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Abstract

A minimal r-complete partition of an integer m is a partition of m with as few parts
as possible, such that all the numbers 1, ..., rm can be written as a sum of parts taken
from the partition, each part being used at most r times. This is a generalization
of M-partitions (minimal 1-complete partitions). The number of M-partitions of m
was recently connected to the binary partition function and two related arithmetic
functions. In this paper we study the case r > 2, and connect the number of minimal
r-complete partitions to the (r + 1)-ary partition function and a related arithmetic
function.

1 Introduction

Let A = (Ao, A1, ..., Ay) be a partition of the natural number m into n + 1 parts \; arranged
in non-decreasing order,

m=Xo+ M+ A LKA <A << e

The sum of the parts is called the weight of the partition and is denoted by |A|, while n + 1
is the length of the partition.

MacMahon [3], [4, pp. 217-223] calls the partition A of weight m perfect if each positive
integer less than m can be written in a unique way as a sum of distinct parts A;. Park
6] calls A a complete partition of m if the representation property is maintained, while the
uniqueness constraint is dropped. (O’Shea [5] calls this a weak M-partition.) Prior to Park’s
paper, infinite complete sequences had been introduced by Hoggatt and King [2], and studied
by Brown [1].
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Park [7] generalized the notion of a complete partition to r-complete partitions for a
positive integer r. The partition A = (Ag, ..., \,) of m is r-complete if each integer w in the
interval 0 < w < rm can be written as

W= gAg+ -+ + ay\, with 0 <o <. (1)

Clearly, “complete” is the same as “l-complete”. An r-complete partition is also (r + 1)-
complete.

We call an r-complete partition of m of minimal length a minimal r-complete partition of
m. O’Shea [5] uses the term M-partition in place of minimal complete partition. He showed
that for half the numbers m, the number of M-partitions of m is equal to the number of
binary partitions of 2! — 1 — m, where n = |log, m|. (In a binary partition, all parts are
powers of 2.) O’Shea’s partial enumeration formula was completed by us in [8].

In this paper we connect the minimal r-complete partition function (for r > 2) to the
(r+1)-ary partition function and a related arithmetic function. (In an (r + 1)-ary partition,
all parts are powers of r 4+ 1.) In Section 2 we state our results. In Section 3 we consider
a characterization of minimal r-partitions, and in Section 4 we prove our main result using
(truncated) polynomials and formal power series.

2 Statement of Results

Let f(k) be the (r + 1)-ary partition function, that is, the number of partitions of k into
powers of 7 + 1. For the generating function F'(z) we have

o0

- 1

We also define the auxiliary arithmetic function g(k) as follows:

B 0 . . 0 x(?‘-l—l)j—l F 2r41) (T+1)J J

=D gkt =) T Pl e r+1)2'
k=0 =0 i=0

A straightforward verification shows that the following functional equations hold:
1
F(z) = F(a™ 2
(1) = T F ("), )
G(x) = LG + ——— P, (3)
1—x (1—x)(1 —2?)

These functional equations give simple recurring relations for fast computation of f(k) and
g(k). We adopt the convention that g(k) = 0 if k is not a non-negative integer.

Theorem 2.1. Let r > 2, and let a.(m) be the number of minimal r-complete partitions of
m. Then

m@0=f<%«r+nm*_1y_m>_g<l

r

(Cr+1)(r+1)""1=1)—1- m) :

where n = |log, ,(rm)].



Corollary 2.1. We have
1 n+1
a,(m)=f ;((T-l—l) —1)—m

fEr+ D)+ =) <m < Y ((r+ 1" —1).

The case r = 1 is not covered by Theorem 2.1. This case is slightly different from
r > 2, as an additional arithmetic function is required in the description of a;(m); see
[8, Theorem 2]. The expression for a,(m) in Theorem 2.1 is, however, valid for r = 1 if
2m 4273 — 4 < m < 277 — 1. In particular, Corollary 2.1 remains valid if r = 1, a result
due to O’Shea [5].

Some of the sequences appearing above can be found in Sloane’s On-Line Encyclopedia of
Integer Sequences [9]. For perfect partitions, see sequence A002033; for a;(m), see A100529.
The sequences A000123, A018819, A0005704, A0005705, A0005706 give the first several
values of f(k) for r = 1,1,2,3, and 4, respectively. In addition, sequence A117115 gives
the 53 first values of g(k) for r = 1, and A117117 gives the 53 first values of the additional
arithmetic function required in the description of aq(m).

3 Completeness
The following lemma is due to Park [7], with partial results by Brown [1] and Park [6].
Lemma 3.1. The partition A = (Ao, ..., \,) is r-complete if and only if \g = 1 and

N <1+rNo+--+Ny) for i=1,2,... n (4)

The necessity of the conditions Ay = 1 and (4) is clear, and the sufficiency follows by
induction on n; see the proof of Theorem 2.2 in [7].

Suppose that A = (A, ..., A,) is an r-complete partition of m. Then (1) must be solvable
for rm + 1 values of w. Since the right hand side attains at most (r + 1)"™! distinct values,
we have rm + 1 < (r + 1)""1. Alternatively, by Lemma 3.1, \; < (r + 1) for i = 0,1,...,n,
so that rm < (r+1)""' — 1. In any case, we have [log, . (rm)| < n, cf. [7, Proposition 2.4].

On the other hand, for a given m, let n = [log,,,(rm)]. Order the n+1 positive integers
Lr+1,(r+1)2% ..., (r+1)" Y k=m—X((r+1)" — 1) in increasing order 1 = Xy < A\; <

«o- < Ay Wehave 1 <k < (r+1)", and it follows that A is a minimal r-complete partition
of m.

Lemma 3.2. Let A\ be an r-complete partition of weight m and length n + 1. Then X is
manimal if and only if

n = |log, . (rm)]. (5)

We have shown that if A = (Ao, ..., \,) is a partition of weight m with Ay = 1, then \ is
a minimal r-complete partition if and only if (4) and (5) hold.
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4 Generating functions

In order to determine the number a,(m) of minimal r-complete partitions of weight m, we
first consider the number ¢, (m) of r-complete partitions of weight m and length n + 1. By
Lemma 3.2, we know that such an r-complete partition is minimal if and only if £ ((r+1)" —
D+1<m<i((r+1)"" —1). Thus

ﬁl»—l

a(m) =g,(m) if —((r+1)"=1)+1<m< = ((r+1)""-1). (6)

\_/ﬁl’—‘

For the generating function @, (x) of ¢,(m), we have

/) ((r+1)"+1-1)

Qn(x) - Z Qn(m)xm - Z‘va (7)

m=n+1

where we sum over the A satisfying 1 =X g < Ay <--- < A\, and (4 )
We change parameters by setting u; = (r + 1)" — \; for ¢ = 0,1,...,n. Then the
constraints, necessary for A being r-complete, become 1y = 0, and

o+ i) < <r(r+ D74y fori=1,...,n. (8)

Moreover,
Al = ((7"+1)"+1 1) —ul, (9)

for |u| = po + -+ + pn. For a ﬁxed n, we are interested in the number of solutions A of
|A] = m for each m in the interval £((r +1)" —1) + 1 <m < 2((r +1)"" — 1), that is, the
number of solutions p of || = k for each k in the interval 0 < k£ < (r +1)" — 1.

We write
R,(x) = Zrn ) —Zm (10)

k>0

where we sum over the p satisfying po = 0 and (8). We are interested in the coefficients r, (k)
for k < (r +1)". Therefore we shall on some occasions truncate polynomials and formal
power series under consideration. We shall use the order symbol O(z™) for truncation of

order N. Thus, if we write
Z b(k)z® = Z c(k)z® + O(2N),
k k

then b(k) = c(k) for all k < N.
Let n > 2. It simplifies notations to “sum” over pg = 0. We have

R Z Z ot +un

1o
where the innermost sum is
n—1
r(r+1)" 7 +pn 1 1 — r+D)" 1= (pot-tpn—1)+pn—1
Z phottin g (D) (ot pn 1)
1—=x

pn=r(po++pn—-1)



Now, we have

Ry(x) =

1—=x

1

Rn—l (l,r—i—l)

" (r+1)" 141

1—1’

We repeat this process once, and obtain

r(r+1)" 141

E E x,uo-&- i —2+2n — 1

Hn—1

(11)

(12)

(13)

. r+1y L 2r+1
Fn() = 1-— an_l(x ) (1—x)(1— xQ)Rn_2(x )
xr(r+3)(r+1)"’2+3
.. pot et pn—3+3pn—2
R Ty 2. ¢ ’
MO Hn—2
so that
Ru@) = —— R (@) = 2 ) 0
" 1—z ! (1—xz)(1—22) "
for n > 2.
By (2) and (3), we have
F(e) = 10— +0(")
1—x ’
1 T
G(x) (1_$)(1_$2)+O($)
Moreover, Ry(z) =1, and
r 1— :L‘T+1 r—i—l
SO we may write
Ry(z) = F(z) — 2" G(x) + O(z"™).
Putting n =2 in (11), we get
R (SL’) _ 1 R (errl) o mr(r—i—l)—i—l R ( 2r+1> +O( (r+1)2 )
SO P (1—xz)(1—22) " ’
and using (13), we obtain
_ 1 r+1 gt (r+1)?
R2(x)_1—x (") (1—x)(1—x2)+0<x ).
Hence, by (2) and (12), we have
Rg(ﬂ?) _ F(ZE) _xr(r-&-l)-i-lG( )—i—O( (r+1)2 )



We claim that if » > 2 and n > 1, then
R,(z) = F(z) — 2’0" 1G(2) + Oz, (14)

To prove this, we use induction on n. We have just seen that the claim is valid for n = 1
and n = 2. Suppose that (14) holds for n replaced by n — 1 and by n — 2 for some n > 3.
Using (11) and the induction hypotheses, we obtain

1 n—1 n
R, (x) = — <F<xr+1) _ r(r+1) LG (2 4 O(:U(TH) >)

- 5137“(7"+1)n—1+1 (F(IQT—H) - $(2T+1)(7"(7"+1)n—3+1)G(x2r+1) + O(x(2r+1)(r+1)n—2)>
(1—2)(1 —a?)

+ Oz "),

We find that
1 x?"("’"!‘l)"*l-i,-'/‘-‘rl xT(T+1)n71+1
R, = Fla) - G — F(p2rt! O(zr+"

and, using the functional equations (2) and (3), (14) follows.
We are now ready to conclude the proof of Theorem 2.1. By (10) and (9), we have

i e e )
o A

Moreover, by (7),

1/r)((r+1)"*+1-1)

Ry(w) = 2000 (a7 = 3T g (m)g e
m=n-+1
Hence,
(1/r)((r+1)" 1 =1)—n—1 1
Ry(x) =Y ra(k)z"* = an (— ((r+ 1) —1) k) 2"
k>0 k=0 r
that is,

((r+1)" —1) — k> : (15)
For n > 1, we have by (14),
(k) = f(k) —glk —r(r+1)"1 =1) for 0<k<(r+1)" -1

Setting k = % ((r 4+ 1)"*! — 1)—m and using (15) and (6), we get Theorem 2.1. By inspection,
the theorem also holds for n = 0.
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