Journal of Integer Sequences, Vol. 10 (2007),

Mean Values of Generalized gcd-sum and lcm-sum Functions

Olivier Bordellès
2, Allée de la Combe
La Boriette
43000 Aiguilhe
France
borde43@wanadoo.fr

Abstract

We consider a generalization of the gcd-sum function, and obtain its average order with a quasi-optimal error term. We also study the reciprocals of the gcd-sum and lcm-sum functions.

1 Introduction and notation

The so-called gcd-sum function, defined by

$$
g(n)=\sum_{j=1}^{n}(n, j)
$$

where (a, b) denotes the greatest common divisor of a and b, was first introduced by Broughan ($[3,4]$) who studied its main properties, and showed among other things that g satisfies the convolution identity (see also the beginning of the proof of Lemma 3.1)

$$
g=\varphi * \operatorname{Id}
$$

where $F * G$ is the usual Dirichlet convolution product. By using the following alternative convolution identity

$$
g=\mu *(\operatorname{Id} \cdot \tau)
$$

where μ is the Möbius function and τ is the divisor function, we were able in [1] to get the average order of g. Our result can be stated as follow. If θ is the exponent in the Dirichlet divisor problem, then the following asymptotic formula

$$
\begin{equation*}
\sum_{n \leqslant x} g(n)=\frac{x^{2} \log x}{2 \zeta(2)}+\frac{x^{2}}{2 \zeta(2)}\left(\gamma-\frac{1}{2}+\log \left(\frac{\mathcal{A}^{12}}{2 \pi}\right)\right)+O_{\varepsilon}\left(x^{1+\theta+\varepsilon}\right) \tag{1}
\end{equation*}
$$

holds for any real number $\varepsilon>0$, where $\mathcal{A} \approx 1.282427129 \ldots$ is the Glaisher-Kinkelin constant. The inequality $\theta \geqslant 1 / 4$ is well-known, and, from the work of Huxley [5] we know that $\theta \leqslant 131 / 416 \approx 0.3149$.

The aim of this paper is first to work with a function generalizing the function g and prove an asymptotic formula for its average order similarly as in (1). In sections 5,6 and 7 we will establish estimates for the lcm-sum function, and for reciprocals of the gcd-sum and lcm-sum functions. We begin with classical notation.

1. Multiplicative functions. The following arithmetic functions are well-known.

$$
\begin{aligned}
\operatorname{Id}^{a}(n) & =n^{a} \quad\left(a \in \mathbb{Z}^{*}\right) \\
\mathbf{1}(n) & =1
\end{aligned}
$$

and μ, φ, σ_{k} and τ_{k} are respectively the Möbius function, the Euler totient function, the sum of k th powers of divisors function and the k th Piltz divisor function. Recall that τ_{k} can be defined by $\tau_{k}=\underbrace{1 * \cdots * 1}_{k \text { times }}$ for any integer $k \geqslant 1$ and that $\tau_{2}=\tau$. We also have $\sigma_{k}=\sum_{d \mid n} d^{k}$ and $\sigma_{0}=\tau$.
2. Exponent in the Dirichlet-Piltz divisor problem. For any integer $k \geqslant 2, \theta_{k}$ is defined to be the smallest positive real number such that the asymptotic formula

$$
\begin{equation*}
\sum_{n \leqslant x} \tau_{k}(n)=x \mathcal{P}_{k-1}(\log x)+O_{\varepsilon, k}\left(x^{\theta_{k}+\varepsilon}\right) \tag{2}
\end{equation*}
$$

holds for any real number $\varepsilon>0$. Here \mathcal{P}_{k-1} is a polynomial of degree $k-1$ with real coefficients, the leading coefficient being $\frac{1}{(k-1)!}$. It is now well-known that $\frac{1}{3} \leqslant \theta_{3} \leqslant \frac{43}{96}$ and that $\frac{k-1}{2 k} \leqslant \theta_{k} \leqslant \frac{k-1}{k+2}$ for $k \geqslant 4$ (see [6], for example).

By convention, we set

$$
\tau_{0}(n)= \begin{cases}1, & \text { if } n=1 \\ 0, & \text { otherwise }\end{cases}
$$

and $\theta_{1}=0$.

2 A generalization of the gcd-sum function

Definition 2.1. We define the sequence of arithmetic functions $f_{k, j}(n)$ in the following way.
(i) For any integers $j, n \geqslant 1$, we set

$$
\begin{aligned}
& f_{1, j}(n)= \begin{cases}1, & \text { if }(n, j)=1 \\
0, & \text { otherwise }\end{cases} \\
& f_{2, j}(n)= \begin{cases}(n, j), & \text { if } j \leqslant n \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

(ii) For any integers $j \geqslant 1$ and $k \geqslant 3$, we set

$$
f_{k, j}=f_{2, j} *\left(I d \cdot \tau_{k-2}\right)
$$

Definition 2.2. For any integers $n, k \geqslant 1$, we define the sequence of arithmetic functions $g_{k}(n)$ by

$$
g_{k}(n)=\sum_{j=1}^{n} f_{k, j}(n) .
$$

Examples.

$$
\begin{aligned}
g_{1}(n) & =\sum_{\substack{j=1 \\
(n, j)=1}}^{n} 1=\varphi(n) \\
g_{2}(n) & =\sum_{j=1}^{n}(j, n)=g(n), \\
g_{3}(n) & =\sum_{j=1}^{n} \sum_{\substack{d \mid n \\
d \geqslant j}} \frac{n}{d}(j, d), \\
& \vdots \\
g_{k}(n) & =\sum_{j=1}^{n} \sum_{d_{k-2} \mid n} \sum_{d_{k-3} \mid d_{k-2}} \cdots \sum_{\substack{d_{1} \mid d_{2} \\
d_{1} \geqslant j}} \frac{n}{d_{1}}\left(j, d_{1}\right) .
\end{aligned}
$$

Now we are able to state the following result.
Theorem 2.3. Let $\varepsilon>0$ be any real number and $k \geqslant 1$ any integer. Then, for any real number $x \geqslant 1$ sufficiently large, we have

$$
\sum_{n \leqslant x} g_{k}(n)=\frac{x^{2}}{2 \zeta(2)} \mathcal{R}_{k-1}(\log x)+O_{\varepsilon, k}\left(x^{1+\theta_{k}+\varepsilon}\right)
$$

where \mathcal{R}_{k-1} is a polynomial of degree $k-1$ and leading coefficient $\frac{1}{(k-1)!}$. The following table gives \mathcal{R}_{k-1} for $k \in\{1,2,3\}$

k	1	2	3
\mathcal{R}_{k-1}	1	$X+\gamma-\frac{1}{2}+\log \left(\frac{\mathcal{A}^{12}}{2 \pi}\right)$	$\frac{X^{2}}{2}+\alpha X+\beta$

where

$$
\begin{aligned}
\alpha & =2 \gamma-\frac{1}{2}+\log \left(\frac{\mathcal{A}^{12}}{2 \pi}\right) \\
\beta & =-\frac{\zeta^{\prime \prime}(2)}{2 \zeta(2)}+\left(\gamma-\log \left(\frac{\mathcal{A}^{12}}{2 \pi}\right)\right)^{2}-\left(3 \gamma-\frac{1}{2}\right)\left(\gamma-\log \left(\frac{\mathcal{A}^{12}}{2 \pi}\right)\right) \\
& -\frac{1}{4}\left(12 \gamma_{1}-12 \gamma^{2}+6 \gamma-1\right)
\end{aligned}
$$

and

Constant	Name
$\gamma \approx 0.577215664 \ldots$	Euler - Mascheroni
$\gamma_{1} \approx-0.072815845 \ldots$	Stieltjes
$\mathcal{A} \approx 1.282427129 \ldots$	Glaisher - Kinkelin

3 Main properties of the function g_{k}

The following lemma lists the main tools used in the proof of Theorem 2.3.
Lemma 3.1. For any integer $k \geqslant 1$, we have

$$
g_{k+1}=g_{k} * \mathrm{Id}
$$

and then

$$
g_{k}=\varphi *\left(\operatorname{Id} \cdot \tau_{k-1}\right)
$$

Moreover, we have

$$
\begin{equation*}
g_{k}=\mu *\left(\operatorname{Id} \cdot \tau_{k}\right) \tag{3}
\end{equation*}
$$

Thus, the Dirichlet series $G_{k}(s)$ of g_{k} is absolutely convergent in the half-plane $\Re s>2$, and has an analytic continuation to a meromorphic function defined on the whole complex plane with value

$$
G_{k}(s)=\frac{\zeta(s-1)^{k}}{\zeta(s)}
$$

Proof. Broughan already proved the first relation for $k=1$ (see [3, Thm. 4.7]), but, for the sake of completeness, we give here another proof.

$$
\begin{aligned}
\left(g_{1} * \mathrm{Id}\right)(n) & =(\varphi * \mathrm{Id})(n)=\sum_{d \mid n} d \varphi\left(\frac{n}{d}\right) \\
& =\sum_{d \mid n} d \sum_{\substack{k \leqslant n / d \\
(k, n / d)=1}} 1=\sum_{d \mid n} d \sum_{\substack{j=1 \\
(j, n)=d}}^{n} 1 \\
& =\sum_{j=1}^{n}(j, n)=\sum_{j=1}^{n} f_{2, j}(n)=g_{2}(n) .
\end{aligned}
$$

For $k=2$, we get

$$
\left(g_{2} * \mathrm{Id}\right)(n)=\sum_{d \mid n} \frac{n}{d} \sum_{j=1}^{d}(j, d)=\sum_{j=1}^{n} \sum_{\substack{d \mid n \\ d \geqslant j}} \frac{n}{d}(j, d)=\sum_{j=1}^{n} f_{3, j}(n)=g_{3}(n) .
$$

Now let us suppose $k \geqslant 3$. We have

$$
\begin{aligned}
g_{k+1}(n) & =\sum_{j=1}^{n} f_{k+1, j}(n)=\sum_{j=1}^{n}\left(f_{2, j} *\left(\operatorname{Id} \cdot \tau_{k-1}\right)\right)(n) \\
& =\sum_{j=1}^{n}\left(f_{2, j} * \operatorname{Id} \cdot \tau_{k-2} * \mathrm{Id}\right)(n) \\
& =\sum_{d \mid n} \frac{n}{d} \sum_{j=1}^{d}\left(f_{2, j} *\left(\operatorname{Id} \cdot \tau_{k-2}\right)\right)(d)=\left(g_{k} * \operatorname{Id}\right)(n) .
\end{aligned}
$$

The second relation is easily shown by induction. For the third, we have using $\varphi=\mu * \operatorname{Id}$

$$
\begin{aligned}
g_{k} & =\varphi *\left(\operatorname{Id} \cdot \tau_{k-1}\right)=\mu *\left(\operatorname{Id} *\left(\operatorname{Id} \cdot \tau_{k-1}\right)\right) \\
& =\mu *\left(\operatorname{Id} \cdot\left(\mathbf{1} * \tau_{k-1}\right)\right)=\mu *\left(\operatorname{Id} \cdot \tau_{k}\right)
\end{aligned}
$$

The last proposition comes from the equality (3)

$$
g_{k}=\mu *\left(\operatorname{Id} \cdot \tau_{k}\right)=\mu * \underbrace{\operatorname{Id} * \cdots * \operatorname{Id}}_{k \text { times }}
$$

and the Dirichlet series of μ and Id.

4 Proof of Theorem 1

Lemma 4.1. For any integer $k \geqslant 1$ and any real numbers $x>1$ and $\varepsilon>0$, we have

$$
\sum_{n \leqslant x} n \tau_{k}(n)=x^{2} \mathcal{Q}_{k-1}(\log x)+O_{\varepsilon, k}\left(x^{1+\theta_{k}+\varepsilon}\right)
$$

where \mathcal{Q}_{k-1} is a polynomial of degree $k-1$ and leading coefficient $\frac{1}{2(k-1)!}$.

Proof. Using summation by parts and (2), we get

$$
\begin{aligned}
\sum_{n \leqslant x} n \tau_{k}(n) & =x \sum_{n \leqslant x} \tau_{k}(n)-\int_{1}^{x}\left(\sum_{n \leqslant t} \tau_{k}(n)\right) d t \\
& =x^{2} \mathcal{P}_{k-1}(\log x)+O_{\varepsilon, k}\left(x^{1+\theta_{k}+\varepsilon}\right)-\int_{1}^{x}\left(t \mathcal{P}_{k-1}(\log t)+O_{\varepsilon, k}\left(t^{\theta_{k}+\varepsilon}\right)\right) d t
\end{aligned}
$$

Writing

$$
\mathcal{P}_{k-1}(X)=\sum_{j=0}^{k-1} a_{j} X^{j}
$$

with $a_{k-1}=\frac{1}{(k-1)!}$, we obtain

$$
\sum_{n \leqslant x} n \tau_{k}(n)=x^{2} \sum_{j=0}^{k-1} a_{j}(\log x)^{j}-\sum_{j=0}^{k-1} a_{j} \int_{1}^{x} t(\log t)^{j} d t+O_{\varepsilon, k}\left(x^{1+\theta_{k}+\varepsilon}\right)
$$

and the formula

$$
\int_{1}^{x} t(\log t)^{j} d t=x^{2} \sum_{i=0}^{j}(-1)^{j-i} \frac{j!}{2^{j+1-i} \times i!}(\log x)^{i}-(-1)^{j} \frac{j!}{2^{j+1}}
$$

(easily proved by induction) gives

$$
\begin{aligned}
\sum_{n \leqslant x} n \tau_{k}(n) & =x^{2} \sum_{j=0}^{k-1} a_{j}\left\{(\log x)^{j}-\sum_{i=0}^{j}(-1)^{j-i} \frac{j!}{2^{j+1-i} \times i!}(\log x)^{i}\right\} \\
& +\sum_{i=0}^{j}(-1)^{j} \frac{j!a_{j}}{2^{j+1}}+O_{\varepsilon, k}\left(x^{1+\theta_{k}+\varepsilon}\right) \\
& =x^{2} \sum_{j=0}^{k-1} a_{j}\left\{\frac{(\log x)^{j}}{2}-\sum_{i=0}^{j-1}(-1)^{j-i} \frac{j!}{2^{j+1-i} \times i!}(\log x)^{i}\right\}+O_{\varepsilon, k}\left(x^{1+\theta_{k}+\varepsilon}\right)
\end{aligned}
$$

which completes the proof of the lemma.

Remark. For $k=3$, the following result is well-known (see [7, Exer. II.3.4], for example)

$$
\sum_{n \leqslant x} \tau_{3}(n)=x\left\{\frac{(\log x)^{2}}{2}+(3 \gamma-1) \log x+3 \gamma^{2}-3 \gamma-3 \gamma_{1}+1\right\}+O_{\varepsilon}\left(x^{\theta_{3}+\varepsilon}\right)
$$

and gives

$$
\begin{equation*}
\sum_{n \leqslant x} n \tau_{3}(n)=x^{2}\left\{\frac{(\log x)^{2}}{4}+\left(\frac{6 \gamma-1}{4}\right) \log x-\frac{12 \gamma_{1}-12 \gamma^{2}+6 \gamma-1}{8}\right\}+O_{\varepsilon}\left(x^{1+\theta_{3}+\varepsilon}\right) \tag{4}
\end{equation*}
$$

Now we are able to prove Theorem 2.3.
Using (3) we get

$$
\sum_{n \leqslant x} g_{k}(n)=\sum_{d \leqslant x} \mu(d) \sum_{m \leqslant x / d} m \tau_{k}(m)
$$

and lemma 3.1 gives

$$
\begin{aligned}
\sum_{n \leqslant x} g_{k}(n) & =\sum_{d \leqslant x} \mu(d)\left\{\left(\frac{x}{d}\right)^{2} \mathcal{Q}_{k-1}\left(\log \frac{x}{d}\right)+O_{\varepsilon, k}\left(\left(\frac{x}{d}\right)^{1+\theta_{k}+\varepsilon}\right)\right\} \\
& =x^{2} \sum_{d \leqslant x} \frac{\mu(d)}{d^{2}} \mathcal{Q}_{k-1}\left(\log \frac{x}{d}\right)+O_{\varepsilon, k}\left(x^{1+\theta_{k}+\varepsilon}\right)
\end{aligned}
$$

Writing

$$
\mathcal{Q}_{k-1}(X)=\sum_{j=0}^{k-1} b_{j} X^{j}
$$

with $b_{k-1}=\frac{1}{2(k-1)!}$, we get

$$
\begin{aligned}
\sum_{n \leqslant x} g_{k}(n) & =x^{2} \sum_{d \leqslant x} \frac{\mu(d)}{d^{2}} \sum_{j=0}^{k-1} b_{j}\left(\log \frac{x}{d}\right)^{j}+O_{\varepsilon, k}\left(x^{1+\theta_{k}+\varepsilon}\right) \\
& =x^{2} \sum_{j=0}^{k-1} \sum_{h=0}^{j}\binom{j}{h} b_{j}(\log x)^{j-h} \sum_{d \leqslant x}(-1)^{h} \frac{\mu(d)}{d^{2}}(\log d)^{h}+O_{\varepsilon, k}\left(x^{1+\theta_{k}+\varepsilon}\right)
\end{aligned}
$$

and the equality

$$
\begin{aligned}
\sum_{d \leqslant x}(-1)^{h} \frac{\mu(d)}{d^{2}}(\log d)^{h} & =\sum_{d=1}^{\infty}(-1)^{h} \frac{\mu(d)}{d^{2}}(\log d)^{h}-\sum_{d>x}(-1)^{h} \frac{\mu(d)}{d^{2}}(\log d)^{h} \\
& =\left[\frac{d^{h}}{d s^{h}}\left(\frac{1}{\zeta(s)}\right)\right]_{[s=2]}+O\left(\frac{(\log x)^{h}}{x}\right)
\end{aligned}
$$

implies

$$
\begin{aligned}
\sum_{n \leqslant x} g_{k}(n) & =x^{2} \sum_{j=0}^{k-1} \sum_{h=0}^{j}\binom{j}{h}\left(\left[\frac{d^{h}}{d s^{h}}\left(\frac{1}{\zeta(s)}\right)\right]_{[s=2]}\right) b_{j}(\log x)^{j-h} \\
& +O\left(x(\log x)^{k-1}\right)+O_{\varepsilon, k}\left(x^{1+\theta_{k}+\varepsilon}\right) \\
& =x^{2} \sum_{j=0}^{k-1} \sum_{h=0}^{j}\binom{j}{h}\left(\left[\frac{d^{h}}{d s^{h}}\left(\frac{1}{\zeta(s)}\right)\right]_{[s=2]}\right) b_{j}(\log x)^{j-h}+O_{\varepsilon, k}\left(x^{1+\theta_{k}+\varepsilon}\right),
\end{aligned}
$$

and writing

$$
\left[\frac{d^{h}}{d s^{h}}\left(\frac{1}{\zeta(s)}\right)\right]_{[s=2]}=\frac{A_{h}}{2 \zeta(2)^{h+1}}
$$

with $A_{h} \in \mathbb{R}$ (and $A_{0}=2$), we obtain

$$
\sum_{n \leqslant x} g_{k}(n)=\frac{x^{2}}{2 \zeta(2)} \sum_{j=0}^{k-1} \sum_{h=0}^{j}\binom{j}{h} \frac{A_{h} b_{j}(\log x)^{j-h}}{\zeta(2)^{h}}+O_{\varepsilon, k}\left(x^{1+\theta_{k}+\varepsilon}\right)
$$

which is the desired result. The leading coefficient is $\binom{k-1}{0} A_{0} b_{k-1}=\frac{1}{(k-1)!}$. The particular cases are easy to check.
(i) For $k=1$, the result is well-known (see [2, Exer. 4.14])

$$
\sum_{n \leqslant x} g_{1}(n)=\sum_{n \leqslant x} \varphi(n)=\frac{x^{2}}{2 \zeta(2)}+O(x \log x)
$$

(ii) For $k=2$, see [1].
(iii) For $k=3$, we use (4) and the computations made above. The proof of Theorem 2.3 is now complete.

5 Sums of reciprocals of the gcd

The purpose of this section is to prove the following estimate.
Theorem 5.1. For any real number $x>e$ sufficiently large, we have

$$
\sum_{n \leqslant x}\left(\sum_{j=1}^{n} \frac{1}{(j, n)}\right)=\frac{\zeta(3)}{2 \zeta(2)} x^{2}+O\left(x(\log x)^{2 / 3}(\log \log x)^{4 / 3}\right) .
$$

Proof. For any integer $n \geqslant 1$, we set

$$
\mathcal{G}(n)=\sum_{j=1}^{n} \frac{1}{(j, n)} .
$$

With a similar argument used in the proof of the identity $g=\varphi *$ Id (see lemma 3.1), it is easy to check that

$$
\mathcal{G}=\varphi * \operatorname{Id}^{-1}
$$

and thus

$$
\sum_{n \leqslant x} \mathcal{G}(n)=\sum_{d \leqslant x} \frac{1}{d} \sum_{m \leqslant x / d} \varphi(m) .
$$

The well-known result (see [8], for example)

$$
\sum_{n \leqslant x} \varphi(n)=\frac{x^{2}}{2 \zeta(2)}+O\left(x(\log x)^{2 / 3}(\log \log x)^{4 / 3}\right)
$$

combined with some classical computations, allows us to conclude the proof of Theorem 5.1.

6 The lcm-sum function

Definition 6.1. For any integer $n \geqslant 1$, we define

$$
l(n)=\sum_{j=1}^{n}[n, j]
$$

where $[a, b]$ is the least common multiple of a and b.
Lemma 6.2. We have the following convolution identity

$$
l=\frac{1}{2}\left(\left(\operatorname{Id}^{2} \cdot\left(\varphi+\tau_{0}\right)\right) * \mathrm{Id}\right) .
$$

Proof. We have

$$
\sum_{j=1}^{n} \frac{j}{(n, j)}=\sum_{d \mid n} \frac{1}{d} \sum_{\substack{j=1 \\(n, j)=d}}^{n} j=\sum_{d \mid n} \frac{1}{d} \sum_{\substack{k \leqslant n / d \\(k, n / d)=1}} k d=\sum_{d \mid n} \sum_{\substack{k \leqslant n / d \\(k, n / d)=1}} k,
$$

with

$$
\begin{aligned}
\sum_{\substack{k \leqslant N \\
(k, N)=1}} k & =\sum_{d \mid N} d \mu(d) \sum_{m \leqslant N / d} m \\
& =\frac{1}{2} \sum_{d \mid N} d \mu(d)\left\{\frac{N}{d}\left(\frac{N}{d}+1\right)\right\} \\
& =\frac{N}{2} \sum_{d \mid N} \mu(d)\left(\frac{N}{d}+1\right)=\frac{N}{2}\left(\varphi+\tau_{0}\right)(N),
\end{aligned}
$$

and hence

$$
\sum_{j=1}^{n} \frac{j}{(n, j)}=\frac{1}{2} \sum_{d \mid n} \frac{n}{d}\left(\varphi+\tau_{0}\right)\left(\frac{n}{d}\right)=\frac{1}{2}\left(\left(\operatorname{Id} \cdot\left(\varphi+\tau_{0}\right)\right) * \mathbf{1}\right)(n),
$$

and we conclude by noting that

$$
l(n)=n \sum_{j=1}^{n} \frac{j}{(n, j)}
$$

which completes the proof, since Id is completely multiplicative.
Theorem 6.3. For any real number $x>e$ sufficiently large, we have the following estimate

$$
\sum_{n \leqslant x}\left(\sum_{j=1}^{n}[n, j]\right)=\frac{\zeta(3)}{8 \zeta(2)} x^{4}+O\left(x^{3}(\log x)^{2 / 3}(\log \log x)^{4 / 3}\right) .
$$

Proof. Using lemma 6.2, we get

$$
\begin{aligned}
\sum_{n \leqslant x} l(n) & =\frac{1}{2} \sum_{d \leqslant x} d \sum_{m \leqslant x / d} m^{2}\left(\varphi+\tau_{0}\right)(m) \\
& =\frac{1}{2} \sum_{d \leqslant x} d \sum_{m \leqslant x / d} m^{2} \varphi(m)+O\left(x^{2}\right)
\end{aligned}
$$

and the estimation (see [8])

$$
\sum_{n \leqslant x} n^{2} \varphi(n)=\frac{x^{4}}{4 \zeta(2)}+O\left(x^{3}(\log x)^{2 / 3}(\log \log x)^{4 / 3}\right)
$$

implies

$$
\begin{aligned}
\sum_{n \leqslant x} l(n) & =\frac{1}{2} \sum_{d \leqslant x} d\left\{\frac{1}{4 \zeta(2)}\left(\frac{x}{d}\right)^{4}+O\left(\left(\frac{x}{d}\right)^{3}(\log x)^{2 / 3}(\log \log x)^{4 / 3}\right)\right\}+O\left(x^{2}\right) \\
& =\frac{x^{4}}{8 \zeta(2)} \sum_{d=1}^{\infty} \frac{1}{d^{3}}+O\left(x^{3}(\log x)^{2 / 3}(\log \log x)^{4 / 3}\right)+O\left(x^{2}\right)
\end{aligned}
$$

which is the desired result.

7 Sum of reciprocals of the lcm

We will prove the following result.
Theorem 7.1. For any real number $x>1$ sufficiently large, we have

$$
\sum_{n \leqslant x}\left(\sum_{j=1}^{n} \frac{1}{[n, j]}\right)=\frac{(\log x)^{3}}{6 \zeta(2)}+\frac{(\log x)^{2}}{2 \zeta(2)}\left(\gamma+\log \left(\frac{\mathcal{A}^{12}}{2 \pi}\right)\right)+O(\log x)
$$

Some useful estimates are needed.
Lemma 7.2. Set $C_{\varphi}=\log \left(\frac{\mathcal{A}^{12}}{2 \pi}\right) \approx 1.147176 \ldots$ For any real number $x \geqslant 1$, we have

$$
\begin{aligned}
&(i): \sum_{n \leqslant x} \frac{\varphi(n)}{n^{2}}=\frac{\log x}{\zeta(2)}+\frac{C_{\varphi}}{\zeta(2)}+O\left(\frac{\log e x}{x}\right) \\
& \text { (ii) }: \sum_{n \leqslant x} \frac{\varphi(n)}{n^{2}} \log \left(\frac{x}{n}\right)=\frac{(\log x)^{2}}{2 \zeta(2)}+\frac{C_{\varphi} \log x}{\zeta(2)}+O(1) . \\
& \text { (iii) }: \frac{1}{2} \sum_{n \leqslant x} \frac{\varphi(n)}{n^{2}}\left(\log \left(\frac{x}{n}\right)\right)^{2}=\frac{(\log x)^{3}}{6 \zeta(2)}+\frac{C_{\varphi}(\log x)^{2}}{2 \zeta(2)}+O(\log x) .
\end{aligned}
$$

Proof. (i). Using $\varphi=\mu *$ Id, we get

$$
\begin{aligned}
\sum_{n \leqslant x} \frac{\varphi(n)}{n^{2}} & =\sum_{d \leqslant x} \frac{\mu(d)}{d^{2}} \sum_{m \leqslant x / d} \frac{1}{m} \\
& =\sum_{d \leqslant x} \frac{\mu(d)}{d^{2}}\left\{\log \left(\frac{x}{d}\right)+\gamma+O\left(\frac{d}{x}\right)\right\} \\
& =(\log x+\gamma) \sum_{d \leqslant x} \frac{\mu(d)}{d^{2}}-\sum_{d \leqslant x} \frac{\mu(d) \log d}{d^{2}}+O\left(\frac{1}{x} \sum_{d \leqslant x} \frac{1}{d}\right) \\
& =\frac{\log x}{\zeta(2)}+\frac{\gamma}{\zeta(2)}-\frac{\zeta^{\prime}(2)}{(\zeta(2))^{2}}+O\left(\frac{\log e x}{x}\right)
\end{aligned}
$$

Recall that $\frac{\zeta^{\prime}(2)}{\zeta(2)}=\gamma-C_{\varphi}$.
(ii) and (iii). Abel's summation and estimate (i). We leave the details to the reader.

Now we are able to show Theorem 7.1. For any integer $n \geqslant 1$, we set

$$
\mathcal{L}(n)=\sum_{j=1}^{n} \frac{1}{[n, j]}
$$

Since

$$
\begin{aligned}
\mathcal{L}(n) & =\frac{1}{n} \sum_{j=1}^{n} \frac{(n, j)}{j}=\frac{1}{n} \sum_{d \mid n} d \sum_{\substack{j=1 \\
(j, n)=d}}^{n} \frac{1}{j} \\
& =\frac{1}{n} \sum_{d \mid n} d \sum_{\substack{k \leqslant n / d \\
(k, n / d)=1}} \frac{1}{k d}=\frac{1}{n} \sum_{d \mid n} \sum_{\substack{k \leqslant n / d \\
(k, n / d)=1}} \frac{1}{k},
\end{aligned}
$$

we get

$$
\begin{aligned}
\sum_{n \leqslant x} \mathcal{L}(n) & =\sum_{n \leqslant x} \frac{1}{n} \sum_{d \mid n} \sum_{\substack{k \leqslant n / d \\
(k, n / d)=1}} \frac{1}{k} \\
& =\sum_{d \leqslant x} \frac{1}{d} \sum_{h \leqslant x / d} \frac{1}{h} \sum_{\substack{k \leqslant h \\
(k, h)=1}} \frac{1}{k} \\
& =\sum_{d \leqslant x} \frac{1}{d} \sum_{h \leqslant x / d} \frac{1}{h} \sum_{\delta \mid h} \frac{\mu(\delta)}{\delta} \sum_{m \leqslant h / \delta} \frac{1}{m} \\
& =\sum_{d \leqslant x} \frac{1}{d} \sum_{\delta \leqslant x / d} \frac{\mu(\delta)}{\delta^{2}} \sum_{a \leqslant x /(d \delta)} \frac{1}{a} \sum_{m \leqslant a} \frac{1}{m} \\
& =\sum_{d \leqslant x} \sum_{\delta d \leqslant x} \frac{1}{d} \frac{\mu(\delta)}{\delta^{2}} \sum_{a \leqslant x /(d \delta)} \frac{1}{a} \sum_{m \leqslant a} \frac{1}{m} \\
& =\sum_{n \leqslant x} \frac{1}{n^{2}} \sum_{d \mid n} d \mu\left(\frac{n}{d}\right) \sum_{a \leqslant x / n} \frac{1}{a} \sum_{m \leqslant a} \frac{1}{m},
\end{aligned}
$$

and the convolution identity $\varphi=\mu * \operatorname{Id}$ implies that

$$
\sum_{n \leqslant x} \mathcal{L}(n)=\sum_{n \leqslant x} \frac{\varphi(n)}{n^{2}} \sum_{a \leqslant x / n} \frac{1}{a} \sum_{m \leqslant a} \frac{1}{m} .
$$

Thus

$$
\begin{aligned}
\sum_{n \leqslant x} \mathcal{L}(n) & =\sum_{n \leqslant x} \frac{\varphi(n)}{n^{2}} \sum_{a \leqslant x / n} \frac{1}{a}\left\{\log a+\gamma+O\left(\frac{1}{a}\right)\right\} \\
& =\sum_{n \leqslant x} \frac{\varphi(n)}{n^{2}}\left\{\frac{1}{2}\left(\log \frac{x}{n}\right)^{2}+\gamma\left(\log \frac{x}{n}\right)+O(1)\right\} \\
& =\frac{(\log x)^{3}}{6 \zeta(2)}+\frac{C_{\varphi}(\log x)^{2}}{2 \zeta(2)}+\frac{\gamma(\log x)^{2}}{2 \zeta(2)}+O(\log x)
\end{aligned}
$$

where $C_{\varphi}=\log \left(\frac{\mathcal{A}^{12}}{2 \pi}\right)$, which concludes the proof.

8 Acknowledgment

I am indebted to the referee for his valuable suggestions.

References

[1] O. Bordellès, A note on the average order of the gcd-sum function, J. Integer Sequences 10 (2007), Article 07.3.3.
[2] O. Bordellès, Thèmes d'Arithmétique, Editions Ellipses, 2006.
[3] K. A. Broughan, The gcd-sum function, J. Integer Sequences 4 (2001), Article 01.2.2. Errata, April 16, 2007, http://www.cs.uwaterloo.ca/journals/JIS/VOL4/BROUGHAN/errata1.pdf
[4] K. A. Broughan, The average order of the Dirichlet series of the gcd-sum function, J. Integer Sequences 10 (2007), Article 07.4.2.
[5] M. N. Huxley, Exponential sums and lattice points III, Proc. London Math. Soc. 87 (2003), 591-609.
[6] A. Ivić, E. Krätzel, M. Kühleitner, and W. G. Nowak, Lattice points in large regions and related arithmetic functions: Recent developments in a very classic topic, in W. Schwarz and J. Steuding, eds., Conference on Elementary and Analytic Number Theory, Frank Steiner Verlag, 2006, pp. 89-128.
[7] G. Tenenbaum, Introduction à la Théorie Analytique et Probabiliste des Nombres, Société Mathématique de France, 1995.
[8] A. Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, Leipzig BG Teubner, 1963.

2000 Mathematics Subject Classification: Primary 11A25; Secondary 11N37.
Keywords: greatest common divisor, average order, Dirichlet convolution.

Received July 2 2007; revised version received August 27 2007. Published in Journal of Integer Sequences, August 272007.

Return to Journal of Integer Sequences home page.

