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Abstract: Assuming that a “derivative” ratioρ := f ′/g′ of the ratior := f/g of
differentiable functionsf andg is strictly monotonic (that is,ρ is increas-
ing or decreasing), it was shown in previous papers that thenr can switch
at most once, from decrease to increase or vice versa. In the present pa-
per, it is shown that, ifρ is non-strictly monotonic (that is, non-increasing
or non-decreasing), thenr can have at most one maximal interval of con-
stancy (m.i.c.); on the other hand, any one m.i.c. of a given derivative ratio
ρ is the m.i.c. of an appropriately constructed original ratior.
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1. Introduction

Let f andg be differentiable functions defined on the interval(a, b), where−∞ ≤
a < b ≤ ∞, and let

r :=
f

g
and ρ :=

f ′

g′ .

It is assumed throughout thatg andg′ do not take on the value zero anywhere on
(a, b). The functionρ may be referred to asa derivative ratiofor the “original” ratio
r. In [16], general “rules" for monotonicity patterns, resembling the usual l’Hospital
rules for limits, were given. In particular, according to [16, Proposition 1.9 and
Remark 1.14], one has the dependence of the monotonicity pattern ofr

(
on (a, b)

)
on that ofρ (and also on the sign ofgg′) as given by Table1. The vertical double line
in the table separates the conditions (on the left) from the corresponding conclusions
(on the right).

ρ gg′ r

> 0

> 0

< 0

< 0

Table 1: "Non-strict" general rules for monotonicity.

Here, for instance,r means that there is somec ∈ [a, b] such thatr (that is,
r is non-increasing) on(a, c) andr (r is non-decreasing) on(c, b); in particular,
if c = a thenr simply means thatr on the entire interval(a, b); and if c = b
thenr means thatr on (a, b). Thus, if one also knows whetherr or r in
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a right neighborhood ofa and in a left neighborhood ofb, then Table1 uniquely
determines the “non-strict” monotonicity pattern ofr. (The “strict” counterparts of
these rules, with terms “increasing” and “decreasing” in place of “non-decreasing”
and “non-increasing” respectively, also hold, according to the same Proposition 1.9
of [16].)

Clearly, the stated l’Hospital-type rules for monotonicity patterns are helpful
wherever the l’Hospital rules for limits are so, and even beyond that, because these
monotonicity rules do not require that bothf andg (or either of them) tend to 0 or
∞ at any point. (Special rules for monotonicity, which do require that bothf and
g vanish at an endpoint of(a, b), were given, in different forms and with different
proofs, in [9, 14, 3, 15, 25].)

Thus, it should not be surprising that a wide variety of applications of the l’Hospital-
type rules for monotonicity patterns were given: in areas of analytic inequalities
[10, 6, 15, 16, 22, 1, 13, 31, 32, 33, 34, 35]; approximation theory [17]; differen-
tial geometry [8, 9, 11, 24], information theory [15, 16]; (quasi)conformal mappings
[2, 3, 4, 5]; probability and statistics [14, 16, 17, 20, 26, 27, 28, 29], including the
very recent papers [26, 27, 28, 29], where these mononicity rules have become a
standard tool. (For the references to [13, 31, 32, 33, 34, 35] I thank a referee.)

The mentioned rules for monotonicity, both general and special, are potentially
helpful whenf ′ or g′ can be expressed simpler than or similarly tof or g, re-
spectively. Such functionsf and g are essentially the same as the functions that
could be taken to play the role ofu in the integration-by-parts formula

∫
u dv =

uv −
∫

v du; this class of functions includes algebraic, exponential, trigonomet-
ric, logarithmic, inverse trigonometric and inverse hyperbolic functions, and as well
as non-elementary “anti-derivative" functions of the formx 7→ c +

∫ x

a
h(u) du or

x 7→ c +
∫ b

x
h(u) du.

“Discrete” analogues, forf andg defined onZ, of the l’Hospital-type rules for
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monotonicity are available as well [23].
In this paper, we describe different facets of the relation of the (maximal) inter-

val(s) of constancy of the original ratior with those of the derivative ratioρ. In
particular, it may seem quite surprising that, as it turns out, the assumption of only
non-strict monotonicity ofρ results necessarily in a significant degree of strictness on
the monotonicity pattern ofr; namely,r can then have at most one maximal interval
of constancy. Thus, new insight into the nature of the general rules for monotonic-
ity is provided, which complements the previously made observation (see e.g. [25,
paragraph around (5.1)]) that “the relation between the monotonicity patterns ofr
andρ is not reversible in any reasonable sense”.

The question of strictness of inequalities plays a prominent role in the funda-
mental monograph by Hardy, Littlewood and Pólya [12]. This question has been
of significant interest in various problems; e.g. see [30, 7, 19, 18]; in particular,
the investigation of the problem of strictness in [19] led to an extension [18] of the
well-known theorem by P. Hall in combinatorial theory; other extensions of P. Hall’s
theorem were subsequently given in [21].
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2. Results

In what follows, let us always assume thatρ is (not necessarily strictly) monotonic
(that is, or ) on (a, b).

Let us say that an intervalI ⊆ (a, b) is aninterval of constancy (i.c.)of a function
h : (a, b) → R if I is of nonzero length andh is constant onI. If an i.c. I is not
contained in any other i.c., let us say thatI is amaximal i.c. (m.i.c.)It is easy to see
that any i.c. is contained in a unique m.i.c. (which is simply the union of all i.c.’s
containing the given i.c.).

It is easy to see that every i.c. ofr is an i.c. ofρ. One might think that, ifρ has
more than one m.i.c., then this can also be the case for the original ratior. It may
therefore be unexpected that the opposite is true, and even in the following strong
sense.

Proposition 2.1.The rules given by Table1 can be strengthened as shown in Table2.

ρ gg′ r

> 0

> 0

< 0

< 0

Table 2: Improved “non-strict” general rules for monotonicity.

Here, for instance,r means that there is a subinterval[c, d] ⊆ [a, b] (possibly of
length0) such thatr′ < 0 on (a, c), r is constant on(c, d), andr′ > 0 on (d, b).
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Why is this proposition true? The key notion here is that of the function

ρ̃ := r′ g2

|g′|
,

introduced in [16] and further studied in [25]. The key lemma concerning̃ρ [25,
Lemma 1 and Remark 4] states, as presented in Table3 here, that the monotonicity
pattern ofρ̃ is the same as that ofρ if gg′ > 0, and opposite to the pattern ofρ if
gg′ < 0.

ρ gg′ ρ̃

> 0

> 0

< 0

< 0

Table 3: The monotonicity patterns ofρ andρ̃ mirror each other

From this relation betweenρ and ρ̃, the rules given by Table1 can be easily
deduced, since

sign(r′) = sign ρ̃.

A simple but important observation is that the derivative ratioρ and its counterpart
ρ̃ are continuous functions [25, Remark 4]. Since the ratior is differentiable, it is
continuous as well. Therefore, any m.i.c.I of r or ρ or ρ̃ is closed (as a set) in(a, b);
that is,I has the form[c, d] or (a, c] or [d, b) or (a, b), for somec andd such that
a < c < d < b. Moreover, it is seen from Table3 that the m.i.c.’s of̃ρ are the same
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as those ofρ, because any real functionh is constant on an intervalI if and only if h
is both non-decreasing and non-increasing onI.

Proposition2.1now follows easily.

Proof of Proposition2.1. It suffices to consider only the first line of Table2
(
since

the other three lines can then be obtained by “vertical” reflectionf ↔ −f and/or
“horizontal” reflectionx ↔ −x

)
. So, assume thatρ on (a, b) andgg′ > 0. Then

ρ̃ on (a, b). If ρ̃ > 0 and hencer′ > 0 on the entire interval(a, b), let c := d := a,
to obtain the conclusion thatr on (a, b). If ρ̃ < 0 and hencer′ < 0 on (a, b),
let c := d := b. It remains to consider the case when the sign ofρ̃ takes on at
least two different values (of the set{−1, 0, 1} of all sign values). Then, since the
function ρ̃ is non-decreasing and continuous on(a, b), the level-0 set`0(ρ̃) := {u ∈
(a, b) : ρ̃(u) = 0} of ρ̃ must be a non-empty interval

(
which in fact must be an m.i.c.

of ρ̃ and hence a set closed in(a, b)
)
; in this case, takec andd to be the left and

right endpoints, respectively, of the interval`0(ρ̃) (at that, it is possible thatc = a
and/ord = b). Thenρ̃ < 0 and hencer′ < 0 on (a, c); ρ̃ = 0 and hencer′ = 0 and
r = const on(c, d); andρ̃ > 0 and hencer′ > 0 on (d, b).

By Proposition2.1, r can have no more than one m.i.c. On the other hand, one
has

Proposition 2.2. If r has an m.i.c.I, thenI must be an m.i.c. ofρ and ρ̃ as well.

Proof. Suppose thatI is the (necessarily unique) m.i.c. ofr, so thatf
g

= r = K on
I for some constantK. Then obviouslyρ = K andρ̃ = 0 on I, so thatI is an i.c. of
ρ andρ̃. Let thenJ be the unique m.i.c. ofρ such thatJ ⊇ I, whencef ′

g′ = ρ = K1

onJ for some constantK1, and so,f = K1g + C andr = K1 + C
g

onJ , and hence
on I, for some constantC. But r is constant on the nonzero-length intervalI, while
g is not constant onI (becauseg′(x) 6= 0 for anyx ∈ (a, b)). It follows thatC = 0
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and thusr = K1 on J . Finally, sinceI is an m.i.c. ofr andJ ⊇ I, one concludes
thatJ = I, and so,I is an m.i.c. ofρ and hence of̃ρ.

We complete the description of the relation between the m.i.c.’s ofr andρ by
observing that any one m.i.c.I of a given derivative ratioρ is the m.i.c. of an appro-
priately constructed original ratior (which must, in view of Proposition2.1, depend
on the choice ofI):

Proposition 2.3. For

• any differentiable functiong : (a, b) → R such thatgg′(x) 6= 0 for eachx ∈ (a, b),

• any (not necessarily strictly) monotonic continuous functionρ : (a, b) → R, and

• any m.i.c.I of ρ

there exists a differentiable functionf : (a, b) → R such thatf
′

g′ = ρ and the only

m.i.c. ofr := f
g

is I.

Proof. Let g, ρ, andI satisfy the conditions listed in Proposition2.3, so thatρ = K
on I for some constantK. Note that the condition ong implies that eitherg′ > 0
on the entire interval(a, b) or g′ < 0 on (a, b) (see e.g. [25, Remark 3]), so thatg is
monotonic and hence of locally bounded variation on(a, b). Take any pointz in the
intervalI (which is an i.c. and hence non-empty) and definef by the formula

f(x) := Kg(z) +

∫ x

z

ρ(u) d g(u)

for all x in (a, b), where the integral may be understood in the Riemann-Stieltjes
sense, with the convention that

∫ x

z
:= −

∫ z

x
if x < z. Becauseρ is continuous

andg is differentiable, it follows that for the so defined functionf one hasf ′

g′ = ρ;
moreover,f = Kg on I, so thatI is an i.c. ofr. But any i.c. ofr is also an i.c. ofρ,

http://jipam.vu.edu.au
mailto:ipinelis@mtu.edu
http://jipam.vu.edu.au


L’Hospital Rules for Monotonicity

Iosif Pinelis

vol. 8, iss. 1, art. 14, 2007

Title Page

Contents

JJ II

J I

Page 11 of 17

Go Back

Full Screen

Close

andI was assumed to be an m.i.c. ofρ. It follows thatI is an m.i.c. (and hencethe
onlym.i.c.) ofr.

Let us summarize our findings as

Theorem 2.4.

• The set of all m.i.c.’s of̃ρ is the same as that ofρ.

• The “original” ratio r can have at most one m.i.c., and its m.i.c. must also be
an m.i.c. ofρ and thus of̃ρ; moreover, then the m.i.c. ofr is the level-0 set ofρ̃.

• Any one m.i.c. of a given derivative ratioρ is the m.i.c. of an appropriately
constructed original ratior.

This result can be illustrated by

Example2.1. Let the derivative ratioρ : (0,∞) → R for a ratior = f/g be given
by the formula

ρ(x) := min(x− k, k + 1) =

{
x− k if 2k ≤ x < 2k + 1,

k + 1 if 2k + 1 ≤ x < 2k + 2,

wherek := bx
2
c. Let g(x) := x + 1 for all x ∈ (0,∞). Then, for the formula

ρ = f ′/g′ to hold, the corresponding functionf : (0,∞) → R must be given by

f(x) = fc(x) := c +

∫ x

0

ρ(u) g′(u) du

=

{
c + 1

2

(
(x−m)2 + m(m + 1)

)
if 2m ≤ x < 2m + 1,

c + (m + 1)(x−m− 1
2
) if 2m + 1 ≤ x < 2m + 2,
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wherem := bx
2
c andc is any real number (which obviously equalsfc(0)). Letting

nowrc := fc/g, one sees that the derivative ratiof ′
c/g

′ of rc equals the given function
ρ, for every value ofc. This derivative ratio,ρ, is nondecreasing (and continuous)
on (0,∞), with infinitely many m.i.c.’s:[1, 2], [3, 4], . . . . In contrast,rc may have at
most one m.i.c. More specifically,rc has exactly one m.i.c.,[2m+1, 2m+2] (which
is also one of the infinitely many m.i.c.’s ofρ), if c = c2m+1 := 1

2
(m + 1)(2m + 3)

– the root of the equationrc(2m + 1) = ρ(2m + 1), for eachm = 0, 1, . . . ; andrc

has no m.i.c. for any real value ofc different from all thecm’s. Figure1 shows the
graphs ofρ and the “original” ratiosrc, for the valuesc = −1, 0, 3

4
, 3

2
, 3, and5. For

these selected values ofc, the ratiorc has exactly one m.i.c. –[1, 2] or [3, 4] – only if
c = 3

2
= c1 or c = 5 = c3, respectively; andrc has no m.i.c. ifc = −1, 0, 3

4
, or 3.

To visualize this example in particular and the monotonicity rules in general, one
can imagine a tank with the solution of a liquid in water. Initially, at timex = 0, the
amounts in the tank of the liquid and water (not necessarily measured in the same
units) arefc(0) = c andg(0) = 1, respectively, so that the relative concentration
rc = fc/g of the liquid (with respect to water) is initiallyrc(0) = c. The liquid and
water are added to the tank continuously through a pipe so that water is added at a
constant rate1. The relative concentrationρ of the liquid in the pipe is initially0
(that is,ρ(0) = 0); moreover,ρ increases at a constant rate1 in each of the “odd”
unit time intervals[0, 1], [2, 3], . . . and remains constant in each of the “even” unit
time intervals[1, 2], [3, 4], . . . .

Then for any strictly positive valuec = rc(0), the relative concentrationρ of the
liquid in the pipe is initially less than the relative concentrationrc of the liquid in the
tank, so thatrc will initially be decreasing. However, sinceρ is non-decreasing to∞
in time, ρ will eventually overtakerc, and the latter will then be forever strictly in-
creasing

(
after possibly staying constant, together withρ, over the unit time interval

[2m + 1, 2m + 2] for somem = 0, 1, . . . , provided thatc = 1
2
(m + 1)(2m + 3)

)
.

However, if the initial relative concentrationc in the tank is0 (or, somehow, nega-
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1 2 3 4 5 6
x

-1

0

3�4

3�2

3

5

rc�x�,Ρ�x�

Figure 1: Graphs ofρ andrc: ρ, thick, solid; rc, dashed, with dash length decreasing inc.

tive), then the relative concentrationrc in the tank will be always strictly increasing,
yet never reaching the relative concentrationρ in the pipe (cf. [16, Proposition 1.18]
or identity [25, (1.1)]).
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