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Abstract

Using an idea of Erdős, Sierpiński proved that there exist infinitely many odd

positive integers k such that k · 2n + 1 is composite for all positive integers n. In this

paper we give a brief discussion of Sierpiński’s theorem and some variations that have

been examined, including the work of Riesel, Brier, Chen, and most recently, Filaseta,

Finch and Kozek. The majority of the paper is devoted to the presentation of some

new results concerning our own variations of Sierpiński’s original theorem.

1 Introduction

In 1960, using an idea of Erdős, Sierpiński [15] proved that there exist infinitely many odd
positive integers k such that k · 2n + 1 is composite for all positive integers n. Such values of
k are called Sierpiński numbers. The smallest such integer produced by Sierpiński’s method
is k = 15511380746462593381. In 1962, however, John Selfridge proved that the value
k = 78557 has the property that k ·2n+1 is composite for all positive integers n. The problem
of determining the smallest such value of k is known as Sierpiński’s Problem. Selfridge
conjectured that k = 78557 is indeed the smallest such value of k. To establish this claim,
one needs to show that for each positive integer k < 78557, there exists a positive integer n
such that k ·2n +1 is prime. Currently, there remain only eight unresolved cases: k = 10223,
19249, 21181, 22699, 24737, 33661, 55459, and 67607. For the most recent progress on
this problem, we refer the interested reader to the distributed computing project known as
Seventeen or Bust, which can be found at the website www.seventeenorbust.com. The name
of this project indicates that when it was started, only 17 values of k were unresolved.

1

mailto:lkjone@ship.edu


In 1956, four years prior to Sierpiński’s original paper, Riesel [12] proved that there
are infinitely many odd positive integers k such that k · 2n − 1 is composite for all positive
integers n. Such values of k are called Riesel numbers, and the problem of finding the smallest
Riesel number is known as Riesel’s Problem. To date, the smallest known Riesel number
is k = 509203. Although Riesel and Sierpiński used the same methods, and Riesel’s result
predates Sierpiński’s, it is curious that the result of Riesel did not originally garner as much
focus as Sierpiński’s theorem. This is conceivably due, in part, to the fact that Selfridge
popularized Sierpiński’s problem by taking an active role in its solution. A related problem,
due to Brier, is to determine the smallest odd positive integer k such that both k · 2n + 1
and k · 2n − 1 are composite for all positive integers n. Currently, the smallest known Brier
number is k = 143665583045350793098657, which was found recently by Filaseta, Finch and
Kozek [9]. Both the problems of Riesel and Brier now have dedicated enthusiasts in pursuit
of their solutions. More recently, some modifications of the theorems of Sierpiński and Riesel
have been investigated by Chen [4, 5, 6, 7], and Filaseta, Finch and Kozek [9]. These recent
results also show that the set of all values of k for which each term of the sequence contains
at least m distinct prime divisors, for certain fixed integers m ≥ 2, contains an infinite
arithmetic progression or contains a subset that can be obtained from an infinite arithmetic
progression.

The main purpose of this paper is to present some results concerning new variations of
Sierpiński’s theorem. In particular, our main result, Theorem 4.12, provides a true general-
ization of Sierpiński’s original theorem. A by-product of the proof is that the sets of values
of k that are produced all contain an infinite arithmetic progression. We are not concerned
here in any case with determining the smallest such value of k, although in certain situations
this can be done quite easily.

2 Definitions and Preliminaries

In this section we present some definitions and results which are used in the sequel.

Definition 2.1. For any sequence {sn}
∞

n=1 of positive integers, we call a prime divisor q of
the term sn a primitive prime divisor of sn, if q does not divide sm for any m < n.

Remark. A term sn can have more than one primitive prime divisor, or none at all. See
Theorem 2.2 and Theorem 4.9.

The following result is originally due to Bang [1].

Theorem 2.2. Let a and n be positive integers with a ≥ 2. Then an − 1 has a primitive
prime divisor with the following exceptions:

• a = 2 and n = 6

• a + 1 is a power of 2 and n = 2.

Many other proofs of Theorem 2.2 and its generalizations have been published. Two of
the most well-known papers are due to Zsigmondy [16], and Birkhoff and Vandiver [3]. More
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recently, along these lines, Bilu, Hanrot and Voutier [2] have settled completely the question
of primitive prime divisors in Lucas and Lehmer sequences by showing that, for all n > 30,
the n–th term of any Lucas or Lehmer sequence has a primitive prime divisor.

The following concept is due to Erdős.

Definition 2.3. A finite covering is a finite system of congruences x ≡ ai (mod mi), with
1 ≤ i ≤ t, such that every integer satisfies at least one of the congruences.

Note that we simply use the word “covering” here to indicate a finite covering, since we
are not concerned with infinite coverings. An example of a covering in which the modulii
are not distinct is given below.

Example 2.4.

x ≡ 0 (mod 2)
x ≡ 1 (mod 4)
x ≡ 3 (mod 4)

The following example is a covering with distinct modulii.

Example 2.5.

x ≡ 0 (mod 2)
x ≡ 0 (mod 3)
x ≡ 0 (mod 5)
x ≡ 1 (mod 6)
x ≡ 0 (mod 7)
x ≡ 1 (mod 10)
x ≡ 1 (mod 14)
x ≡ 2 (mod 15)
x ≡ 2 (mod 21)
x ≡ 23 (mod 30)
x ≡ 4 (mod 35)
x ≡ 5 (mod 42)
x ≡ 59 (mod 70)
x ≡ 104 (mod 105)

There are still many unsolved problems regarding coverings. Two of the most famous
open questions are the following: [10]

1. Does there exist a covering in which all moduli are odd, distinct and greater than one?

2. Can the minimum modulus in a covering with distinct moduli be arbitrarily large?

Question 2. was first posed by Erdős [8], and he offers posthumously $1000 for a solution.
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3 Sierpiński’s Theorem

To illustrate a basic technique used in this paper, we present a proof of the original theorem
of Sierpiński [15] from 1960, stated below as Theorem 3.1.

Theorem 3.1. There exist infinitely many odd positive integers k such that k · 2n + 1 is
composite for all positive integers n.

Proof. Consider the following covering n ≡ ai (mod mi):

i 1 2 3 4 5 6 7
ai 1 2 4 8 16 32 0
mi 2 4 8 16 32 64 64.

For each i, when n ≡ ai (mod mi) and k ≡ bi (mod pi) (from below),

i 1 2 3 4 5 6 7
bi 1 1 1 1 1 1 −1
pi 3 5 17 257 65537 641 6700417,

it is easy to check that k · 2n + 1 is divisible by pi. Now, apply the Chinese Remainder
Theorem to the system k ≡ bi (mod pi). Then, for any such solution k, each k · 2n + 1 is
divisible by at least one prime from the set C = {3, 5, 17, 257, 641, 65537, 6700417}.

Remarks.

• The set C in the proof of Theorem 3.1 is called a covering set associated with the
covering.

• Observe that a consequence of the method of proof of Theorem 3.1 is that the set of
all odd positive integers k such that k · 2n + 1 is composite for all positive integers n
contains an infinite arithmetic progression.

While the proof of Theorem 3.1 is straightforward, the choice of the covering is the crucial
and delicate step. What makes this particular covering useful is the fact that the Fermat
number 225

+ 1 has two distinct prime divisors. A priori, it is conceivable that there are
other coverings that could be used to prove Theorem 3.1. In fact, Selfridge produced the
smaller value k = 78557 by using the covering:

n ≡ 0 (mod 2)
n ≡ 1 (mod 4)
n ≡ 3 (mod 36)
n ≡ 15 (mod 36)
n ≡ 27 (mod 36)
n ≡ 7 (mod 12)
n ≡ 11 (mod 12)

and associated covering set {3, 5, 7, 13, 19, 37, 73} .
The following questions come to mind upon examining the proof of Theorem 3.1.
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• From among the coverings that can be used to prove Theorem 3.1, which covering
produces the smallest value of k?
As mentioned in Section 1, Selfridge conjectured that k = 78557 is the smallest value
of k such that k · 2n + 1 is composite for all positive integers n. This problem is still
unsolved.

• Is it possible to prove Theorem 3.1, and perhaps produce a value of k smaller than
k = 78557, using a method that does not involve a covering set?
For example, in Section 4.2, a covering set is not needed to prove Theorem 4.2.

• Are there Sierpiński-like problems that cannot be solved using coverings?
Erdős [10] conjectured that all sequences of the form d·2n+1, with d fixed and odd, that
contain no primes, can be obtained from coverings. There is evidence [11], however, to
suggest that this conjecture might not be true.

4 Variations of Sierpiński’s Theorem

4.1 Some Recent Variations

Certain variations of Theorem 3.1 have been concerned with the number of distinct prime
divisors that can occur in the factorization of k · 2n + 1. In particular, if m ≥ 2 is some fixed
integer, does there exist a set of odd positive integers k that contains an infinite arithmetic
progression such that, for each k, the integer k · 2n + 1 has at least m distinct prime divisors
for all positive integers n? In 2001, Chen [6] answered this question in the affirmative for
m = 3.

Chen [7] also proved the following theorem in 2003.

Theorem 4.1. Let r be a positive integer with r 6≡ 0, 4, 6, 8 (mod 12). Then the set of odd
positive integers k such that kr2n + 1 has at least two distinct prime divisors for all positive
integers n contains an infinite arithmetic progression.

Because of the presence of the exponent r, we can think of Theorem 4.1 as a nonlinear
variation of Sierpiński’s original theorem. Nevertheless, coverings still play a crucial role in
the proof, although other techniques are also employed by Chen. Recently, the restrictions
on r in Theorem 4.1 have been overcome by Filaseta, Finch and Kozek [9]. Again, while
coverings are used in their proof, additional methods are utilized. Chen’s paper [7] also
contains an analogous result for integers of the form kr − 2n with the same restrictions on r.
In this situation however, the recent work of Filaseta, Finch and Kozek [9] disposes of only
the cases when r = 4 or r = 6.

4.2 Some New Variations

We first present a theorem that deviates somewhat from previous investigations in the sense
that here the “multiplier” k is fixed. The proof uses a covering and an algebraic factorization,
rather than an associated covering set. A similar approach was employed by Izotov [11] to
give a different proof of Theorem 3.1.
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Theorem 4.2. Let k ≥ 2 be a fixed integer and let f(x) ∈ Z[x] be a polynomial with positive
leading coefficient such that f(−1) ≥ 2. Then the set of all positive integers b such that
kf(b)bn+1 is composite for all positive integers n contains an infinite arithmetic progression.

Proof. For any positive integer c, let b = c(k2f(−1)2 − 1)− 1. Then, when n is odd, we have

kf(b)bn + 1 ≡ kf(−1)(−1)n + 1 ≡ 0 (mod kf(−1) − 1);

and when n is even, we have

kf(b)bn + 1 ≡ kf(−1)(−1)n + 1 ≡ 0 (mod kf(−1) + 1).

Since f(x) has a positive leading coefficient, there exists N such that kf(b)b+1 > kf(−1)+1
for all c > N , eliminating the possibility that kf(b)bn + 1 is prime for any positive integer
n.

The following corollary is immediate from Dirichlet’s theorem on primes in an arithmetic
progression.

Corollary 4.3. Assume the hypotheses of Theorem 4.2. Then there exist infinitely many
prime numbers p such that kf(p)pn + 1 is composite for all positive integers n.

If certain further restrictions are imposed on the polynomial f(x) in Theorem 4.2, a
lower bound can be placed on the number of prime divisors of each term in the sequence of
Theorem 4.2. More precisely, we have the following:

Theorem 4.4. In addition to the hypotheses of Theorem 4.2, let m ≥ 2 be a fixed integer
and let z be an odd positive integer such that the number of divisors of z is m + 1. If
f(−1) = kz−1, then the set of all positive integers b such that kf(b)bn + 1 has at least m
distinct prime divisors for all positive integers n contains an infinite arithmetic progression.

Proof. Since m ≥ 2, we have that z > 2. Then, by Theorem 2.2, kf(−1) − 1 = kz − 1
has at least m distinct prime divisors. Thus, when n is odd, kf(b)bn + 1 has at least m
distinct prime divisors since, from the proof of Theorem 4.2, we have that kf(−1) − 1
divides kf(b)bn + 1. Also, by Theorem 2.2, k2z − 1 has at least m distinct prime divisors.
Consequently, kf(−1)+1 = kz +1 has at least m distinct prime divisors. Therefore, when n
is even, kf(b)bn + 1 has at least m distinct prime divisors since, from the proof of Theorem
4.2, we have that kf(−1) + 1 divides kf(b)bn + 1.

As before, we have the following corollary immediately from Dirichlet’s theorem.

Corollary 4.5. Assume the hypotheses of Theorem 4.4. Then there exist infinitely many
prime numbers p such that kf(p)pn + 1 has at least m distinct prime divisors for all positive
integers n.

While Theorem 4.2 is interesting, it does not generalize Theorem 3.1. The following
conjecture, however, is a natural generalization of Theorem 3.1.
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Conjecture 4.6. Let a,m ≥ 2 be fixed integers. For any positive integer n, define

bn := a(m−1)n + a(m−2)n + · · · + an.

Then the set of all positive integers k such that kbn + 1 is composite for all positive integers
n contains an infinite arithmetic progression.

Remark. Note that a = m = 2 in Conjecture 4.6 is Sierpiński’s original result, Theorem
3.1.

It was our hope to find a proof of Conjecture 4.6. Unfortunately, known general techniques
seem to fall short of achieving this goal. In particular, the major stumbling block seems to
be that little is known concerning the number of primitive prime divisors in sequences whose
terms are of the form am − 1. Despite this lack of additional insight, we are able to prove
Conjecture 4.6 in many situations (see Theorem 4.12).

We digress now for a brief discussion about the number of primitive prime divisors in
sequences whose terms are of the form am − 1, by first stating Conjecture 4.7, whose truth
is adequate to supply a proof of Conjecture 4.6, which is given at the end of this section.

Conjecture 4.7. Let a ≥ 2 be an integer and let p be a prime. Then there exists a positive
integer t such that apt

− 1 has at least two distinct primitive prime divisors. Equivalently,
there exists a positive integer z such that

(

apz

− 1
)

/ (a − 1) has at least z + 1 distinct prime
divisors.

The best known result in the direction of Conjecture 4.7 is given below as Theorem 4.9,
which is a special case of a theorem of Schinzel [13]. We need the following definition.

Definition 4.8. For any integer a, we define the square-free kernel of a, denoted K(a), to
be a divided by its largest square factor.

Theorem 4.9. Let a ≥ 2 and m ≥ 3 be integers. Let e = 1 if K(a) ≡ 1 (mod 4), and let
e = 2 if K(a) ≡ 2, 3 (mod 4). If m/ (eK(a)) is an odd integer, then am − 1 has at least two
distinct primitive prime divisors, with the following exceptions:

a = 2, m ∈ {4, 12, 20}
a = 3, m = 6
a = 4, m = 3.

The following conjecture is related to Conjecture 4.7.

Conjecture 4.10. Let a ≥ 2 be a positive integer and let p be a prime. Let Φp(x) denote the
p–th cyclotomic polynomial. Then there exists a positive integer t such that Φp(a

pt−1

) has at
least two distinct prime divisors.

Since apt

− 1 =
(

apt−1

− 1
)

Φp

(

apt−1

)

, it follows from Theorem 2.2 that, when a 6≡ 1

(mod p), Conjecture 4.10 is equivalent to Conjecture 4.7. Along these lines, for p 6= 3, a
result of Schinzel and Tijdeman [14] implies that there are at most finitely many triples
(x, y,m) of integers, with x ≥ 1 and y,m ≥ 2, such that Φp(x) = ym. Consequently, if
Conjecture 4.10 is not true, then Φp(a

pt−1

) is prime for all sufficiently large t, which seems
quite implausible. Computer evidence suggests that, most likely, the following somewhat
stronger statement is true.
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Conjecture 4.11. Let a ≥ 2 be a positive integer. Then Φp(a
p2

) has at least two distinct
prime divisors for all sufficiently large primes p.

We turn now to our main result stated below as Theorem 4.12.

Theorem 4.12. Let a,m ≥ 2 be fixed integers. For any positive integer n, define

bn := a(m−1)n + a(m−2)n + · · · + an.

Then the set of all positive integers k such that kbn +1 is composite for all positive integers n
contains an infinite arithmetic progression, with the possible exception of the situation when
m and a satisfy the following conditions:

• m is a prime such that m ≡ 1 (mod 12) and m ≡ 1 (mod q) for all prime divisors q
of a − 1,

• a is not of the form c2 or mc2 for some integer c ≥ 2.

We restate Theorem 4.12 in a less succinct manner since the proof is organized according
to the cases indicated in the restatement.

Theorem 4.12. (Restated)Let a,m ≥ 2 be fixed integers. For any positive integer n, define

bn := a(m−1)n + a(m−2)n + · · · + an.

Then, in each of the following cases, the set of all positive integers k such that kbn + 1 is
composite for all positive integers n contains an infinite arithmetic progression:

1. There is a prime q that divides a − 1 but does not divide m − 1

2. m is composite

3. m = 2

4. m is an odd prime with m 6≡ 1 (mod 12)

5. m/ (eK(a)) is an odd integer, where K(a), e, m and a are as given in Definition 4.8
and Theorem 4.9.

The approach we use to prove Theorem 4.12 is, for the most part, a straightforward
modification of Sierpiński’s original method. For each case, we start by choosing a covering.
We choose a corresponding covering set of primes to impose various congruence conditions
on k to guarantee the proper divisibility of each of the terms kbn + 1 by some prime in
the covering set. Then we apply the Chinese Remainder Theorem to the set of congruence
conditions on k to find the values of k that satisfy all conditions simultaneously. The tricky
steps, as always in this process, are choosing the appropriate covering and corresponding
covering set. While the techniques used in the proof of each case are similar, we provide
most of the details in each situation. We point out that no attempt is made, at this time,
to choose the covering or the covering set in any optimal manner. As previously mentioned,
Sierpiński’s original theorem is the special case of a = m = 2 in Theorem 4.12.
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Note that the parts in Theorem 4.12, as they are presented in the restated version, are
not mutually exclusive. For example, part (3) is just a combination of a special case of part
(1) and Theorem 3.1. We list this m = 2 case separately in the attempt to categorize the
cases according to whether m is prime or not. Although there is some overlap among the
parts in Theorem 4.12, no part is a subset of any other. For example, the case a = 6, m = 13
is handled in part (1) and no other, while the case a = 4, m = 13 is addressed in part (5)
and no other. Note also that, if a is odd and m is even in Theorem 4.12, then kbn + 1 is
even for any odd positive integer k, and the theorem is trivially true. Since most of the
arguments given in the proof of Theorem 4.12 are general enough, it is often not necessary
to distinguish the trivial situations from the nontrivial situations. The drawback to this
more general approach, however, is that sometimes in the trivial situations we are providing
an unnecessarily complicated or inefficient proof. Nevertheless, we have chosen the more
general path rather than deciding in every case which situations qualify as truly trivial.

We need the following lemma for the proof of Theorem 4.12.

Lemma 4.13. Let a ≥ 2 be an integer, and let m ≥ 6 be a composite integer. Then there
exists a prime q such that all of the following hold:

• q divides am − 1

• q is not a primitive divisor of am − 1

• q does not divide m − 1.

Proof. First suppose that m is not the square of a prime. Write m = xy with 1 < x < y < m
and y 6= 6. Note that y > 2, so that ay − 1 has a primitive prime divisor q. Then q divides
am − 1 but is not a primitive prime divisor of am − 1. Since q is a primitive prime divisor of
ay − 1, we have that q− 1 = zy = zm/x for some positive integer z. If q divides m− 1, then
m − 1 = wq for some positive integer w. Combining these facts gives

m − 1 = w
(zm

x
+ 1

)

, (1)

which implies that w < x, or equivalently w + 1 < x + 1. Rearranging (1) yields

y(x − wz) =
m

x
(x − wz) = w + 1,

so that y ≤ w + 1. Therefore, it follows that y < x + 1, contradicting the fact that x < y.
Now suppose that m = p2 for some prime p ≥ 3. Let q be a primitive prime divisor of

ap − 1. Then q divides ap2

− 1 but is not a primitive prime divisor of ap2

− 1. Suppose that
q divides p2 − 1. Since q is a primitive prime divisor of ap − 1, we have that p divides q − 1,
and so p < q. Then, since q divides p2 − 1 = (p − 1)(p + 1), it follows that q = p + 1, which
is impossible since p ≥ 3.

Proof of Theorem 4.12. The proof of part (1) is trivial since, if there exists a prime q that
divides a − 1 but does not divide m − 1, then, for any k ≡ −1/(m − 1) (mod q), we have
that kbn + 1 ≡ 0 (mod q) for all n. Also, note that

kbn + 1 = k(a(m−1)n + · · · + an) + 1 ≥ kan + 1 ≥ a + 1 > q,
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so that no term kbn + 1 is actually equal to the prime q.
To prove part (2), consider first the case when m ≥ 6, and write m = xy with 1 <

x < y < m and y 6= 6. For now, we exclude the particular case of a = 2 and m = 6.
Let q be a primitive prime divisor of ay − 1, which exists since y > 2 and y 6= 6. Let r
be a primitive prime divisor of am − 1, which exists since m > 2 and a 6= 2 when m = 6.
We use the covering n ≡ 0, 1, 2, . . . ,m − 1 (mod m). When n ≡ 1, 2, . . . ,m − 1 (mod m),
we have that an−1 6≡ 0 (mod r), since r is a primitive prime divisor of am−1. Consequently,

bn + 1 =
(an)m − 1

an − 1

=
(am)n − 1

an − 1

=
(am − 1)

(

(am)n−1 + · · · + 1
)

an − 1

≡ 0 (mod r).

Therefore, if k ≡ 1 (mod r), it follows that kbn + 1 ≡ 0 (mod r). Also, since

b1 + 1 =
axy − 1

a − 1
=

(ay − 1)
(

ay(x−1) + · · · + 1
)

a − 1
≡ 0 (mod q),

we see that
kbn + 1 ≥ bn + 1 ≥ b1 + 1 ≥ qr > r,

and so kbn +1 is never equal to the prime r. When n ≡ 0 (mod m), we have that bn ≡ m−1
(mod q). From the proof of Lemma 4.13, m − 1 6≡ 0 (mod q). Hence, kbn + 1 ≡ 0 (mod q)
if k ≡ −1/(m − 1) (mod q). Also, since bn > ay − 1 ≥ q, the term kbn + 1 is never equal to
the prime q. Now apply the Chinese Remainder Theorem to the system of congruences

k ≡ 1 (mod r)
k ≡ −1/(m − 1) (mod q)

to finish the proof of the theorem for composite m ≥ 6, with the exception of the case a = 2
and m = 6. For this particular case, we have that bn + 1 = 26n − 1 ≡ 0 (mod 3) and bn > 3
for all n. Hence, if k ≡ 1 (mod 3), then kbn + 1 ≡ 0 (mod 3), and is never equal to 3, for
all n.

Suppose now that m = 4. As mentioned in the discussion prior to Lemma 4.13, the
theorem is trivially true if a is odd, so we assume that a is even. For a ≥ 4, we use the
covering n ≡ 0, 1, 2, 3 (mod 4). Let r be a primitive prime divisor of a4 − 1. If a ≡ 4
(mod 6), let q be a primitive prime divisor of a2 − 1, which exists since a + 1 is not a power
of 2. Note that q 6= 3 since 3 divides a− 1. If a ≡ 0, 2 (mod 6), let q be any prime divisor of
a−1. Observe that q 6= 3 here as well. Thus, when n ≡ 1, 2, 3 (mod 4), we see that bn ≡ −1
(mod r), and consequently, kbn + 1 ≡ 0 (mod r) if k ≡ 1 (mod r). Also, since

kbn + 1 > ka2n + 1 ≥ a2 + 1 ≥ r,
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it follows that kbn + 1 is never equal to the prime r. When n ≡ 0 (mod 4), we have that
bn ≡ 3 (mod q), and therefore kbn + 1 ≡ 0 (mod q) if k ≡ −1/3 (mod q). As above, it is
easy to see that kbn + 1 is never equal to the prime q. Then apply the Chinese Remainder
Theorem to the system of congruences

k ≡ 1 (mod r)
k ≡ −1/3 (mod q).

For the case a = 2, we use the covering

n ≡ 1, 2, 3 (mod 4)
n ≡ 0 (mod 8)
n ≡ 4 (mod 16)
n ≡ 12 (mod 32)
n ≡ 28 (mod 64)
n ≡ 60 (mod 64)

and the corresponding covering set {5, 17, 257, 65537, 641, 6700417}, which lead to the system
of congruences

k ≡ 1 (mod 5)
k ≡ 11 (mod 17)
k ≡ 1 (mod 257)
k ≡ 4368 (mod 65537)
k ≡ 400 (mod 641)
k ≡ 6135898 (mod 6700417),

having k = 4331277253353619796 as its smallest solution. This completes the proof of part
(2).

Part (3) is just a special case of part (1) when a ≥ 3, and it is just Theorem 3.1 when
a = 2.

To prove part (4), let m be an odd prime p, and assume first that p ≡ 3 (mod 4). We
use the covering

n ≡ 1, 2, . . . , p − 1 (mod p)
n ≡ 0 (mod 2p)
n ≡ p (mod 4p)
n ≡ 3p (mod 4p).

Let q be a primitive prime divisor of ap − 1. When n ≡ 1, 2, . . . , p− 1 (mod p), we have that
bn ≡ −1 (mod q), which implies that kbn + 1 ≡ 0 (mod q) if k ≡ 1 (mod q). Therefore,
since

kbn + 1 ≥ bn + 1 ≥ b1 + 1 = ap−1 + ap−2 + · · · + 1 ≥ q,

we conclude that q is a proper divisor of kbn + 1 when k ≡ 1 (mod q) with k > 1. In fact,
kbn + 1 is never actually equal to the prime q since forthcoming conditions on k preclude
the possibility that k = 1. Now let r be a primitive prime divisor of a2p − 1, except in the
case a = 2 and p = 3, where we let r = 3. With the exception of the case a = 2 and p = 3,
note that p < r since 2p divides r − 1. So, in any case, when n ≡ 0 (mod 2p), we see that
bn ≡ p − 1 6≡ 0 (mod r). Thus, kbn + 1 ≡ 0 (mod r), if k ≡ −1/(p − 1) (mod r). Note
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that if k = 1, then p ≡ 0 (mod r), which is impossible, unless a = 2 and p = r = 3. Hence,
k > 1 unless a = 2 and p = r = 3. Now let s be a primitive prime divisor of a4p − 1. Then,
ap − 1 6≡ 0 (mod s), and when n ≡ p (mod 4p), we have bn > s and

bn ≡
ap

(

ap(p−1) − 1
)

ap − 1
6≡ 0 (mod s),

since p ≡ 3 (mod 4). Next, let u be a primitive prime divisor of a4 − 1. Then, when n ≡ 3p
(mod 4p), we have bn > u and

bn ≡
a3p

(

a3p(p−1) − 1
)

a3p − 1
6≡ 0 (mod u),

since p ≡ 3 (mod 4). Finally, apply the Chinese Remainder Theorem to the system of
congruences

k ≡ 1 (mod q)
k ≡ −1/(p − 1) (mod r)
k ≡ −(ap − 1)/

(

ap
(

ap(p−1) − 1
))

(mod s)
k ≡ −(a3p − 1)/

(

a3p
(

a3p(p−1) − 1
))

(mod u).

Note that when a = 2 and p = r = 3, we have that s = 13. Therefore, the third congruence
above is k ≡ 11 (mod 13), which implies that k 6= 1. This completes the proof when p ≡ 3
(mod 4).

Now suppose that p ≡ 5 (mod 12). We use the covering

n ≡ 1, 2, . . . , p − 1 (mod p)
n ≡ 0 (mod 2p)
n ≡ p (mod 6p)
n ≡ 3p (mod 6p)
n ≡ 5p (mod 6p).

We let {q, r, s, u, v} be the corresponding covering set of primes, where q, r, s, u and v
are, respectively, primitive prime divisors of ap − 1, a2p − 1, a3 − 1, a3p − 1 and a6p − 1. As
above, similar arguments show the following for any n:

• bn is larger than the corresponding prime from the covering set

• bn is not divisible by the corresponding prime from the covering set (using the fact
that p 6≡ 1 (mod 12)).

To finish the proof when p ≡ 5 (mod 12), apply the Chinese Remainder Theorem to the
following system of congruences for k:

k ≡ 1 (mod q)
k ≡ −1/(p − 1) (mod r)
k ≡ −(ap − 1)/

(

ap
(

ap(p−1) − 1
))

(mod s)
k ≡ −1/(p − 1) (mod u)
k ≡ −(a5p − 1)/

(

a5p
(

a5p(p−1) − 1
))

(mod v).
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This completes the proof of part (4).
Finally, for the proof of part (5), suppose that m/ (eK(a)) is an odd integer, where

K(a), e, m and a are as given in Definition 4.8 and Theorem 4.9. Note that the exceptions
mentioned in Theorem 4.9 are addressed in parts (2) and (4) of this theorem. We can assume
that m is odd, since part (2) of this theorem handles the cases when m ≥ 4 is even. We
use the covering n ≡ 0, 1, 2, . . . ,m − 1 (mod m). From Theorem 4.9, we have that am − 1
has at least two distinct primitive prime divisors. Let q and r be two such divisors. When
n ≡ 1, 2, . . . ,m−1 (mod m), we have that bn ≡ −1 (mod q), and when n ≡ 0 (mod m), we
have that bn ≡ m− 1 (mod r). It is easily verified that bn is greater than each of the primes
q and r. Then, we use the Chinese Remainder Theorem to solve the system of congruences:

k ≡ 1 (mod q)
k ≡ −1/(m − 1) (mod r),

which completes the proof of the theorem.

Remark. For the case a = 2 and m = 4 in part (2) of Theorem 4.12, we can also use the
covering and corresponding covering set that Sierpiński used in his original problem, namely:

n ≡ 1 (mod 2)
n ≡ 2 (mod 4)
n ≡ 4 (mod 8)
n ≡ 8 (mod 16)
n ≡ 16 (mod 32)
n ≡ 32 (mod 64)
n ≡ 0 (mod 64)

and {3, 5, 17, 257, 65537, 641, 6700417}, which lead to the system of congruences

k ≡ 1 (mod 3)
k ≡ 1 (mod 5)
k ≡ 1 (mod 17)
k ≡ 1 (mod 257)
k ≡ 1 (mod 65537)
k ≡ 1 (mod 641)
k ≡ 2233472 (mod 6700417).

The smallest solution is k = 10340920497641728921.

We now give a proof of Conjecture 4.6 assuming the truth of Conjecture 4.7.

Proof of Conjecture 4.6 assuming Conjecture 4.7. For composite m, the given proof of The-
orem 4.12 suffices. So, assume that m = p is prime. Conjecture 4.7 implies that there exists
a positive integer t such that apt

− 1 has at least two distinct primitive prime divisors: qt

and qt+1. We use the covering

13



n ≡ 1, 2, . . . , p − 1 (mod p)
n ≡ p, 2p, . . . , (p − 1)p (mod p2)
...

...
...

...
n ≡ pt−2, 2pt−2, . . . , (p − 1)pt−2 (mod pt−1)
n ≡ pt−1, 2pt−1, . . . , (p − 1)pt−1 (mod pt)
n ≡ 0 (mod pt)

with the corresponding covering set {q1, q2, . . . , qt+1} of primes, where qj is a primitive prime

divisor of apj

− 1, for 1 ≤ j ≤ t − 1. Then, when n ≡ pj−1, 2pj−1, . . . , (p − 1)pj−1 (mod pj),
for any 1 ≤ j ≤ t, we have that

bn + 1 ≡
azpj

− 1

azpj−1 − 1
≡ 0 (mod qj),

for any z ∈ {1, 2, . . . , p − 1}. Also, when n ≡ 0 (mod pt), we have that bn ≡ p−1 (mod qt+1).
Since p− 1 < p ≤ pt < qt+1, it follows that bn 6≡ 0 (mod qt+1). These conditions imply that,
whenever k satisfies the system of congruences

k ≡ 1 (mod qj) 1 ≤ j ≤ t
k ≡ −1/(p − 1) (mod qt+1),

all terms kbn + 1 are composite. Again, by the Chinese Remainder Theorem, there exist
infinitely many such positive integers k, and the proof is complete.
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