inverse function ofexpλ(·), for X ≥ 0 andλ ∈ (−1, 0)∪(0, 1), we denote the generalized

logarithmic function bylnλ X ≡ Xλ−I
λ

. Then the Tsallis relative entropy and the Tsallis entropy

for non-negative matricesX andY are defined by

Dλ(X|Y ) ≡ Tr
[
X1−λ (lnλ X − lnλ Y )

]
, Sλ(X) ≡ −Dλ(X|I).

These entropies are generalizations of the von Neumann entropy [16] and of the Umegaki rela-

tive entropy [14] in the sense that

lim
λ→0

Sλ(X) = S0(X) ≡ −Tr[X log X]

and

lim
λ→0

Dλ(X|Y ) = D0(X|Y ) ≡ Tr[X(log X − log Y )].

2. M AXIMUM ENTROPY PRINCIPLE IN NONEXTENSIVE STATISTICAL PHYSICS

In this section, we study the maximization problem of the Tsallis entropy with a constraint on

theλ-expectation value. In quantum systems, the expectation value of an observable (a Hermit-

ian matrix)H in a quantum state (a density matrix)X ∈ Dn(C) is written asTr[XH]. Here, we

consider theλ-expectation valueTr[X1−λH] as a generalization of the usual expectation value.

Firstly, we impose the following constraint on the maximization problem of the Tsallis entropy:

C̃λ ≡
{
X ∈ Dn(C) : Tr[X1−λH] = 0

}
,

for a givenn × n Hermitian matrixH. We denote a usual matrix norm by‖·‖, namely for

A ∈ Mn(C) andx ∈ Cn,

‖A‖ ≡ max
‖x‖=1

‖Ax‖ .

Then we have the following theorem.

Theorem 2.1.LetY = Z−1
λ expλ (−H/‖H‖), whereZλ ≡ Tr[expλ (−H/‖H‖)], for ann× n

Hermitian matrixH andλ ∈ (−1, 0) ∪ (0, 1). If X ∈ C̃λ, thenSλ(X) ≤ −cλ lnλ Z−1
λ , where

cλ ≡ Tr[X1−λ].
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Proof. SinceZλ ≥ 0 and we havelnλ(x
−1Y ) = lnλ Y + (lnλ x−1)Y λ for a non-negative matrix

Y and scalarx, we calculate

Tr[X1−λ lnλ Y ] = Tr[X1−λ lnλ

{
Z−1

λ expλ (−H/ ‖H‖)
}
]

= Tr[X1−λ
{
−H/ ‖H‖+ lnλ Z−1

λ (I − λH/ ‖H‖)
}
]

= Tr[X1−λ
{
lnλ Z−1

λ I − Z−λ
λ H/ ‖H‖

}
] = cλ lnλ Z−1

λ ,

sincelnλ Z−1
λ =

Z−λ
λ −1

λ
by the definition of the generalized logarithmic functionlnλ(·). By the

non-negativity of the Tsallis relative entropy:

(2.1) Tr[X1−λ lnλ Y ] ≤ Tr[X1−λ lnλ X],

we have

Sλ(X) = −Tr[X1−λ lnλ X] ≤ −Tr[X1−λ lnλ Y ] = −cλ lnλ Z−1
λ .

�

Next, we consider the slightly changed constraint:

Cλ ≡
{
X ∈ Dn(C) : Tr[X1−λH] ≤ Tr[Y 1−λH] and Tr[X1−λ] ≤ Tr[Y 1−λ]

}
for a givenn× n Hermitian matrixH, as the maximization problem for the Tsallis entropy. To

this end, we prepare the following lemma.

Lemma 2.2. For a givenn× n Hermitian matrixH, if n is a sufficiently large integer, then we

haveZλ ≥ 1.

Proof.

(i) For a fixed0 < λ < 1 and a sufficiently largen, we have

(2.2) (1/n)λ ≤ 1− λ.

From the inequalities−‖H‖ I ≤ H ≤ ‖H‖ I, we have

(2.3) (1− λ)
1
λ I ≤ expλ (−H/ ‖H‖) ≤ (1 + λ)

1
λ I.

By inequality (2.2), we have
1

n
I ≤ (1− λ)

1
λ I ≤ expλ (−H/ ‖H‖) ,

which impliesZλ ≥ 1.

(ii) For a fixed−1 < λ < 0 and a sufficiently largen, we have

(2.4) (1/n)λ ≥ 1− λ.

Analogously to (i), we have inequalities (2.3) for−1 < λ < 0. By inequality (2.4), we

have
1

n
I ≤ (1− λ)

1
λ I ≤ expλ (−H/ ‖H‖) ,

which impliesZλ ≥ 1.

�
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Then we have the following theorem by the use of Lemma 2.2.

Theorem 2.3. Let Y = Z−1
λ expλ (−H/‖H‖), whereZλ ≡ Tr[expλ (−H/‖H‖)], for λ ∈

(−1, 0) ∪ (0, 1) and ann × n Hermitian matrixH. If X ∈ Cλ andn is sufficiently large, then

Sλ(X) ≤ Sλ(Y ).

Proof. Due to Lemma 2.2, we havelnλ Z−1
λ ≤ 0 for a sufficiently largen. Thus we have

lnλ Z−1
λ Tr[X1−λ] ≥ lnλ Z−1

λ Tr[Y 1−λ] for X ∈ Cλ. Similarly to the proof of Theorem 2.1, we

have

Tr[X1−λ lnλ Y ] = Tr[X1−λ lnλ

{
Z−1

λ expλ (−H/ ‖H‖)
}
]

= Tr[X1−λ
{
−H/ ‖H‖+ lnλ Z−1

λ (I − λH/ ‖H‖)
}
]

= Tr[X1−λ
{
lnλ Z−1

λ I − Z−λ
λ H/ ‖H‖

}
]

≥ Tr[Y 1−λ
{
lnλ Z−1

λ I − Z−λ
λ H/ ‖H‖

}
]

= Tr[Y 1−λ
{
−H/ ‖H‖+ lnλ Z−1

λ (I − λH/ ‖H‖)
}
]

= Tr[Y 1−λ lnλ

{
Z−1

λ expλ (−H/ ‖H‖)
}
]

= Tr[Y 1−λ lnλ Y ].

By Eq.(2.1) we have

Sλ(X) = −Tr[X1−λ lnλ X] ≤ −Tr[X1−λ lnλ Y ] ≤ −Tr[Y 1−λ lnλ Y ] = Sλ(Y ).

�

Remark 2.4. Since−x1−λ lnλ x is a strictly concave function,Sλ is a strictly concave function

on the setCλ. This means that the maximizingY is uniquely determined so that we may regard

Y as a generalized Gibbs state, since an original Gibbs statee−βH/ Tr[e−βH ], whereβ ≡ 1/T

andT represents a physical temperature, gives the maximum value of the von Neumann entropy.

Thus, we may define a generalized Helmholtz free energy by

Fλ(X, H) ≡ Tr[X1−λH]− ‖H‖Sλ(X).

This can be also represented by the Tsallis relative entropy such as

Fλ(X, H) = ‖H‖Dλ(X|Y ) + lnλ Z−1
λ Tr[X1−λ(‖H‖ − λH)].

The following corollary easily follows by taking the limit asλ → 0.

Corollary 2.5 ([12, 15]). Let Y = Z−1
0 exp (−H/‖H‖), whereZ0 ≡ Tr[exp (−H/‖H‖)], for

ann× n Hermitian matrixH.

(i) If X ∈ C̃0, thenS0(X) ≤ log Z0.

(ii) If X ∈ C0, thenS0(X) ≤ S0(Y ).
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3. ON SOME TRACE I NEQUALITIES RELATED TO THE TSALLIS RELATIVE ENTROPY

In this section, we consider an extension of the following inequality [8]:

(3.1) Tr[X(log X + log Y )] ≤ 1

p
Tr[X log Xp/2Y pXp/2]

for non-negative matricesX andY , andp > 0.

For the proof of the following Theorem 3.3, we use the following famous inequalities.

Lemma 3.1 ([8]). For any Hermitian matricesA andB, 0 ≤ λ ≤ 1 andp > 0, we have the

inequality:

Tr
[(

epA]λe
pB

)1/p
]
≤ Tr

[
e(1−λ)A+λB

]
,

where theλ-geometric mean for positive matricesA andB is defined by

A]λB ≡ A1/2
(
A−1/2BA−1/2

)λ
A1/2.

Lemma 3.2 ([7, 13]). For any Hermitian matricesG andH, we have the Golden-Thompson

inequality:

Tr
[
eG+H

]
≤ Tr

[
eGeH

]
.

Theorem 3.3.For positive matricesX andY , p ≥ 1 and0 < λ ≤ 1, we have

(3.2) Dλ(X|Y ) ≤ −Tr[X lnλ(X
−p/2Y pX−p/2)1/p].

Proof. First of all, we note that we have the following inequality [3]

(3.3) Tr[(Y 1/2XY 1/2)rp] ≥ Tr[(Y r/2XrY r/2)p]

for non-negative matricesX andY , and0 ≤ r ≤ 1, p > 0. Similar to the proof of Theorem 2.2

in [5], inequality (3.2) easily follows by settingA = log X andB = log Y in Lemma 3.1 such

that

Tr[(Xp]λY
p)1/p] ≤ Tr[elog X1−λ+log Y λ

]

≤ Tr[elog X1−λ

elog Y λ

]

= Tr[X1−λY λ],(3.4)

by Lemma 3.2. In addtion, we have

(3.5) Tr[XrY r] ≤ Tr[(Y 1/2XY 1/2)r], (0 ≤ r ≤ 1),

on takingp = 1 of inequality (3.3). By (3.4) and (3.5) we obtain:

Tr[(Xp]λY
p)1/p] = Tr

[{
Xp/2(X−p/2Y pX−p/2)λXp/2

}1/p
]

≥ Tr[X(X−p/2Y pX−p/2)λ/p].
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Thus we have,

Dλ(X|Y ) =
Tr[X −X1−λY λ]

λ

≤ Tr[X −X(X−p/2Y pX−p/2)λ/p]

λ

= −
Tr[X

{
((X−p/2Y pX−p/2)1/p)λ − I

}
]

λ

= −Tr[X lnλ(X
−p/2Y pX−p/2)1/p].

�

Remark 3.4. For positive matricesX and Y , 0 < p < 1 and 0 < λ ≤ 1, the following

inequality does not hold in general:

(3.6) Dλ(X|Y ) ≤ −Tr[X lnλ(X
−p/2Y pX−p/2)1/p].

Indeed, the inequality (3.6) is equivalent to

(3.7) Tr[X(X−p/2Y pX−p/2)λ/p] ≤ Tr[X1−λY λ].

Then we have many counter-examples. If we setp = 0.3, λ = 0.9 andX =

(
10 3
3 9

)
, Y =(

5 4
4 5

)
, then inequality (3.7) fails. (R.H.S. minus L.H.S. of (3.7) approximately becomes

-0.00309808.) Thus, inequality (3.6) is not true in general.

Corollary 3.5.

(i) For positive matricesX andY , the trace inequality

Dλ(X|Y ) ≤ −Tr[X lnλ(X
−1/2Y X−1/2)]

holds.

(ii) For positive matricesX andY , andp ≥ 1, we have inequality (3.1).

Proof.

(i) Putp = 1 in (1) of Theorem 3.3.

(ii) Take the limit asλ → 0.

�
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