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Abstract

In this note, we study a class of sequences Gn satisfying Gn = (d+2)Gn−1 −Gn−2.
Note that the Fibonacci numbers Gn = F2n, n > 1 and Gn = F2n+1, n > 0 occur when
d = 1 with suitable initial conditions. We present a general interpretation for this
class of sequences in terms of ordered trees which we count by nodes and outdegrees.
Further more, several other related integer sequences are also studied.

1 Introduction

In this note, we study a class of sequences Gn satisfying Gn = (d + 2)Gn−1 − Gn−2. Note
that the Fibonacci numbers Gn = F2n, n > 1 and Gn = F2n+1, n > 0 occur when d = 1 with
suitable initial conditions. We present a general interpretation for this class of sequences in
terms of ordered trees which we count by nodes and outdegrees.

1The second author is partially supported by NSF grant HRD 0401697.
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A node is a non-root vertex which is not a leaf. A skinny tree is an ordered tree which
has at most one node on each level, where the level of a vertex is the number of edges
between it and the root. If we also mark a vertex at the bottom level, the skinny tree will
be called augmented, and the special vertex will be called a marked leaf. This is a model
of a process where at each stage exactly one choice is made. This could be choosing a
college, a spouse, a job, and so on or just taking a multiple choice test. This problem gives
rise to new interpretations for many integer sequences in Sloane’s Encyclopedia [3], such
as sequences A030267, A038731, and A000045 (the Fibonacci numbers). We would like to
propose this tree representation even though these integer sequences have been interpreted
by other combinatorial structures. We will also present some bijections between skinny trees
and these other combinatorial structures.

This paper is organized as follows. In Section 2, we consider the sequences Gn with
G0 = 1, G1 = 1. We will show that these sequences count the number of skinny trees in
which the outdegree of each vertex is multiple of d for all d ≥ 1. We then study the sequences
Gn when d = 1 and 2 in greater detail. In Section 3, we consider the sequences Gn with
G0 = 1, G1 = d. Most of results in this section are in parallel with those in section 2. In the
last section, we consider the average height of skinny trees, and other asymptotic results.

2 Sequences with G0 = 1, G1 = 1

In this section, we first count the number of skinny trees in which the outdegree of each
vertex is multiple of d for all d ≥ 1. We will show in a combinatorial way that the sequences
Gn with G0 = 1, G1 = 1 actually count this kind of skinny trees. Next, we will study some
properties of the sequences Gn when d = 1 and 2.

For the sake of convenience, we will abbreviate skinny tree to ST and augmented skinny
tree to AST . The set of all skinny trees (augmented skinny trees, resp.) will be denoted as
ST (AST, resp.). A skinny tree (augmented skinny tree, resp.) of height one will be called
a small ST (small AST , resp.). The Fibonacci sequence Fn used here satisfies

z

1 − z − z2
= F0 + F1z + F2z

2 + · · · = z + z2 + 2z3 + 3z4 + 5z5 + · · · .

We also use the fact that
z

1 − 3z + z2
=

∑

n≥0

F2n+2z
n+1.

Theorem 1. The generating function for the number of skinny trees in which the outdegree
of each vertex is multiple of d is denoted by Sd (z) and satisfies the equation

Sd(z) =
∑

T∈ST

z#edges of T =
1 − (d + 1)zd

1 − (d + 2)zd + z2d
.

Proof. Consider the outdegree of the root. If the root has no children, then its contribution
is 1; If the root has outdegree k ≥ d and d|k but no grandchildren, its contribution to the
generating function is zk, otherwise its contribution is kzk(Sd(z) − 1). Hence

Sd(z) = 1 +
∑

k≥d,d|k
zk +

∑

k≥d,d|k
kzk(Sd(z) − 1).
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Solving for Sd(z) we obtain

Sd(z) =
1 − (d + 1)zd

1 − (d + 2)zd + z2d
.

Let

Sd(z) =
1 − (d + 1)zd

1 − (d + 2)zd + z2d
=

∑

n≥0

Sd,nznd.

From the theory of rational generating functions [2], we can obtain the following theorem.
However, we will give a combinatorial proof.

Theorem 2. The sequences Sd,n satisfy Sd,n = (d + 2)Sd,n−1 − Sd,n−2 and Sd,0 = 1, Sd,1 = 1.

Proof. We count the number of skinny trees in which the outdegree of each vertex is multiple
of d ≥ 1 (denoted by STd) with dn edges. First note that there are just dSd,n−1 STd’s with
dn edges when the degree of the root is d.

For the STd’s with dn edges where the degree of the root is larger than d, we can construct
these trees by adding d leaves to the root of STd’s with dn − d edges. These d leaves can
be added to the root on the left or the right of the existing tree. We get a total number of
2Sd,n−1 trees this way but we have over counted a bit. The trees that are counted twice are
those which could have resulted from either type of addition of edges and there are Sd,n−2

such trees. Hence the exact number of STd’s with dn edges is (d + 2)Sd,n−1 − Sd,n−2. So,

Sd,n = (d + 2)Sd,n−1 − Sd,n−2, for n ≥ 2.

The initial conditions Sd,0 = 1, Sd,1 = 1 are obvious. This completes the proof.

Note Theorem 2 implies Gn = Sd,n for Gn satisfying G0 = 1, G1 = 1. From Theorem 1,
we obtain the following corollary.

Corollary 3. The number of ST ’s with n edges is F2n−1 for n ≥ 1.

Proof. Taking d = 1, we have

∑

n≥0

S1,nzn =
1 − 2z

1 − 3z + z2
= 1 +

z − z2

1 − 3z + z2
.

For n ≥ 1, the coefficient of zn is F2n − F2n−2 = F2n−1. This completes the proof.

Proposition 4. The number of ST ’s with n + 1 edges and k (k ≥ 0) nodes is
(

n+k

2k

)

.

Proof. We can build any ST with k nodes and n+1 edges as follows. Start with a path with
k + 1 edges. We then have n + 1 − (k + 1) = n − k edges left to distribute. At each level
other than the bottom, the remaining edges go either to the left or the right of the path.
At the bottom level, we just attach the edges. This is equivalent to putting n− k balls into
2k + 1 boxes with repetition allowed, thus we have

(

(2k + 1) + (n − k) − 1

n − k

)

=

(

n + k

2k

)

possibilities.
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Summing over 0 ≤ k ≤ n, we can get the total number of ST ’s with n + 1 edges, which
leads to the following famous Fibonacci identity [1].

Corollary 5.

F2n+1 =
n

∑

k=0

(

n + k

2k

)

, for n ≥ 0.

More generally, we have the following proposition.

Proposition 6. The sequences Sd,n satisfy

Sd,n+1 =
n

∑

k=0

(

n + k

2k

)

dk.

Proof. We can construct a STd with dn+d edges from a ST with n+1 edges by subdividing
each vertex (except the root) into d vertices. If the vertex is a node, it will be subdivided
into a new node and d − 1 leaves; Otherwise, d leaves. But note that if the ST has k nodes
for each subdivided node one of the newly created vertices becomes the new node while the
rest become leaves. If the tree has height k this gives

(

n+k

2k

)

dk possibilities. Summing over
0 ≤ k ≤ n, we will obtain the total number of STd’s with dn + d edges. Hence

Sd,n+1 =
n

∑

k=0

(

n + k

2k

)

dk.

The Fibonacci sequences (F2n)n≥1 and (F2n+1)n≥0 have many combinatorial interpreta-
tions. For instance in van Lint and Wilson’s book [4], they propose a problem counting the
lattice paths on X-Y plane from the origin (0, 0) to the line x + y = n (n ≥ 0) using as
possible steps (1, 0) (horizontal step) and (0, p) (vertical step), where p can be any positive
integer. It is known that F2n+1 is the number of possible such paths. We show this via a
bijection with ST in Theorem 7. Figure 1. presents an example to illustrate the bijection.

Theorem 7. There is a bijection between ST ’s with n + 1 edges and lattice paths ending on
x + y = n using steps (1, 0) and (0, p), where p can be any positive integer.

Proof. Given a ST with n+1 edges, we construct a lattice path from (0, 0) as follows. Read
the edges level by level starting at the top level just below the root. If there are h edges to
the left of the node on the present level, these h edges correspond to h consecutive horizontal
steps; The remaining v edges on the level correspond to a vertical step (0, v). At the bottom
level there are just m edges and no node, these correspond to m − 1 consecutive horizontal
steps.

To recover the ST from a lattice path, we read the lattice path from (0, 0) step by step
until the last vertical step and start a new level of ST right after each vertical step. If there
are h consecutive horizontal steps between the present vertical step and the next vertical
step (0, v), then the new starting level consists of h + v edges and the (h + 1)-th edge is the
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edge leading to the node of the new level. Finally, suppose there are m − 1 horizontal steps
after the last vertical step, then the bottom level of the ST has m edges. In this way, we
eventually obtain a ST with n + 1 edges.
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Figure 1. A ST with 9 edges and its corresponding lattice path.

When d = 2, the first few terms of S2(z) =
∑

n≥0 S2,nz2n are

S2(z) = 1 + z2 + 3z4 + 11z6 + 41z8 + 153z10 + 571z12 + · · · .

There are many interesting properties of this S2,n sequence (see [4, p.292] and
seqnumA001835). For instance, S2,n is the number of ways of packing a 3 × 2(n − 1)
rectangle with dominoes (by David Singmaster A001835); Or equivalently the number of
perfect matchings of the P3 × P2(n−1) lattice graph (by Emeric Deutsch A001835); also
S2,n(n) = S(n − 1, 4) − S(n − 2, 4) where the S(n, x) = U(n, x/2) and the U(n, x) are the
Chebyshev polynomials of the second kind (see A001835), etc.

Here we present a bijection between ST2’s with 2n edges and tilings of a 3 × 2(n − 1)
board with dominoes, horizontal dominoes and vertical dominoes (for an illustration see
Figure 2.). To start, some obvious properties about the tilings of a 3 × 2(n − 1) board with
dominoes are mentioned here.

Proposition 8. There are an even number of vertical dominoes in every tiling. From left to
right where the vertical dominoes are partitioned into consecutive pairs, the vertical dominoes
in a pair are parallel and justified. And the distance between any two consecutive vertical
dominoes is even.

Theorem 9. There is a bijection between ST2’s with 2n edges and tilings of a 3× 2(n− 1)
board with dominoes.

Proof. We will use a standard numbering where the leftmost bottom square is labelled (1, 1)
and the rightmost top square is labelled (2n, 3). The whole 3× 2n board will be denoted by
< (1, 1), (2n, 3) >.

Given a ST2, suppose that level 1 has 2l edges. Number the vertices from 1 to 2l going
from left to right. If the node is vertex 2p− 1, we tile squares (2p− 1, 1) and (2p− 1, 2) with
a red vertical domino and tile the squares (2l, 1) and (2l, 2) with a green vertical domino.
Dually if the node is vertex 2p, we tile the squares (2p − 1, 2) and (2p − 1, 3) with a red

5

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A001835
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A001835
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A001835


vertical domino and tile squares (2l, 2) and (2l, 3) with a green vertical domino. (These rules
are guided by Proposition 8.) In other words, if the node number is odd, we put in the
pair of vertical dominoes on the bottom. If the node number is even, we put in the pair of
vertical dominoes towards the top. We then tile the remainder of the < (1, 1), (2l, 3) >-board
completely with horizontal dominoes. In the same manner, each level (except the bottom
level) of the ST2 corresponds to a closed subboard. At the bottom level, tile the remaining
subboard of the < (1, 1), (2(n−1), 3) >-board completely with horizontal dominoes. If there
is but one pair of vertices on the bottom level, then we add nothing. In each case we obtain
a tiling of the 3 × 2(n − 1) board.

To recover the ST2 from a given tiling, we first color the vertical dominoes alternately
with red and green colors. From Proposition 8, the last vertical domino must be a green
one. Suppose that the subboard ended with the first green vertical domino yields a <
(1, 1), (2l, 3) >-board. If the red vertical domino in this subboard covers squares (2p − 1, 1)
and (2p − 1, 2), then level 1 of the ST2 has 2l edges so that the node is the vertex 2p − 1.
If the red vertical domino in this subboard covers squares (2p − 1, 2) and (2p − 1, 3), then
the node is the vertex 2p. Treat other levels in the same way. If the right hand end of the
board consists of m columns of horizontal dominoes, then the bottom level of the ST2 has
2(m + 1) vertices. This gives us the corresponding ST2.
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Figure 2. An example

Figure 2. shows an example of a ST2 with 2 × 6 edges and its corresponding tiling of a
3 × 2 · (6 − 1) board.

3 Sequences with G0 = 1, G1 = d

In this section, we present parallel results for augmented skinny trees. Since almost all of
the results have same reasoning as the corresponding one in Section 2, we will only give brief
proofs or just comments. Recall that AST denotes augmented skinny tree.

Theorem 10. The generating function for the number of augmented skinny trees in which
the outdegree of each vertex is multiple of d is denoted by Ad(z) and satisfies the equation

Ad(z) =
∑

T∈AST

z#edges of T =
(1 − zd)2

1 − (d + 2)zd + z2d
.
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Proof. We proceed as in the proof of Theorem 1 and consider the outdegree of the root. We
find that

Ad(z) = 1 +
∑

k≥d,d|k
kzkAd(z) = 1 + Ad(z)

dzd

(1 − zd)2
.

Solving for Ad(z) will complete the proof.

Let

Ad (z) =
(1 − zd)2

1 − (d + 2)zd + z2d
=

∑

n≥0

Ad,nznd.

With the same kind of argument as in the constructive proof of Theorem 2, we obtain

Theorem 11. The sequences Ad,n satisfy Ad,n = (d+2)Ad,n−1−Ad,n−2 and Ad,0 = 1, Ad,1 = d.

Taking d = 1, we obtain

Corollary 12. The number of AST ’s with n edges is F2n for n ≥ 1.

Stanley has presented a result similar to Corollary 12 which is attributed to Gessel (see
[2, p.46]). With the same technique as in the proof of Proposition 4, we obtain

Proposition 13. The number of AST ’s with n edges and k (k ≥ 0) nodes is
(

n+k

2k+1

)

.

Summing over 0 ≤ k ≤ n−1, we get the total number of AST ’s with n edges. This leads
to the following corollary [1].

Corollary 14.

F2n =
n−1
∑

k=0

(

n + k

2k + 1

)

, for n ≥ 1.

By similar argument as the proof of Proposition 6, now noting that the augmented leaf
will be subdivided into d − 1 leaves and a new augmented leaf, we obtain the following
proposition.

Proposition 15. The sequences Ad,n satisfy

Ad,n =
n−1
∑

k=0

(

n + k

2k + 1

)

dk+1.

When d = 2, the first few terms of A2(z) are

A2(z) =
∑

n≥0

A2,nz2n = 1 + 2z2 + 8z4 + 30z6 + 112z8 + 418z10 + · · · .

These integers A2,n are those integer solutions of the Diophantine equation 3 ∗ n2 + 4 which
are perfect squares (see A052530). This reduces to a Pells equation m2 − 3n2 = 1 and to
computing An via the relation 2(2 +

√
3)n = An + A2,n. The sequence S2,n of ST2’s is

essentially the sequence An − A2,n.
In the same way, we can obtain the generating functions for (augmented) skinny trees in

which each node and the root have odd outdegree.
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Theorem 16. The generating function for the number of ST ’s where each node and the root
have odd outdegree is (see A105309)

z − z3

z4 − z3 − 2z2 − z + 1
= z + z2 + 2z3 + 5z4 + 9z5 + 20z6 + · · · ,

while the generating function for the number of AST ’s where each node and the root have
odd outdegree is (see A119749)

z + z3

z4 − z3 − 2z2 − z + 1
= z + z2 + 4z3 + 7z4 + 15z5 + 32z6 + · · · .

4 Average height of skinny trees

Another question we can ask is what is the average height of AST ’s with n edges (The result
for ST ’s is similar). Let

H(z) =
∑

#edges of T=n

Hnz
n

denote the total height generating function where Hn is the sum of all heights over all AST ’s
with n edges.

Proposition 17. The generating function for the total height of AST ’s is (see A030267)

H(z) =
z(1 − z)2

(1 − 3z + z2)2
= z + 4z2 + 14z3 + 46z4 + 145z5 + 444z6 + · · · .

Proof. First we observe that the generating function for total height of AST ’s of height k is

k

(

z

(1 − z)2

)k

,

since these trees can be decomposed into k small AST ’s. Set y = z
(1−z)2

. Summing over

k ≥ 1, we obtain H(z),

H(z) =
∑

k≥1

kyk = y
d

dy

(

y

1 − y

)

=
y

(1 − y)2
.

So

H(z) =
z(1 − z)2

(1 − 3z + z2)2
.

Theorem 18. The average height of AST ’s with n edges approaches n√
5
.
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Proof. From Proposition 17, we obtain that the total height of AST ’s with n edges is

Hn =
2nF2n+1 + (2 − n)F2n

5
.

Since the average height is Hn

F2n

and F2n+1

F2n

∼ 1+
√

5
2

, we have

Hn

F2n

∼ 2n

5
· 1 +

√
5

2
+

2 − n

5
∼ n√

5
.

It follows that the average height approaches n√
5
.

For ST ’s, we find that the generating function for the total height is

h (z) =
∞

∑

n=0

hnz
n =

z (1 − z)3

(1 − 3z + z2)2 = z + 3z2 + 10z3 + 32z4 + 99z5 + 299z6 + · · · .

We have hn = Hn −Hn−1 and hn =
∑n

k=1 k
(

n+k−2
2k−2

)

(see A038731). So the average height for
ST ’s approaches the same limit,

hn

F2n−1

=
(n + 4)F2n−1 + (2n − 1)F2n−2

5F2n−1

∼ n√
5
.

Remarks. Actually, the sequences Gn with other different initial conditions also have
analogous interpretation. For instance, the sequences Gn with G0 = 1, G1 = d + 2 count
augmented skinny trees STd’s except that we number the bottom row from 1 to kd and the
marked leaf must have a number congruent to 1 modulo d.
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