
23 11

Article 07.7.5
Journal of Integer Sequences, Vol. 10 (2007),2

3

6

1

47

On the Number of Labeled k-arch Graphs

Saverio Caminiti and Emanuele G. Fusco
Department of Computer Science
University of Rome “La Sapienza”

Via Salaria 113
00198 Rome

Italy
caminiti@di.uniroma1.it

fusco@di.uniroma1.it

Abstract

In this paper we deal with k-arch graphs, a superclass of trees and k-trees. We give

a recursive function counting the number of labeled k-arch graphs. Our result relies on

a generalization of the well-known Prüfer code for labeled trees. In order to guarantee

the generalized code to be a bijection, we characterize the valid code strings.

A previous attempt at counting the number of labeled k-arch graphs was made by

Lamathe. We point out an error in his work, and prove it by giving a counterexample.

1 Introduction

The problem of counting labeled trees has been widely studied, and there exists a variety of
proofs for the well-known Cayley formula [1], which states that the number of labeled trees
of n nodes is nn−2 (for a survey, see [4]). Among these proofs, the one given by Prüfer [5] is
based on a one-to-one correspondence between labeled trees and strings of length n− 2 over
the alphabet {1, . . . , n}. This bijection is known as the Prüfer code.

In 1970 Rényi and Rényi [6] generalized the Prüfer bijective proof of Cayley’s formula to
count labeled k-trees, i.e., one of the most natural generalizations of trees.

The class of k-trees, introduced by Harary and Palmer [2], can be defined in the following
recursive way:

1. A complete graph on k nodes is a k-tree.

2. If T ′
k = (V,E) is a k-tree, K ⊆ V is a k-clique and v /∈ V ,

then Tk = (V ∪ {v}, E ∪ {(v, x) |x ∈ K}) is also a k-tree.

1

mailto:caminiti@di.uniroma1.it
mailto:fusco@di.uniroma1.it

A labeled k-tree is a k-tree whose nodes are assigned distinct labels. They showed the
number of labeled k-trees of n nodes to be

(

n

k

)

(k(n − k) + 1)n−k−2. This result gave birth
to sequences A036361, A036362, and A036506 in Sloane’s On-line Encyclopedia of Integer
Sequences [7].

The class of k-trees can be further generalized by relaxing the constraint in item 2 asking
for the node set K to be a clique. Graphs belonging to this class, introduced by Todd [8],
are known as the k-arch graphs.

A k-arch graph can be defined in the following recursive way:

1. A complete graph on k nodes is a k-arch graph.

2. If A′
k = (V,E) is a k-arch graph, K ⊆ V of cardinality k and v /∈ V ,

then Ak = (V ∪ {v}, E ∪ {(v, x) |x ∈ K}) is also a k-arch graph.

The class of k-arch graphs can be equivalently defined as the smallest class such that:

1. A complete graph on k nodes is a k-arch graph;

2. If A′
k, obtained by removing a node of degree k from Ak, is a k-arch graph, then Ak is

a k-arch graph.

A labeled k-arch graph is a k-arch graph whose nodes are assigned distinct labels. In this
paper we deal with labeled k-arch graphs; we use integers in [1, n] as node labels, where n
always refers to |V |. When no confusion arises we identify a node with its label. An example
of a labeled 3-arch graph on 10 nodes is given in Figure 1.

Note that when k = 1 both k-trees and k-arch graphs are Cayley trees.
An attempt to generalize the Prüfer bijective proof of Cayley’s formula to count labeled

k-arch graphs has been made by Lamathe [3]. He established a correspondence relating
k-arch graphs and strings over the alphabet whose symbols are all k-subsets of the vertex
set of a given k-arch graph. He claimed this correspondence to be a bijection and derived

the number of labeled k-arch graphs of n nodes to be
(

n

k

)n−k−1
. Unfortunately this result is

wrong, as the majority of the strings do not represent any k-arch graph, meaning that the
shown correspondence is not a bijection (see Section 3 for an example of an invalid string).
Indeed, Lamathe’s formula produces a serious overestimation of the number of labeled k-arch
graphs. In the following table we show the overestimation ratio for certain values of n and
k:

n\k 2 3 4
10 1.6311 3.9045 5.4925
15 4.8581 85.8627 806.9044
20 18.8593 3699.9280 434531.3726

The ratio dramatically increases when n and k increase; this implies that almost all strings do
not correspond to k-arch graphs. As an example, consider that when n = 200 and k = 185,
the ratio is 1.6681 × 10104.

The error made by Lamathe is to consider every possible string as the encoding of some
k-arch graph. Instead the subset of strings resulting from encoding k-arch graphs needs to
be correctly characterized, in the same way that Rényi and Rényi did for k-trees.

2

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A036361
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A036362
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A036506

In this paper we exhibit the flaw in the Lamathe’s formula by showing a simple coun-
terexample. We provide a characterization of valid strings, and then we exploit properties
of those strings in order to define a recursive function that computes the number of labeled
k-arch graphs of n nodes, for any given n and k.

2 Encoding k-arch Graphs

Let An
k be the set of all k-arch graphs of n nodes, let

(

[1,n]
k

)

be the set of all k-subset of the
integer interval [1, n], and let Bn

k be the set of all possible strings of length n − k − 1 over
the alphabet

(

[1,n]
k

)

. We use the notation adj(v) to identify the set of all nodes adjacent to a
given node v, and the term k-leaf to mean a node u such that |adj(u)| = k; any other node
v has |adj(v)| > k and is called internal.

Let us define the following function:

ρ(An
k) =

{

ε, if An
k is a single k + 1 clique;

adj(min{v ∈ An
k : |adj(v)| = k}) :: ρ(An

k \ {v}), otherwise.

The function ρ is the injective function between An
k and Bn

k used by Lamathe, i.e., the
generalization made by Rényi and Rényi of the Prüfer bijection applied to k-arch graphs.
The recursion described by ρ embodies a pruning of the k-arch graph An

k that starts from
the smallest k-leaf v; as v is removed from An

k , its adjacent set constitutes the first symbol of
the string. This symbol is concatenated (by string concatenation operator ::) to the string
obtained by recursively applying the function to the pruned graph. The recursion terminates
when the pruning gives a clique on k + 1 nodes, as ρ applied to a clique gives the empty
string ε.

Note that, by definition of k-arch graphs, every subgraph produced during the pruning
process is a k-arch graph.

It is worth remarking that we are assuming n > k, as well as the Prüfer code assumes
the tree to have at least 2 nodes. When n = k, the only admissible k-arch graph is a single
clique with |Ak

k| = 1. When n < k, obviously |An
k | = 0.

Let us show an example of the encoding process realized by the function ρ. Starting from
the 3-arch graph of Figure 1, we prune it by recursively removing the smallest k-leaf. At
each step the set of nodes adjacent to the removed k-leaf is added to the string.

The smallest k-leaf of the initial graph is v1 = 2 and its adjacent nodes are B1 = {1, 6, 9}.
Then node 2 is removed from the graph, and the smallest k-leaf in the resulting graph is
v2 = 3, implying B2 = {1, 5, 8}. Iterating this procedure we obtain v3 = 6, v4 = 4, v5 = 7,
v6 = 9 and B3 = {4, 8, 10}, B4 = {1, 5, 9}, B5 = {5, 8, 10}, B6 = {1, 5, 8} respectively. The
remaining graph is a single clique of 4 nodes {1, 5, 8, 10}. Therefore the resulting string is
(B1, B2, B3, B4, B5, B6) = ({1, 6, 9}, {1, 5, 8}, {4, 8, 10}, {1, 5, 9}, {5, 8, 10}, {1, 5, 8}).

For a given k-arch graph An
k , we say a node v ∈ V (An

k) appears in ρ(An
k) if ∃Bi ∈ ρ(An

k)
such that v ∈ Bi.

Lemma 1. v is an internal node in An
k if and only if it appears in ρ(An

k).

3

Figure 1: A labeled 3-arch graph on 10 nodes.

Proof. Consider an internal node v in An
k : its initial degree is strictly greater than k. The

pruning process embodied by ρ ends with a (k + 1)-clique, where each node has degree k,
so either v has been eliminated in some step or it belongs to the remaining clique; in both
cases its degree must decrease to k. Since the degree of an internal node v can decrease only
if in some step i a k-leaf adjacent to v is removed, v must belong to Bi.

Let us now show that if an element appears in ρ(An
k), then it is an internal node. Consider

a k-leaf v, and suppose by contradiction that there exists some value i such that v ∈ Bi.
This means that after removing a k-leaf on step i, in the resulting graph node v has degree
k − 1. This contradicts the fact that each subgraph produced during the encoding process
is k-arch graph.

Proposition 2. Function ρ is injective.

Proof. We have to show that, given two k-arch graphs An
k
′ and An

k
′′, if ρ(An

k
′) = ρ(An

k
′′) =

(B1, . . . , Bn−k−1) then An
k
′ = An

k
′′.

Let us proceed by induction on n−k. If n−k = 1, ρ(An
k
′) = ρ(An

k
′′) = ε, then An

k
′ = An

k
′′

as the only k-arch graph on k + 1 nodes is a (k + 1)-clique.
For inductive hypothesis, assume the hypothesis holds when n−k < h. We have to prove

that it holds when n − k = h.
In order to have ρ(An

k
′) = ρ(An

k
′′), for Lemma 1, the sets of internal nodes and the sets

of k-leaves in An
k
′ and An

k
′′ must coincide. It follows that the minimum k-leaf v1 in An

k
′

coincides with the minimum k-leaf in An
k
′′ and both are adjacent to the same node set B1.

Moreover, the graphs obtained by pruning v1 from An
k
′ and An

k
′′, in order to produce the

same substring (B2, . . . , Bn−k−1), have to be the same graph by inductive hypothesis. This
implies An

k
′ = An

k
′′, as removing the same node and the same edge set from them results in

the same graph.

4

3 Decoding k-arch Graphs

In this section we show how to revert function ρ in order to rebuild an encoded k-arch graph.
Starting from a string (B1, . . . , Bl) that is the encoding of an unknown k-arch graph

An
k , at first we need to recover values n and k: k = |B1| = |B2| = · · · = |Bl| and, since

l = n − k − 1, we can derive n = l + k + 1. The node set of An
k is [1, n] so, to complete the

decoding process, we need to reconstruct its edge set.
In view of Lemma 1, it is easy to derive the set of all k-leaves of An

k as [1, n] \
⋃

Bi. We
can compute v1 (the first k-leaf removed during the encoding process) as the minimum of
this set. We also know adj(v1) = B1.

Now, v2 is the smallest k-leaf of An
k \ {v1} and we know both the node set of this k-arch

graph (i.e., [1, n] \ {v1}) and its code string (B2, . . . , Bl). Then v2 = min{v ∈ [1, n] \ {v1} \
⋃l

i=2 Bi}.
Generalizing this idea it is possible to derive a formula analogous to the one given by

Prüfer for trees:

vi = min

{

v ∈ [1, n] \ {vh}h<i \
⋃

j≥i

Bj

}

∀i ∈ [1, l]

Knowing the k-leaf removed at each step of the encoding process it is easy to rebuild
the edge set of An

k . Indeed, all the k + 1 nodes not in {v1, . . . , vl} form a clique and each vi

should be connected with all nodes in Bi. We will refer to this decoding process as ρ−1. It
is easy to see that the codomain of ρ−1 is An

k .
Obviously not all strings in Bn

k are eligible for this decoding procedure. Indeed, it requires
the set from which each vi is chosen to be not empty. To better explain this fact we now
show a simple string that does not correspond to the encoding of any k-arch graph; this is
in fact the easiest counterexample that proves Lamathe’s formula to be not correct.

Consider the string ({1, 2}, {3, 4}, {5, 6}): in this case k = 2 and n = 3+2+1 = 6. Since
the set [1, 6] \ ({1, 2} ∪ {3, 4} ∪ {5, 6}) is empty, there is no value for v1, so there can not
exist any k-arch graph whose encoding is ({1, 2}, {3, 4}, {5, 6}).

It is quite easy to see, from definition of ρ−1, that ρ−1(ρ(An
k)) = An

k for each k-arch graph
An

k . We now characterize all those strings in Bn
k resulting by the encoding of some k-arch

graph. Let us call the set of these strings Cn
k ⊆ Bn

k . Notice that Cn
k is the image of An

k under
function ρ, i.e., Cn

k = ρ(An
k).

Theorem 3. Given (B1, . . . , Bl) ∈ Bn
k if ∃{v1, . . . , vl} ∈

(

[1,n]
l

)

such that vi /∈
⋃l

j=i Bj then
(B1, . . . , Bl) ∈ Cn

k .

Proof. The existence of {v1, . . . , vl} ∈
(

[1,n]
l

)

ensures that the decoding process can be applied,
but this is not enough to ensure (B1, . . . , Bl) ∈ Cn

k . Indeed there is a reasonable doubt that
the k-arch graph An

k = ρ−1(B1, . . . , Bl) obtained by decoding an arbitrary string in Bn
k , can

produce a different string (B′
1, . . . , B

′
l) = ρ(An

k) when encoded. We will show this is not the
case.

Without loss of generality assume that v1, . . . , vl coincides with the sequence of nodes
chosen by ρ−1 at each step during the decoding process. Now, by induction on l, we prove
that ρ(ρ−1(B1, . . . , Bl)) = (B1, . . . , Bl).

5

(

3

2

)(

4

1

) (

3

1

)(

4

2

) (

3

0

)(

4

3

) (

4

3

)(

3

0

) (

4

2

)(

3

1

) (

4

1

)(

3

2

) (

5

3

)(

2

0

) (

5

2

)(

2

1

)

(

7

3

)

(

3

2

)(

4

1

) (

3

1

)(

4

2

)(

3

3

)(

4

0

)

(

3

3

)(

4

0

)

0 2

0 1 2 3 0 1 2 0 1

max = 5

max = 4

max = 6

1

Figure 2: Recursion tree for counting 3-arch graphs on 7 nodes.

When l = 0, the string can only be ε, the resulting graph is a (k + 1)-clique and its
encoding is again ε. We assume, by inductive hypothesis, the thesis holds for any string of
length l < h and we prove it holds for strings of length l = h. First note that if the string
(B1, . . . , Bl) is decoded as the k-arch graph An

k , then the substring B2, . . . , Bl is decodable
and results in the graph An−1

k = An
k \ {v1}. By inductive hypothesis ρ(An−1

k) = (B2, . . . , Bl)
(here the node set does not contain v1). The degree of v1 in An

k is |B1| = k, so it is a k-leaf.
Any other node with label smaller than v1 appears in (B1, . . . , Bl), as otherwise ρ−1 would
have done a different choice for v1. This implies that v1 is the minimum k-leaf in An

k . Then
ρ(An

k) = adj(v1) :: ρ(An−1
k) = (B1, . . . , Bl).

Since in proof of Theorem 3 we proved that ρ(ρ−1(B1, . . . , Bl)) = (B1, . . . , Bl) for each
string in Cn

k , we can state that ρ−1 : Cn
k → An

k is exactly the inverse function of ρ : An
k → Cn

k .

4 Counting k-arch Graphs

We are interested in finding the number of k-arch graphs on n nodes, i.e., |An
k |. Since |An

k | =
|Cn

k |, in order to count labeled k-arch graphs we will count valid code strings. The condition
for a string (B1, . . . , Bl) to be a valid encoding of a k-arch graph (stated in Theorem 3) can
be easily reformulated as:

∀i : 1 ≤ i ≤ l, |

l
⋃

h=i

Bh| ≤ n − i (1)

Exploiting condition of Equation 1, it possible to define a recursive function to count the
number of labeled k-arch graphs on n nodes. Before providing this general formula let us
show an example of our approach applied to |C7

3 |.
The basic idea is to simulate the generation of a valid code string (B1, B2, B3), from

right to left, and count how many choices we have at each step. The choice for B3 gives
(

7
3

)

alternatives, as Equation 1 requires that no more than 4 different numbers appear in
substring (B3); this substring always contains 3 distinct numbers, then the requirement is
always satisfied.

Now consider B2. Equation 1 requires at most 5 distinct numbers to appear in substring
(B2, B3), thus imposing some limits on choices for B2. In fact valid choices are those selecting
3, 2 or 1 numbers appearing in B3 and respectively 0, 1 or 2 unused numbers, giving

(

3
3

)(

4
0

)

,

6

(

3
2

)(

4
1

)

and
(

3
1

)(

4
2

)

distinct alternatives. Similar arguments hold for B1 and constraints depend
on how many distinct numbers appear in (B2, B3). More explicitly, since Equation 1 imposes
to have at most 6 distinct numbers, if u distinct numbers appear in (B2, B3), then B1 can
introduce up to min(3, 6 − u) unused numbers.

Figure 2 gives the complete recursion tree for the described process. The root represents
choices for B3; children of the root represent choices for B2 and leaves choices for B1. For
each level, on the left the bound given by Equation 1 is reported; labels on edges represent
how many new numbers are introduced. |C7

3 | = 34405 is given by the sum of the products of
labels given by each leaf-to-root path in the tree:

(

7
3

)

(

(

3
3

)(

4
0

)

(

(

3
3

)(

4
0

)

+
(

3
2

)(

4
1

)

+
(

3
1

)(

4
2

)

+
(

3
0

)(

4
3

)

)

+
(

3
2

)(

4
1

)

(

(

4
3

)(

3
0

)

+
(

4
2

)(

3
1

)

+
(

4
1

)(

3
2

)

)

+
(

3
1

)(

4
2

)

(

(

5
3

)(

2
0

)

+
(

5
2

)(

2
1

)

))

Now we introduce the main result of this paper.

Theorem 4. The number of labeled k-arch graph on n > k + 1 nodes is |An
k | = fn

k (n − k −
1, 0, k) where fn

k is the recursive function defined as:

fn
k (i, u, j) =

(

n−u

j

)(

u

k−j

)

, if i = 1;

(

n−u

j

)(

u

k−j

)

min(k,n−(i−1)−(u+j))
∑

c=0

fn
k (i − 1, u + j, c), otherwise.

When n = k or n = k + 1 |An
k | = 1; when n < k |An

k | = 0.

Proof. Given the string (B1, . . . , Bl) ∈ Cn
k , we call characteristic of this string the vector

c = (c1, . . . , cl−1) such that ci = |Bi \
⋃

j>i Bj|, i.e., the number of elements in Bi that do
not appear in the substring (Bi+1, . . . , Bl).

Consider the recursion tree generated by applying the function fn
k to (n − k − 1, 0, k).

This tree is a generalization of the one presented in Fig. 2 for the special case n = 7 and
k = 3: node labels correspond to the binomials product and edge labels correspond to the
value of the variable c discriminating recursive applications of function fn

k .
Notice that, considering the edge labels in any leaf to root path of this tree, we obtain a

vector (c1, . . . , cn−k−2) which represents the sequence of newly inserted numbers (from right
to left), and so it coincides with the characteristic of some string in Cn

k . It is also true that
if c is the characteristic of a string in Cn

k , then a leaf to root path whose edge labels vector
is c must exist.

|Cn
k | can be obtained by summing cardinalities of disjoint sets of strings sharing the same

characteristic. The size of any such set is given by the product of node labels following the
corresponding leaf to root path in the recursion tree. By summing those products, we thus
obtain |Cn

k |, i.e., the value computed by fn
k (n − k − 1, 0, k).

7

4.1 Experimental Results

We implemented the recursive function to enumerate the labeled k-arch graphs on n nodes
using the open source algebraic system PARI/GP (http://pari.math.u-bordeaux.fr/).
The code performing the counting is given in Figure 3.

f(n,k,i,u,j)={

local(s=0);

if (i==1,

binomial(n-u,j)*binomial(u,k-j),

for (c=0, min(k,n-(i-1)-(u+j)),

s+=f(n,k,i-1,u+j,c)

);

binomial(n-u,j)*binomial(u,k-j)*s

)

}

Figure 3: Code implementing the recursive function fn
k .

The size of the recursion tree is exponential in the order of (k + 1)n−k−2 so the value can
only be computed if the difference between n and k is small. As done by Lamathe we report
values of |An

k | for n ∈ [1, 10] and k ∈ [1, 7] in the following table:

k\n 1 2 3 4 5 6 7 8 9 10
1 1 1 3 16 125 1296 16807 262144 4782969 100000000
2 0 1 1 6 100 3285 177471 14188888 1569185136 229087571625
3 0 0 1 1 10 380 34405 5919536 1709074584 764754595200
4 0 0 0 1 1 15 1085 216230 92550276 74358276300
5 0 0 0 0 1 1 21 2576 982926 898027452
6 0 0 0 0 0 1 1 28 5376 3568950
7 0 0 0 0 0 0 1 1 36 10200

The first row of this table gives exactly the well-known Cayley’s formula, as 1-arch graphs
are trees. Apart from this row (reported as Sequence A000272) no other row of the table
is listed in the on-line Encyclopedia of Integer Sequences [7]. Moreover Sequences A098721,
A098722, A098723, and A098724 should be updated to reflect our correction of Lamathe’s
results (rows 2, 3, 4 of above table respectively).

5 Conclusion and Open Problems

In this paper we have presented a recursive function that computes the number of labeled k-
arch graphs of n nodes, for any given n and k. In order to obtain this function, we have used
a code that maps labeled k-arch graphs to strings and we have derived the counting function
by characterizing valid code strings. Moreover, we have proved the counting function for
k-arch graphs provided by Lamathe to be incorrect by showing a counterexample.

8

http://pari.math.u-bordeaux.fr/
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000272
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A098721
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A098722
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A098723
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A098724

It remains an open problem to find, provided that it exists, a closed-form solution for
the recursive function computing |An

k |, when k > 1, perhaps exploiting generating functions.
When k = 1, from Cayley’s formula, we have |An

1 | = nn−2. Furthermore, it would be
interesting to investigate the case of rooted and unlabeled k-arch graphs.

Acknowledgments

We want to thank Prof. Rossella Petreschi for her support and her useful comments.

References

[1] A. Cayley, A theorem on trees, Quarterly J. Math. 23 (1889), 376–378.

[2] F. Harary and E. M. Palmer, On acyclic simplicial complexes, Mathematika 15 (1968),
115–122.

[3] C. Lamathe, The number of labelled k-arch graphs, J. Integer Sequences 7 (2004), Ar-
ticle 04.3.1.

[4] J. W. Moon, Various proofs of Cayley’s formula for counting trees, In F. Harary, ed., A
Seminar on Graph Theory, Holt, Rinehart and Winston, New York, 1967, Chapter 11,
pp. 70–78.

[5] H. Prüfer, Neuer Beweis eines Satzes über Permutationen, Archiv der Mathematik und
Physik 27 (1918), 142–144.

[6] C. Rényi and A. Rényi, The Prüfer code for k-trees, P. Erdős et al., editors, Combinatoral
Theory and its Applications (Proc. Colloq. Balatonfured, 1969), North-Holland (1970),
945–971.

[7] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, 2007,
http://www.research.att.com/∼njas/sequences.

[8] P. Todd, A k-tree generalization that characterizes consistency of dimensioned engineer-
ing drawings, SIAM J. Disc. Math. 2 (1989), 255–261.

2000 Mathematics Subject Classification: Primary 05A15, 05C30; Secondary 05A10.
Keywords: k-arch graphs, trees, k-trees, coding, Prüfer code, Cayley’s formula.

(Concerned with sequences A000272, A098721, A098722, A098723 and A098724.)

Received November 3 2006; revised version received July 16 2007. Published in Journal of
Integer Sequences, July 17 2007.

Return to Journal of Integer Sequences home page.

9

http://www.cs.uwaterloo.ca/journals/JIS/VOL7/Lamathe/lamathe2.html
http://www.research.att.com/~njas/sequences
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000272
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A098721
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A098722
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A098723
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A098724
http://www.cs.uwaterloo.ca/journals/JIS/

	Introduction
	Encoding k-arch Graphs
	Decoding k-arch Graphs
	Counting k-arch Graphs
	Experimental Results

	Conclusion and Open Problems

