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ABSTRACT. Aninequality involving a positive linear operator acting on the composition of two
continuous functions is presented. This inequality leads to new inequalities involving the Beta,
Gamma and Zeta functions and a large family of functions which are Mellin transforms.
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1. INTRODUCTION

Let I be the interval0, 1) or (0, +00) and letf andg be functions which are strictly increas-
ing, strictly positive and continuous ah To fix ideas, we shall suppose thatzr) — 0 and
g(xr) — 0 asz — 0+. Suppose also thgt /g is strictly increasing.

Let L be a positive linear functional defined on a subspatg) C C(I); see Note below.
Supposing thaf, g € C*(I), define the functiorp by

L(f)
(1.2) 10} gL(g) :

Next, letF' be defined on the ranges pfandg so that the compositions(f) andF'(g) each

belong toC*(I).

Note. In our applications the functiondl will involve an integral over the interval, and so
that L will be well-defined, it is necessary to require extra end conditions to be satisfied by the
members of”(I). The subspace arrived at in this way will be denoted’5y/) and this will
be the domain of..

The subspacé™ (1) may vary from case to case but, for technical reasons, it will always be
supposed that the functioag,wheree, (z) = z* (k = 0,1,2), are inC*(I).

Our object is to prove the results:
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2 A.McD. MERCER

Theorem 1.1.
(@) If F'is convex then

(1.2a) LIE(f)] = LIF(¢)].
(b) If F'is concave then

(1.2b) LIF(f)] < L[F(9)].

Clearly it is sufficient to consider only (1]2a) and, prior to Secfipn 3 where we present our
applications, we shall proceed with this understanding.

In the notel[1] this result was proved for the case in whietas|0, 1], g(x) wasz, andF' was
differentiable but it has since been realised that the more general results of the present theorem
are a source of interesting inequalities involving the Gamma, Beta and Zeta functions.

The method of proof in_[1] could possibly be adapted to the present case but, instead, we
shall give a proof which is entirely different. As well as using the more gengrglit allows
the less stringent hypothesis thatis merely convex and deals with intervals other ti@an|.

We also believe that this proof is of some interest in its own right.

2. PROOFsS
First, we need the following lemma:
Lemma 2.1.
(2.1) L(f?) ~ L(¢?) > 0.
Proof. It is seen from[(1]1) that
L(f) ~ L(#) = 0.

SincelL is positive, this negates the possibility that
f(x) —¢(x) >0 or  f(z)—o¢(x) <0 forallx e l.
Hencef — ¢ changes sign i and since

PSR 1¢))
f—o=Ff gL(g)

and

f

= is strictly increasing in/,
g

this change of sign is from to +.
We suppose that the change of sign occurs-aty and that () = ¢(v) = K (say).
Sincef — ¢ is non-negative on > v andf + ¢ > 2K there, then

(f = &) (f +¢) >2K(f —¢)onz > 7.
Sincef — ¢ is negative o < v andf + ¢ < 2K there then
(f=o)(f +¢)>2K(f —d)onz <.

Hence
=0 =(f=0)(f+0¢)22K(f—¢) onl.
Applying L we get the result of the lemma. O
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Proof of the theorem (part (a))Let us introduce the functional defined onC*(I) by
A(G) = LIG(f)] = LIG(9)],

in which f and¢ are fixed. It is easily seen thatis a continuous linear functional.

According to the theorem, we will be interested in théséor which F' € S whereS is the
subset ofC* (1) consisting of continuous convex functions.

Now the sefS is itself convex and closed so that the maximum and/or minimum valu&s of
when acting orf, will be taken in its set of extreme points, say:t(.S).

But

Ext(S) = {Aey + Bey },

wheree,(z) = 2% (k= 0,1,2).
Now

A(eo) = Lleo(f)] = Lleo(#)] = L(1) = L(1) = 0
Aler) = Llea(f)] = Llea(¢)] = L(f) = L(¢) =0 by (L.3)

so that zero is the (unique) extreme value\of
Next

Alez) = Llea(f)] — Lle2(¢)] = L(f*) — L(¢*) = 0 by @73)
so this extreme value is a minimum. That is to say that
AF)=L[F(f)]—LIF(¢)] >0forall F € S

and this concludes the proof of the theorem. O

3. PREPARATION FOR THE APPLICATIONS
In (1.23) and[(1.2b) take
F(u) = u”,
which is convex if(a < 0 or o > 1) and concave i < o < 1. So now we have
L(f%) 2 L(¢*)
with = (upper and lower) respectively, in the cases ‘convex’, ‘concave’. There is equality in

casen =0ora = 1.
Substituting foro this reads:

(3.1)

Finally, take
f(z) =2 and g(x) =2° with 3> 0> 0.
Then [3.1) becomes (using incorrect, but simpler, notation):
L") _ [L?)
L(z%) <= L(zo8) "
The inequality[(3.R) is the source of our various examples.

(3.2)

4. APPLICATIONS

Note. To avoid repetition in the examples below (excepf at|(4.8)) it is to be understoog that
correspond to the casés < 0 ora > 1) and(0 < a < 1) respectively. There will be equality
if « = 0 or1. Furthermore, it will always be the case thiat- § > 0.
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4.1. The Gamma function. Referring back to the Note in the Introduction, the subsg&dé)
for this application is obtained froifi(/) by requiring its members to satisfy:

(i) w(z) = O(x%) (foranyf > —1) asz — 0

(i) w(z) = O(x¥) (forany finitep) asx — +oo.
Then we define -

L(w) = / w(z)e “dx.

In this case[(3]2) gives: "
[C(1 +9))
I'(1+ )

LA+ 8"
I'(1+ap)

(4.1) 2

in which,af > —1 andad > —1.
In [2] this result was obtained partially in the form
LA+yl"  [TA+2)
I'(14+ny) = T(1+nz)’
wherel >z >y > 0andn = 2,3, ....
Then, in [3] this was improved to
LA+~ [PA+z)
I'(1+ay) I'(l+az)’
wherel > z >y > 0 anda > 1.
The methods used ihl[2] and [3] to obtain these results are quite different from that used here.

4.2. The Beta function. The subspacé€'(I) for this application is obtained fror'(1) by
requiring its members to satisfy:

w(z) = O(2’) (foranyf > —1) asz — 0,
w(x) =0(1) asx — 1.
Then we define .
L(w) = / w(z)(1 — ) dr : (¢ > 0).
From (3.2) we have ’

[B(L+6,01* _ [BA+B,Q
B(1+ad6,() = Bl+aB,()’
in whichad > —1, a8 > —1 and( > 0.

(4.2)

4.3. The Zeta function (i). For this example the subspaCé(/) is the same as for the Gamma
function case abovd. is defined by

Lw) = [ o)™ s

We recall here (see]4]) that whens real ands > 1 then

T(s)C(s) = /0 R L,

Using (3.2) this leads to

L@2+06)c2+d)]" o (24 6)¢((2+ 8)
T2+ ad)(2+ad) ST2+aB)2+ab)
in whichag > —1 andad > —1.

(4.3)
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The number of examples of this nature could be enlarged considerably. For example, the
formula

[e.9] e—w
r = - d >0
nls) = [ e, s>

where

s = 5

k=1
leads, via[(3.2), to similar inequalities.
Indeed, recalling that the Mellin transfori [5] of a functigirs defined by

o) - | " g(@)rs s,

we see that the Mellin transform of any non-negative function satisfies an inequality of the type

(3.9). Infact, [(4.1) and (4]3) are examples of this.

4.4. The Zeta function (ii). We conclude by presenting a family of inequalities in which the
Zeta function appears alone, in contrast wjith|(4.3).
With a > 1 define the non-decreasing function, € [0, 1] as follows:

k=m
1
= Z Ta (z=1)
k=1
Then we have
1 N-1 o0
1 1 1
(4.4) / *dwy(x) = + — —
0 ( ) — ks+a Ns kZN ka
and we note that
=1 1 1
4.5 — . )
(4.5) I;V ke < a—1 No-l

Writing

Vi (s) = /0 1 w*dwy(x) (E /11 xsdwzv(x))

and definingZ on C[0, 1] by

then [3.2) gives the inequalities

Vn ()™ o [Vv(B)]*
Vn(ad) = Vy(af)

(4.6)

TNot a subspace af'(0, 1) but the theorem is true in this context also.
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But, from (4.4) and[(4]5), lettingV — oo shows thal/y(s) — ¢(s + a) provided thatz > 1
ands > 0 and so[(4.6) gives the Zeta function inequality:
[Cla+0)]* _ [¢(a+B)]
4.7 =
(4.7) ((atad) < ClataB)’
provideda > 1, o > 0 andad > 0.
Finally, since the(s) is known to be continuous for > 1 we can now let — 1 in (4.7)
provided that we keep > 0 when we get
[CA+0)]* _ [C(1+p)
4.8 2
(4.8) CA+ad) = C(1+ap)’

in which3 > ¢ > 0 anda > 0. Regarding the directions of the inequalities here, we note that
the optiona: < 0 does not arise.
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