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Abstract: In this short note, we establish the uniform integrability and pointwise conver-
gence of an (unbounded) family of polynomials on the unit interval that arises in
work on statistical density estimation using Bernstein polynomials. These results
are proved by first establishing/generalizing some combinatorial and probability
inequalities that rely on a new family of completely monotonic functions.
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1. Introduction

Let Pn,k(x) : [0, 1] → [0, 1] denote the probability of exactlyk successes inn inde-
pendent Bernoulli trials with success probabilityx, i.e.

Pn,k(x) = Pr{Bin(n, x) = k} =

(
n

k

)
xk(1− x)n−k,

and, for integersr, s ≥ 1, define the family of functions{Sn,r,s}∞n=1 by

(1.1) Sn,r,s(x) :=
√
n

n∑
k=0

Prn,rk(x)Psn,sk(x).

This family of polynomials arises in the context of statistical density estimation
based on Bernstein polynomials. Specifically, the caser = s = 1 has been con-
sidered by many authors (for example, Babuet al. [3], Kakizawa [5] and Vitale [8])
and the caser = 1 ands = 2 has been considered by Leblanc [6]. Issues linked to
uniform integrability and pointwise convergence of{Sn,1,1} and{Sn,1,2} have also
been addressed by these authors. However, the generalization to anyr, s ≥ 1 has not
yet been considered. In the present paper we will establish the following result.

Theorem 1.1.Let r, s be fixed positive integers. Then

(i) 0 ≤ Sn,r,s(x) ≤
√
n for x ∈ [0, 1] andSn,r,s(0) = Sn,r,s(1) =

√
n.

(ii) {Sn,r,s}∞n=0 is uniformly integrable (w.r.t. Lebesgue measure) on[0, 1].

(iii) Sn,r,s(x) → gcd(r, s)[rs(r + s)2πx(1− x)]−1/2 for x ∈ (0, 1) asn→∞.

For the caser = s = 1, Babuet al. [3, Lemma 3.1] contains a proof of (iii).
Leblanc [6, Lemma 3] gives a proof of Theorem1.1 whenr = 1 ands = 2. The
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proof herein generalizes (but follows along the same lines as) these previous results.
As an application of Theorem1.1 we have, for any functionf that is bounded on
[0, 1],

(1.2) lim
n→∞

∫ 1

0

Sn,r,s(x)f(x) dx =
gcd(r, s)√
rs(r + s)

∫ 1

0

f(x)√
2πx(1− x)

dx,

the latter integral generally being easier to evaluate (or approximate). This simple
consequence of Theorem1.1 plays an important role in assessing the performance
of nonparametric density estimators based on Bernstein polynomials. Kakizawa [5],
for example, went to great lengths to establish (1.2) for the caser = s = 1.

In establishing Theorem1.1, we first show that, for all0 ≤ k ≤ n andx ∈ [0, 1],
(see Corollary2.3)

(1.3) Pn,k(x) ≥ P2n,2k(x) ≥ P3n,3k(x) ≥ · · · .

The proof of this inequality is based on a class of completely monotonic functions
and hence is of general interest. Using completely different methods, Leblanc and
Johnson [7] previously showed that{P2jn,2jk(x)}∞j=0 is decreasing inj and hence
(1.3) is a generalization of this earlier result.

The remainder of this paper is organized as follows. In Section2 we introduce
a new family of completely monotonic functions and obtain some necessary combi-
natorial and probability inequalities. In Section3, we prove Theorem1.1. Finally,
in Section4, we highlight the fact that the results in Section2 can be used to obtain
other interesting inequalities.
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2. Preliminary Results

Recall that a real valued functionf is said to be completely monotonic on(a, b) if
and only if (−1)nf (n)(x) ≥ 0 for all x ∈ (a, b) and integersn ≥ 0 (cf. Feller [4,
XIII.4]). We begin with the following lemma.

Lemma 2.1. Let {ak}m
k=1 and{bk}m

k=1 be real numbers such thata1 ≥ a2 ≥ · · · ≥
am andb1 ≥ b2 ≥ · · · ≥ bm ≥ 0 and letψ denote the digamma function. Define

φδ(x) :=
m∑

k=1

akψ(bkx+ δ), x > 0, δ ≥ 0.

If δ ≥ 1/2 and
∑m

k=1 ak ≥ 0, thenφ′δ is completely monotonic on(0,∞) and hence
φδ is increasing and concave on(0,∞).

The proof follows along the same lines as that in Alzer and Berg [2], who show
thatφ0 is completely monotonic (and hence decreasing and convex) if and only if∑
ak = 0 and

∑
ak ln bk ≥ 0.

Proof. Let x > 0 andδ ≥ 1/2 and recall that the integral representation ofψ(n) is
(cf. Abramowitz and Stegun [1, pp. 260])

ψ(n)(x) = (−1)n+1

∫ ∞

0

tne−xt

1− e−t
dt, n = 1, 2, . . . .

Therefore, forn = 1, 2, . . .,

(−1)n+1φ
(n)
δ (x) = (−1)n+1

m∑
k=1

akb
n
kψ

(n)(bkx+ δ)(2.1)

=
m∑

k=1

ak

∫ ∞

0

(bkt)
ne−xbkt

eδt(1− e−t)
dt.
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The substitution(s)u = bkt yield

(2.2) (−1)n+1φ
(n)
δ (x) =

∫ ∞

0

un−1e−ux

m∑
k=1

akη(u/bk) du,

whereη(x) = xe−δx(1 − e−x)−1 > 0. A little calculus shows that, forδ ≥ 1/2,
η is strictly decreasing on(0,∞) and hence, for everyu > 0, {η(u/bk)}m

k=1 is de-
creasing [note that, ifbk = 0, there is no difficulty in takingη(u/bk) = η(∞) =
limx→∞ η(x) = 0, since these terms vanish in (2.1)]. Since{ak}m

k=1 is also decreas-
ing, Chebyshev’s inequality for sums yields

m∑
k=1

akη(u/bk) ≥
1

m

(
m∑

k=1

ak

)(
m∑

k=1

η(u/bk)

)
.

We see that, if
∑m

k=1 ak ≥ 0, the integrand in (2.2) is non-negative and hence
(−1)n+1φ

(n)
δ ≥ 0 on (0,∞). We conclude thatφ′δ is completely monotonic on

(0,∞) and, in particular,φδ is increasing and concave on(0,∞) wheneverδ ≥ 1/2
and

∑
ak ≥ 0.

Lemma 2.2. Letn, k, j be integers such that0 ≤ k ≤ n andj ≥ 1 and define

Qn,k(j) =

(
(j − 1)n

(j − 1)k

)
(
jn

jk

) =
Γ((j − 1)n+ 1)Γ(jk + 1)Γ(j(n− k) + 1)

Γ(jn+ 1)Γ((j − 1)k + 1)Γ((j − 1)(n− k) + 1)
.

ThenQn,k(j) is decreasing inj and

lim
j→∞

Qn,k(j) =

(
k

n

)k (
n− k

n

)n−k

.
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Proof. The limit is easily verified using Stirling’s formula, thus we need only show
thatQn,k(j) is decreasing inj. TreatingQn,k(j) as a continuous function inj and
differentiating we obtain

Q′n,k(j) = Qn,k(j)

{
k
(
qj(k)− qj(n)

)
+ (n− k)

(
qj(n− k)− qj(n)

)}
,

whereqj(x) = ψ(jx + 1) − ψ(jx − x + 1). Now, takingδ = 1, a1 = 1, a2 = −1,
b1 = j andb2 = j − 1 in Lemma2.1, we have thatqj(x) is increasing on(0,∞) and
henceQ′n,k(j) ≤ 0 for all j ≥ 1 sinceQn,k(j) > 0 always.

Remark1. In light of Lemma2.1, we may define, forj ≥ 1 andδ > 0,

Qn,k,δ(j) =
Γ((j − 1)n+ δ)

Γ((j − 1)n+ δ) Γ((j − 1)k + δ)

/
Γ(jn+ δ)

Γ(jk + δ) Γ(j(n− k) + δ)
.

The same arguments in the proof of Theorem2.2 show thatQn,k,δ(j) is decreasing
in j for all δ ≥ 1/2 and has the same limiting value of(k/n)k(1− k/n)n−k.

Corollary 2.3. Let 0 ≤ k ≤ n. Then{Pjn,jk(x)}∞j=1 is decreasing inj for every
fixedx ∈ [0, 1].

Proof. P(j−1)n,(j−1)k(x) ≥ Pjn,jk(x) if and only ifQn,k(j) ≥ xk(1 − x)n−k and we
have, by Lemma2.2,

Qn,k(j) ≥ (k/n)k(1− k/n)n−k = sup
x∈[0,1]

xk(1− x)n−k,

which completes the proof.
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3. Proof of Theorem1.1

We now give a proof of Theorem1.1. First note that (i) holds since

n∑
k=0

Prn,rk(x)Psn,sk(x) ≤
n∑

k=0

Prn,rk(x) ≤
rn∑

k=0

Prn,k(x) = 1,

with equality if and only ifx = 0, 1. Similarly, (ii) holds since{Sn,1,1}∞n=1 is uni-
formly integrable on[0, 1] (cf. [6]) and, by Corollary2.3, we haveSn,r,s(x) ≤
Sn,1,1(x) for all x ∈ [0, 1].

To prove (iii), letU1, . . . , Un andV1, . . . , Vn be two sequences of independent
random variables such thatUi is Binomial(r, x) andVi is Binomial(s, x). Now, de-
fineWi = r−1Ui − s−1Vi so thatWi has a lattice distribution with spangcd(r, s)/rs
(cf. Feller [4]). We can writeSn,r,s(x) in terms of theWi as

Sn,r,s(x)√
n

=
n∑

k=0

Prn,rk(x)Psn,sk(x) = P

(
n∑

i=1

Ui

r
=

n∑
i=1

Vi

s

)
= P

(
n∑

i=1

Wi = 0

)
.

Now, define the standardized variablesW ∗
i = Wi

√
rs/
√

(r + s)x(1− x) so that
Var(W ∗

i ) = 1 and note that these also have a lattice distribution, but with span
gcd(r, s)/

√
rs(r + s)x(1− x). Theorem 3 of Section XV.5 of Feller [4] now leads

to

lim
n→∞

Sn,r,s(x)√
n

= lim
n→∞

P

(
1√
n

m∑
i=1

W ∗
i = 0

)
=

gcd(r, s)φ(0)√
nrs(r + s)x(1− x)

,

whereφ corresponds to the standard normal probability density function. The result
now follows from the fact thatφ(0) = 1/

√
2π.
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4. Concluding Comments

We conclude by pointing out the fact that Lemma2.2 also leads to some other
interesting combinatorial and discrete probability inequalities. For example, since
Qn,k(j) is decreasing, we immediately obtain(

(j − 1)n

(j − 1)k

)(
(j + 1)n

(j + 1)k

)
≥
(
jn

jk

)2

.

Indeed, sinceQn,k(j − m + 1) ≥ Qn,j(j + m) for m = 1, . . . , j, we see that the
sequence{Am}j

m=1 defined by

(4.1) Am =

(
(j +m)n

(j +m)k

)(
(j −m)n

(j −m)k

)
is increasing.

Finally, Corollary2.3 trivially leads to a similar family of inequalities for “num-
ber of failure” negative binomial probabilities. LetHn,k be the probability of exactly
n failures(n ≥ 0) before thekth success(k ≥ 1) in a sequence of i.i.d. Bernoulli
trials with success probabilityp ∈ [0, 1] so that, forj = 1, 2, . . .,

Hjn,jk =

(
jn+ jk − 1

jk − 1

)
pjk(1− p)jn =

k

n+ k
Pj(n+k),jk.

Hence, as a direct consequence of Corollary2.3, we have that{Hjn,jk}∞j=1 is also
decreasing.
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