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Abstract

For bases b ≤ 5 and exponents e ≥ 2, there exist arbitrarily long finite sequences of
d-consecutive e-power b-happy numbers for a specific d = d(e, b), which is shown to be
minimal possible.

1 Introduction

A positive integer a is a happy number if taking the sum of the squares of its digits and
repeating the process iteratively leads to the number one. (See A000108 in [7].) Generaliza-
tions of happy numbers, suggested by Richard Guy [6], have been formalized and studied by
the present authors [2, 3, 4, 5].

Define Se,b : Z
+ → Z

+, for e ≥ 2, b ≥ 2, and 0 ≤ ai ≤ b − 1, by

Se,b

(

n
∑

i=0

aib
i

)

=
n

∑

i=0

ae
i .

If Sm
e,b(a) = 1 for some m ≥ 0, we say that a is an e-power b-happy number.
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Guy [6] asked for the maximal lengths of strings of consecutive happy numbers. El-Sedy
and Siksek [1] showed that there exist arbitrarily long finite sequences of consecutive happy
numbers (i.e., 2-power 10-happy numbers). The present authors proved more general results
for sequences of consecutive e-power b-happy numbers for e = 2 and 3 [3] and for e = 5 [2].
To describe the relevant results, we need an additional definition.

For d ∈ Z
+, define a d-consecutive sequence to be an arithmetic sequence with constant

difference d. In many cases, it is straight-forward to prove that for fixed values of e and b,
all e-power b-happy numbers are congruent to some fixed value modulo d. So the most that
can be hoped for is a d-consecutive sequence of these numbers.

Specifically, we have that for any b, letting d = gcd(2, b − 1), there exist arbitrarily
long finite d-consecutive sequences of 2-power b-happy numbers [3]. For 2 ≤ b ≤ 13 and
d = gcd(6, b − 1), there exist arbitrarily long finite d-consecutive sequences of 3-power b-
happy numbers [3]. And, for 2 ≤ b ≤ 10 and d = gcd(30, b − 1), there exist arbitrarily long
finite sequences of d-consecutive 5-power b-happy numbers [2]. In each of these cases, d is
known to be as small as possible.

In this paper, we consider conditions for the existence of sequences of e-power b-happy
numbers where, instead of fixing the exponent, we fix the base. Restricting to values of
b ≤ 5, we present new results that hold for all exponents e. In the following section, we
present key technical definitions and the main results of the paper. In the final section, we
prove these results.

2 Main Results

In this section we study the existence of sequences of consecutive e-power b-happy numbers
with b ≤ 5.

First note that for each e ≥ 2, every positive integer is e-power 2-happy. Hence, trivially,
there exist arbitrarily long sequences of consecutive e-power 2-happy numbers. We now
consider bases 3, 4, and 5.

The following lemma and corollary provide that for bases 3 and 5, the best we can
achieve is 2-consecutive sequences and for base 4 with odd power, 3-consecutive sequences.
The proofs are straight-forward.

Lemma 2.1. Let e ≥ 2. For any m ∈ Z
+,

Sm
e,3(x) ≡ x (mod 2) and Sm

e,5(x) ≡ x (mod 2).

Further, for e odd,

Sm
e,4(x) ≡ x (mod 3).

Corollary 2.1. For e ≥ 2, all e-power 3-happy numbers are congruent to 1 modulo 2 and all

e-power 5-happy numbers are congruent to 1 modulo 2. For odd e ≥ 2, all e-power 4-happy
numbers are congruent to 1 modulo 3.

We now recall some needed definitions and two lemmas proved previously [3]. Fix e ≥ 2
and b ≥ 2. Let Ue,b denote the union of all cycles (including fixed points) of the function
Se,b,

Ue,b = {a ∈ Z
+| for some m ∈ Z

+, Sm
e,b(a) = a}.
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A finite set T is (e, b)-good if, for each u ∈ Ue,b, there exist n, k ∈ Z
+ such that for all t ∈ T ,

Sk
e,b(t + n) = u.

Lemma 2.2. Fix e, b ≥ 2. If T = {t} ⊆ Z
+, then T is (e, b)-good.

Let I : Z
+ → Z

+ be defined by I(t) = t + 1.

Lemma 2.3. Fix e, b ≥ 2. Let F : Z
+ → Z

+ be the composition of a finite sequence of the

functions Se,b and I. If F (T ) is (e, b)-good, then T is (e, b)-good.

We can now state our main results including giving necessary and sufficient conditions
for the existence of arbitrarily long finite sequences of e-power b-happy numbers, for b = 3,
4, or 5. We prove these results in Section 3 using methods generalizing those used in earlier
works [2, 3].

First we have that, without any restriction on e, there exist arbitrarily long finite se-
quences of 2-consecutive e-power 3-happy numbers.

Theorem 2.1. Let T be a finite set of positive integers. Given any e ≥ 2, T is (e, 3)-good
if and only if the elements of T are congruent modulo 2.

Corollary 2.2. For each e ≥ 2, there exist arbitrarily long finite sequences of 2-consecutive

e-power 3-happy numbers.

For base 4, there exist arbitrarily long finite sequences of d-consecutive e-power 4-happy
numbers, where d depends on the parity of e.

Theorem 2.2. Let T be a finite set of positive integers, and let e ≥ 2. For e even, T is

(e, 4)-good. For e odd, T is (e, 4)-good if and only if the elements of T are congruent modulo

3.

Corollary 2.3. For each even e ≥ 2, there exist arbitrarily long finite sequences of e-power

4-happy numbers.

For each odd e ≥ 2, there exist arbitrarily long finite sequences of 3-consecutive e-power

4-happy numbers.

And finally, for base 5, we have that, independent of the value of e, there exist arbitrarily
long finite sequences of 2-consecutive e-power 5-happy numbers.

Theorem 2.3. Let T be a finite set of positive integers. Given any e ≥ 2, T is (e, 5)-good
if and only if the elements of T are congruent modulo 2.

Corollary 2.4. For each e ≥ 2, there exist arbitrarily long finite sequences of 2-consecutive

e-power 5-happy numbers.
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3 Proofs of Main Theorems

In this section we prove Theorems 2.1, 2.2, and 2.3.

Proof of Theorem 2.1. If T is (e, 3)-good, then it follows from Lemma 2.1 that the elements
of T are congruent modulo 2.

For the converse, let T be a finite set of positive integers all of which are congruent
modulo 2. If T is empty, then vacuously it is (e, 3)-good and if T has exactly one element,
then, by Lemma 2.2, T is (e, 3)-good.

Fix N > 1 and assume that any set of fewer than N elements all of which are congruent
modulo 2 is (e, 3)-good. Suppose T has exactly N elements and let t1 > t2 ∈ T .

Let v = t1−t2
2

. Since t1 ≡ t2 (mod 2), v ∈ Z. Fix r ∈ Z
+ so that 3r > 3t1 and let

m = 3r + v − t2 > 0. Then

Im(t1) = t1 + 3r + v − t2 = 3r + 3v

and
Im(t2) = t2 + 3r + v − t2 = 3r + v.

Since 3r > 3v, it follows that Im(t1) and Im(t2) have the same non-zero digits in base 3.
Hence, Se,3I

m(t1) = Se,3I
m(t2). Thus the number of elements in Se,3(I

m(T )) is less than the
number of elements in T . Since the elements of Se,3(I

m(T )) are all congruent modulo 2, by
assumption, Se,3(I

m(T )) is (e,3)-good. Hence, by Lemma 2.3, T is (e,3)-good, as desired.

Now we turn to the base 4 case.

Proof of Theorem 2.2. If e is odd and T is (e, 4)-good, then it follows from Lemma 2.1 that
the elements of T are congruent modulo 3.

For the converse, let T be a finite set of positive integers and if e is odd, assume that
all of the elements of T are congruent modulo 3. As in the proof of Theorem 2.1, if T is
empty or has exactly one element, it is (e, 4)-good. Fix N > 1. If e is even, assume that
any set of fewer than N elements is (e, 4)-good and if e is odd, assume that any set of fewer
than N elements all of which are congruent modulo 3 is (e, 4)-good. Suppose T has exactly
N elements. To complete the proof, it suffices to prove that there exists a function F as in
Lemma 2.3 such that for some t1 > t2 ∈ T , F (t1) = F (t2).

Suppose that e is even and let t1 > t2 ∈ T . We will show that there exists an n ∈ Z
+

such that Se,4I
n(t1) ≡ Se,4I

n(t2) (mod 3). Let g : {0, 1, 2} → {0, 1, 2} be defined by g(x) ≡
xe−(x+1)e (mod 3) and notice that since e is even, g is surjective. Choose c ∈ {0, 1, 2} such
that g(c) ≡ Se,4(t1 − t2 − 1) (mod 3). (If t1 − t2 − 1 = 0, choose c so that g(c) ≡ 0 (mod 3).)
Fix s ∈ Z

+ so that 4s−1 > t1 and let n = (c + 1)4s − t2 − 1. Then

In(t2) = (c + 1)4s − 1 = c4s +
s−1
∑

i=0

3 · 4i

and so Se,4I
n(t2) ≡ ce (mod 3). On the other hand,

In(t1) = (c + 1)4s + t1 − t2 − 1
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and so Se,4I
n(t1) ≡ (c + 1)e + Se,4(t1 − t2 − 1) ≡ ce ≡ Se,4I

n(t2) (mod 3). By Lemma 2.3, to
prove that T is (e, 4)-good, it suffices to prove that Se,4I

n(T ) is (e, 4)-good. Hence we may
assume without loss of generality that T contains t1 > t2 ∈ T with t1 ≡ t2 (mod 3).

So now letting e be any value (even or odd), let t1 > t2 ∈ T with t1 ≡ t2 (mod 3).
(By assumption, this is always the case if e is odd.) Then, paralleling the proof of 2.1, let
v = t1−t2

3
∈ Z. Fix r ∈ Z

+ so that 4r > 4t1 and let m = 4r+v−t2 > 0. Then Im(t1) = 4r+4v
and Im(t2) = 4r + v. It follows that Im(t1) and Im(t2) have the same non-zero digits and so
Se,4I

m(t1) = Se,4I
m(t2).

Finally, for the base 5 case, the proof is essentially the same, so we indicate only the
primary steps.

Proof of Theorem 2.3. It is easy to see that if T is (e, 5)-good, then the elements of T are
congruent modulo 2.

Again, using induction, let T have exactly N elements, all of which are congruent modulo
2. Let t1 > t2 ∈ T .

First suppose that u = t1− t2 ≡ 2 (mod 4). Let g : {0, 1, 2, 3} → {0, 1, 2, 3} be defined by
g(x) ≡ xe − (x + 1)e (mod 4) and note that g(0) = −1 and g(1) = 1. Choose c ∈ {0, 1, 2, 3}
such that g(c) ≡ Se,5(u−1) (mod 4). Fix s ∈ Z

+ so that 5s−1 > t1 and let n = (c+1)5s−t2−1.
Then Se,5I

n(t2) ≡ ce (mod 4) and Se,5I
n(t1) ≡ (c + 1)e + Se,5(u − 1) ≡ Se,5I

n(t2) (mod 4).
Hence we may assume without loss of generality that T contains t1 > t2 ∈ T with t1 ≡
t2 (mod 4).

Assuming, then that t1 ≡ t2 (mod 4), let v = t1−t2
4

∈ Z. Fix r ∈ Z
+ so that 5r > 5t1 and

let m = 5r + v − t2 > 0. Then Im(t1) = 5r + 5v and Im(t2) = 5r + v, implying that they
have the same non-zero digits. Hence Se,5I

m(t1) = Se,5I
m(t2), as desired.
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