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Abstract

Suppose c ≥ 2 and d ≥ 2 are integers, and let S be the set of integers
⌊

cj/dk
⌋

, where

j and k range over the nonnegative integers. Assume that c and d are multiplicatively

independent; that is, if p and q are integers for which cp = dq, then p = q = 0.

The numbers in S form interspersions in various ways. Related fractal sequences and

permutations of the set of nonnegative integers are also discussed.

1 Introduction

Throughout this article, the letters c, d, j, k, p, q, h,m, n represent nonnegative integers such
that c ≥ 2 and d ≥ 2, and c and d are multiplicatively independent; that is, if cp = dq, then
p = q = 0.

Definitions, examples, and references for the terms interspersion and fractal sequence are
easily accessible ([9, 10, 11, 7]), so that only a brief summary is given in this introduction.
This introduction also presents certain new arrays defined from the manner in which the
fractions cj/dk are distributed. The main purpose of the article is to prove that each such
array is an interspersion.

Definition. An array A = (amh), m ≥ 1, h ≥ 1, of positive integers is an interspersion if
(I1) the rows of A partition the positive integers;
(I2) every row of A is an increasing sequence;
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(I3) every column of A is an increasing (possibly finite) sequence;
(I4) if (uh) and (vh) are distinct rows of A, and p and q are indices for which up < vq <

up+1, then
up+1 < vq+1 < up+2.

Example 1 below illustrates the manner in which property (I4) matches the name “inter-
spersion”; viz., the terms of each row individually separate and are separated by the terms
of all other rows (after initial terms).

Definition of the array T(c,d,k0) = {t(m,h)}. Row 1 is defined by t(1, h) = ch−1, for
h = 1, 2, . . .. For m ≥ 2, the first term t(m, 1) of row m is the least positive integer

⌊

cj/dk
⌋

, where k ≥ k0,

that is not in rows 1, 2, ...,m − 1. In order to define the rest of row m, we shall choose a
precise k for the representation t(m, 1) =

⌊

cj/dk
⌋

. According to Lemma 2 below, every n
has infinitely many representations

⌊

cj/dk
⌋

, and we choose the one for which k is minimal
(with k ≥ k0), noting that j is uniquely determined by k. The rest of row m is then defined
by

t(m,h) =
⌊

cj+h−1/dk
⌋

, for h = 1, 2, . . . .

Example 1. The array T(3,2,0) consists of numbers
⌊

3j

2k · 3h−1
⌋

, h = 1, 2, 3, . . .

Table 1. T(3,2,0)

1 3 9 27 81 243 729 2187 · · ·
2 6 20 60 182 546 1640 4900
4 13 40 121 364 1093 3280 9841
5 15 45 136 410 1230 3690 11071
7 22 68 205 615 1845 5535 16607
8 25 76 230 691 2075 6227 18683
10 30 91 273 820 2460 7831 22143
...

The rows of T(3,2,0), indexed by m = 1, 2, 3, . . . , are given by (j, k) = (0, 0), then (j, k) = (2, 2),
then (j, k) = (2, 1), . . . , as indicated here:

Table 2. The pairs (j, k) = (jm, km) for T(3,2,0)

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14
j 0 2 2 4 5 7 4 6 8 10 12 7 14 9
k 0 2 1 4 5 8 3 6 9 12 15 7 18 10

Table 1 shows how an interspersion begets a fractal sequence: for each n, we write the
number of the row containing n:

(1, 2, 1, 3, 4, 2, 5, 6, 1, 7, 8, 9, 3, 10, 4, 11, 12, 13, 14, 2, 15, 5, . . .),
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a sequence which contains itself as a proper subsequence (infinitely many times).
To conclude this introduction, we note that the arrays T(c,d,k0) represent a class of in-

terspersions new to the literature. A few historical notes will help to place the topics of
interspersions, dispersions, and fractal sequences within a wider context. Possibly the ear-
liest published array which is an interspersion was published by Kenneth Stolarsky [8] with
a revealing title, “A set of generalized Fibonacci sequences such that each natural number
belongs to exactly one”. In 1980, David Morrison introduced another interspersion, the
Wythoff array. Both the Stolarksy and Wythoff arrays are presented in Neil Sloane’s Classic

Sequences [7], which also gives additional twentieth century references, including [2], where
the terms “interspersion” and “dispersion” are introduced and proved equivalent, and [3] in
which fractal sequences are defined. Twenty-first century references include [1, 4].

2 Verification of interspersion properties

Lemma 1. Suppose s/r is a positive irrational number and 0 < δ < ǫ. Then there exist

arbitrarily large integers j and k such that

δ < jr − ks < ǫ. (1)

Proof. First, suppose δ = 0. Let ji/ki be the ith convergent to s/r, so by [5], for all sufficiently
large i, we have

|s/r − ji/ki| < 1/k2
i .

Let i be large enough that ki > r/ǫ and ji/ki > s/r. Then

|s/r − ji/ki| < ǫ/rki,

whence 0 < jir − kis < ǫ, as desired.
Now suppose there exists δ > 0 such that for some J and K, the inequality (1) fails for

all (j, k) satisfying j ≥ J and k ≥ K. Let j′ and k′ satisfy j′ ≥ J, k′ ≥ K, and

0 < j′r − k′s < ǫ − δ,

and let δ1 = j′r − k′s. Then
ǫ/δ1 − δ/δ1 > 1,

so that
δ/δ1 < q < ǫ/δ1

for some q ≥ 1. Thus, taking j = qj′ and k = qk′, we have δ < jr − ks < ǫ, a contradiction.

Lemma 2. Every n can be represented as
⌊

cj/dk
⌋

using arbitrarily large j and k.

Proof. In Lemma 1, put s = ln c and t = ln d; put δ = ln n and ǫ = ln(n + 1), and let j and
k be arbitrarily large integers satisfying (1):

ln n < j ln c − k ln d < ln(n + 1).

Equivalently, n < cj/dk < n + 1, so that n =
⌊

cj/dk
⌋

.
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Lemma 3. Suppose n is a term in T = T(c,d,x0), so that n = t(m,h) for some (m,h). Then

the row-successor of n is given by

t(m,h + 1) = cn + q for some q satisfying 0 ≤ q ≤ c − 1.

Proof. We have n =
⌊

cj/dk
⌋

= cj/dk − δ, where 0 < δ < 1, so that cn = cj+1/dk − cδ. Also,
t(m,h + 1) = cj+1/dk − ǫ, where 0 < ǫ < 1, so that

t(m,h + 1) − cn = cδ − ǫ.

Now 0 < cδ < c, so that −1 < cδ − ǫ < c. Because cδ − ǫ is an integer, we conclude that it
is in {0, 1, . . . , c − 1}.

Lemma 4. No two terms of the array T = T(c,d,k0) are equal.

Proof. Suppose, to the contrary, that there are distinct terms n =
⌊

cj/dk
⌋

and n1 =
⌊

cj1/dk1

⌋

such that n = n1. Assume, without loss of generality, that j is the least exponent for which
⌊

cj1/dk1

⌋

=
⌊

cj/dk
⌋

for some j1 and k1.

Case 1 : neither n nor n1 lies in column 1 of T. By Lemma 3,

n = c
⌊

cj−1/dk
⌋

+ q and n1 = c
⌊

cj1−1/dk1

⌋

+ q1,

where 0 ≤ q ≤ c − 1 and 0 ≤ q1 ≤ c − 1. Thus,

c
⌊

cj−1/dk
⌋

+ q = c
⌊

cj1−1/dk1

⌋

+ q1,

so that, assuming without loss that
⌊

cj−1/dk
⌋

≥
⌊

cj1−1/dk1

⌋

, we have

⌊

cj−1/dk
⌋

−
⌊

cj1−1/dk1

⌋

= (q1 − q)/c.

But 0 ≤ (q1 − q)/c < 1, so that, as (q1 − q)/c is an integer, we have q1 = q and
⌊

cj−1/dk
⌋

=
⌊

cj1−1/dk1

⌋

, contrary to the minimality of j.

Case 2 : one of the terms, n or n1, lies in column 1. By definition of column 1, n and n1

cannot both lie in column 1. Assume that n but not n1 lies in column 1. Write n = t(m, 1)
and n1 = t(m1, h), where h ≥ 2. Then by definition of t(m, 1), we have m1 ≥ m, so that

n ≤ T (m1, 1) < n1,

contrary to the assumption that n = n1.

Theorem 5. The array T(c,d,k0) is an interspersion.
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Proof. By Lemma 4, property (I1) in the introduction holds, and clearly (I2) and (I3) hold.
To see that (I4) holds, suppose

t(m,h) < t(m′, h′) < t(m,h + 1).

We must prove
t(m,h + 1) < t(m′, h′ + 1) < t(m,h + 2).

Since t(m,h) < t(m′, h′), we have t(m′, h′) − t(m,h) ≥ 1, so that

ct(m′, h′) − ct(m,h) ≥ c.

Consequently, if 0 ≤ q1 ≤ c − 1 and 0 ≤ q2 ≤ c − 1, then ct(m′, h′) − ct(m,h) ≥ q1 − q2, so
that

ct(m,h) + q1 ≤ ct(m′, h′) + q2,

which by Lemma 3 implies t(m,h + 1) ≤ t(m′, h′ + 1), so that by Lemma 4,

t(m,h + 1) < t(m′, h′ + 1)

Likewise, the inequality
ct(m,h + 1) − ct(m′, h′) ≥ c

implies t(m′, h′ + 1) < t(m,h + 2).

3 Permutations of N

Suppose c, d, k0 are as already stipulated, and abbreviate T(c,d,k0) as T. In this section, we
shall show that the exponents k in the representation

⌊

cj/dk
⌋

for the numbers in T form
a permutation of the sequence N = (0, 1, 2, . . .). For example, as indicated in Table 2, for
(c, d, k0) = (3, 2, 0), the sequence of values of k is

(0, 2, 1, 4, 5, 8, 3, 6, 9, 12, 15, 7, 18, 10, . . .).

Theorem 6. Regarding the interspersion T(c,d,k0), let

⌊

(cjm/dkm)ch−1
⌋

, for h = 1, 2, 3, . . . ,

be the numbers in row m. Then each n ≥ k0 occurs exactly once in the sequence (km).

Proof. Suppose, to the contrary, that there is a least K ≥ k0 for which, for every j,

⌊

cj/dK
⌋

=
⌊

cpj/dk
⌋

for some k satisfying k0 ≤ k < K and pj. Then

∣

∣

∣

∣

cj

dK
−

cpj

dk

∣

∣

∣

∣

< 1.
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Moreover, as k < K, we have pj < j and can write K = k + e where e > 0 and j = pj + ej

where ej > 0, so that
∣

∣

∣

∣

cej

de
− 1

∣

∣

∣

∣

<
dk

c
pj

.

As j → ∞, clearly pj → ∞, so that dk

c
pj → 0. Consequently, cej = de for all sufficiently large

j, contrary to the independence of c and d, as defined and hypothesized in the introduction.
Thus, there is no such K, which is to say that for every k ≥ k0, there exists a row of T such
that the numbers in that row are the numbers

⌊

(cj/dk)ch−1
⌋

for some j. By definition of
t(m, 1) as the least

⌊

cj/dk
⌋

=
⌊

cjm/dkm
⌋

not in a row numbered 1, 2, ...,m − 1, the numbers
km are distinct.

Regarding the set N of natural numbers to be {1, 2, 3, ...}, Theorem 6 shows that the
sequence (km−k0+1) is a permutation of N. Do such permutations have notable asymptotics?
Can they be efficiently computed? We leave these questions open.

4 Examples

In Theorem 5, the index k0 can be any nonnegative integer, and in Example 1, k0 = 0. In
Table 3, we keep (c, d) = (3, 2) as in Table 1 but change k0 to 1. In infinitely many cases, a
row of T(3,2,0) is identical to a row of T(3,2,1), and in infinitely many cases a row of T(3,2,0) is not
identical to a row of T(3,2,1). These easily proved observations remain true for k0 = 2, 3, 4, . . . .

Table 3. T(3,2,1)

1 4 13 40 121 364 1093 3280 · · ·
2 6 20 60 182 546 1640 4920
3 10 30 91 273 820 2460 7381
5 15 45 136 410 1230 3690 11071
7 22 68 205 615 1845 5535 16607
8 25 76 230 691 2075 6227 18683
9 28 86 259 778 2335 7006 21018
...

The rows of T(3,2,1), indexed by m = 1, 2, 3, . . . , are given by (j, k) = (1, 1), then (j, k) = (2, 2),
then (j, k) = (3, 3), . . . , as indicated here:

Table 4. The pairs (j, k) = (jm, km) for T(3,2,1)

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14
j 1 2 3 4 5 7 9 6 8 10 12 7 14 9
k 1 2 3 4 5 8 11 6 9 12 15 7 18 19

The fractal sequence corresponding to T(3,2,1) is

(1, 2, 3, 1, 4, 2, 5, 6, 7, 3, 8, 9, 1, 10, 4, 11, 12, 13, 14, 2, 15, 5, 16, 17, 6, . . .).
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Next, we change k0 to 3 :

Table 5. T(3,2,3)

1 3 10 30 91 273 820 2460 · · ·
2 7 22 68 205 615 1845 5535
4 12 38 115 345 1037 3113 9341
5 15 45 136 410 1230 3690 11071
6 19 57 172 518 1556 4670 14012
8 25 76 230 691 2075 6227 18683
9 28 86 259 778 2335 7006 21018
...

The rows of T(3,2,3), indexed by m = 1, 2, 3, . . . , are given by (j, k) = (2, 3), then (j, k) = (4, 5),
then (j, k) = (7, 9), . . . , as indicated here:

Table 6. The pairs (j, k) = (jm, km) for T(3,2,3)

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14
j 2 4 7 4 8 7 9 6 15 10 12 7 14 16
k 3 5 9 4 10 8 11 6 20 12 15 7 18 21

The fractal sequence corresponding to T(3,2,3) is

(1, 2, 1, 3, 4, 5, 2, 6, 7, 1, 8, 3, 9, 10, 4, 11, 12, 13, 5, 14, 15, 2, 16, 17, 6, . . .).

As a final example, consider the interspersion T(2,3,0) :

Table 7. T(2,3,0)

1 2 4 8 16 32 64 128 · · ·
3 7 14 28 56 113 227 455
5 10 21 42 85 170 341 682
6 12 25 50 101 202 404 809
9 189 37 75 151 303 606 1213
11 22 44 89 179 359 719 1438
13 26 53 106 213 426 852 1704
...

The rows of T(2,3,0), indexed by m = 1, 2, 3, . . . , are given by (j, k) = (0, 0), then (j, k) = (5, 2),
then (j, k) = (4, 1), . . . , as indicated here:

Table 8. The pairs (j, k) = (jm, km) for T(2,3,0)

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14
j 0 5 4 9 8 13 18 23 20 17 44 22 30 46
k 0 2 1 4 3 6 9 12 10 8 25 11 16 26

The fractal sequence corresponding to T(2,3,0) is

(1, 1, 2, 1, 3, 4, 2, 1, 5, 3, 6, 4, 7, 2, 8, 1, 9, 5, 10, 11, 3, 6, 12, 13, 4, 7, 14, 2, . . .).

7



References

[1] C. Kimberling and John E. Brown, Partial complements and transposable dispersions,
J. Integer Sequences 7 (2004), Article 04.1.6.

[2] C. Kimberling, Interspersions and dispersions, Proc. Amer. Math. Soc. 117 (1993), 313–
321.

[3] C. Kimberling, Numeration systems and fractal sequences, Acta Arith. 73 (1995), 103–
117.

[4] C. Kimberling, The equation (j + k + 1)2 − 4k = Qn2 and related dispersions, J. Integer

Sequences 10 (2007), Article 07.2.7.

[5] S. Lang, Introduction to Diophantine Approximations, Addison-Wesley, Reading, Mas-
sachusetts, 1966.

[6] N. J. A. Sloane, editor, The On-Line Encyclopedia of Integer Sequences, available at
http://www.research.att.com/~njas/sequences/.

[7] N. J. A. Sloane, Classic Sequences In The On-Line Encyclopedia of Integer Se-

quences, Part 1: The Wythoff Array and The Para-Fibonacci Sequence, available at
http://www.research.att.com/~njas/sequences/classic.html.

[8] K. Stolarsky, A set of generalized Fibonacci sequences such that each natural number
belongs to exactly one, Fib. Quart., 15 (1977), 224.

[9] E. Weisstein, MathWorld, Fractal Sequence,
http://mathworld.wolfram.com/FractalSequence.html

[10] E. Weisstein, MathWorld, Interspersion, http://mathworld.wolfram.com/Interspersion.html

[11] E. Weisstein, MathWorld, Dispersion, http://mathworld.wolfram.com/SequenceDispersion.html

2000 Mathematics Subject Classification: Primary 11B99
Keywords: interspersion, fractal sequence.

(Concerned with sequences A007337, A022447, A114537, A114577, A120862, A120863, A124904,
A124905, A124906, A124907, A124908, A124909, A124910, A124911, A124912, A124913,
A124914, A124915, A124916, A124917, A124918, A124919, A125150, A125151, A125152,
A125153, A125154, A125155, A125156, A125157, A125158, A125159, A125160, and A125161.)

Received December 30 2006; revised version received May 4 2007. Published in Journal of

Integer Sequences, May 6 2007.

Return to Journal of Integer Sequences home page.

8

http://www.cs.uwaterloo.ca/journals/JIS/VOL7/Kimberling/kimber67.html
http://www.cs.uwaterloo.ca/journals/JIS/VOL10/Kimberling2/kimberling45.html
http://www.research.att.com/~njas/sequences/index.html
http://www.research.att.com/~njas/sequences/index.html
http://www.research.att.com/~njas/sequences/classic.html
http://mathworld.wolfram.com/FractalSequence.html
http://mathworld.wolfram.com/Interspersion.html
http://mathworld.wolfram.com/SequenceDispersion.html
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A007337
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A022447
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A114537
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A114577
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A120862
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A120863
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A124904
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A124905
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A124906
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A124907
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A124908
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A124909
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A124910
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A124911
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A124912
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A124913
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A124914
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A124915
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A124916
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A124917
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A124918
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A124919
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A125150
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A125151
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A125152
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A125153
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A125154
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A125155
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A125156
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A125157
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A125158
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A125159
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A125160
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A125161
http://www.cs.uwaterloo.ca/journals/JIS/

	Introduction
	Verification of interspersion properties
	Permutations of N
	Examples

