

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 6, Issue 4, Article 108, 2005

CORRECTION TO THE PAPER "BOUNDED LINEAR OPERATOR IN PROBABILISTIC NORMED SPACES"

R. SAADATI AND H. ADIBI

INSTITUTE FOR APPLIED MATHEMATICS STUDIES 1, 4TH FAJR, AMOL 46176-54553, IRAN rsaadati@eml.cc

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE AMIRKABIR UNIVERSITY OF TECHNOLOGY 424 HAFEZ AVENUE, TEHRAN 15914, IRAN adibih@aut.ac.ir

Received 16 November, 2004; accepted 25 August, 2005 Communicated by S.S. Dragomir

ABSTRACT. We show that Theorem 2.4 of a recent paper by I.H. Jebril and R.I.M. Ali is incorrect.

Key words and phrases: Probabilistic normed spaces; Bounded linear operator; Counterexample.

2000 Mathematics Subject Classification. 54E70, 46S40.

The purpose of this note is to show, by means of an appropriate counterexample, that Theorem 2.4 of the recent paper [2] is incorrect.

In [2], a linear operator T from the PN space (V, ν, τ, τ^*) to the PN space $(V, \mu, \sigma, \sigma^*)$ is said to be strongly B-bounded if there exists a constant h > 0 such that, for every $p \in V$ and for every x > 0,

$$\mu_{Tp}(hx) \ge \nu_p(x)$$

and, similarly, T is said to be strongly C-bounded if there exists a constant $h \in (0, 1)$ such that, for every $p \in V$ and for every x > 0,

$$\nu_p(x) > 1 - x \Longrightarrow \mu_{T_p}(hx) > 1 - hx.$$

Theorem 2.4 of [2] asserts that if T is strongly B-bounded and μ_{Tp} is strictly increasing on [0, 1], then T is strongly C-bounded. To show that this is not so, consider the simple PN space generated by the real line \mathbb{R} with its usual norm and the distribution function G given by G(x) = x/(1+x), so that for any p in \mathbb{R} and any $x \ge 0$, $\nu_p(x) = x/(x+|p|)$. This space is a Menger space under M and therefore a PN space in the sense of Šerstnev [1]. Now let

ISSN (electronic): 1443-5756

^{© 2005} Victoria University. All rights reserved.

The authors would like to thank the referees for giving useful comments and suggestions for the improvement of this paper.

²¹⁷⁻⁰⁴

 $T: \mathbb{R} \to \mathbb{R}$ be the linear map defined by Tp = 2p and note that ν_{2p} is strictly increasing on [0, 1]. Then if h > 2,

$$\nu_{T_p}(hx) = \frac{hx}{hx+2|p|} \ge \frac{hx}{hx+h|p|} = \nu_p(x),$$

whence T is strongly B-bounded. (Note that this holds in any simple PN space.) But for x = 1/2 and p = 1/4, we have $\nu_p(x) = 2/3 > 1/2 = 1 - x$, whereas, for any h in (0, 1), $\nu_{2p}(hx) = h/(1+h) < 1 - h/2 = 1 - hx$, so that T is not strongly C-bounded.

REFERENCES

- [1] C. ALSINA, B. SCHWEIZER AND A. SKLAR, On the definition of a probabilistic normed space, *Aequationes Math.*, **46** (1993) 91–98.
- [2] I.H. JEBRIL AND R.M. ALI, Bounded linear operator in probabilistic normed spaces, J. Inequal. Pure Appl. Math., 4(1) (2003), Art. 8. [ONLINE: http://jipam.vu.edu.au/article. php?sid=244]