Some Generalized Fibonacci Polynomials

Mark A. Shattuck
Mathematics Department
University of Tennessee
Knoxville, TN 37996-1300
USA
shattuck@math.utk.edu
Carl G. Wagner
Mathematics Department
University of Tennessee
Knoxville, TN 37996-1300
USA
wagner@math.utk.edu

Abstract

We introduce polynomial generalizations of the r-Fibonacci, r-Gibonacci, and r Lucas sequences which arise in connection with two statistics defined, respectively, on linear, phased, and circular r-mino arrangements.

1 Introduction

In what follows, \mathbb{Z}, \mathbb{N}, and \mathbb{P} denote, respectively, the integers, the nonnegative integers, and the positive integers. Empty sums take the value 0 and empty products the value 1 , with $0^{0}:=1$. If q is an indeterminate, then $0_{q}:=0, n_{q}:=1+q+\cdots+q^{n-1}$ for $n \in \mathbb{P}, 0_{q}^{!}:=1$, $n_{q}^{!}:=1_{q} 2_{q} \cdots n_{q}$ for $n \in \mathbb{P}$, and

$$
\binom{n}{k}_{q}:= \begin{cases}\frac{n_{\dot{q}}^{!}}{k_{\dot{q}}^{!}(n-k)!}, & \text { if } 0 \leqslant k \leqslant n \tag{1.1}\\ 0, & \text { if } k<0 \text { or } 0 \leqslant n<k\end{cases}
$$

The $\binom{n}{k}_{q}$ are also given, equivalently, by the column generating function [12, pp. 201-202]

$$
\begin{equation*}
\sum_{n \geqslant 0}\binom{n}{k}_{q} x^{n}=\frac{x^{k}}{(1-x)(1-q x) \cdots\left(1-q^{k} x\right)}, \quad k \in \mathbb{N} . \tag{1.2}
\end{equation*}
$$

If $r \geqslant 2$, the r-Fibonacci numbers $F_{n}^{(r)}$ are defined by $F_{0}^{(r)}=F_{1}^{(r)}=\cdots=F_{r-1}^{(r)}=1$, with $F_{n}^{(r)}=F_{n-1}^{(r)}+F_{n-r}^{(r)}$ if $n \geqslant r$. The r-Lucas numbers $L_{n}^{(r)}$ are defined by $L_{1}^{(r)}=L_{2}^{(r)}=\cdots=$ $L_{r-1}^{(r)}=1$ and $L_{r}^{(r)}=r+1$, with $L_{n}^{(r)}=L_{n-1}^{(r)}+L_{n-r}^{(r)}$ if $n \geqslant r+1$. If $r=2$, the $F_{n}^{(r)}$ and $L_{n}^{(r)}$ reduce, respectively, to the classical Fibonacci and Lucas numbers (parametrized, as in Wilf [13] by $F_{0}=F_{1}=1$, etc., and $L_{1}=1, L_{2}=3$, etc.).

Polynomial generalizations of F_{n} and/or L_{n} have arisen as distribution polynomials for statistics on binary words [3], lattice paths [8], Morse code sequences [7], and linear and circular domino arrangements [9]. Generalizations of $F_{n}^{(r)}$ and/or $L_{n}^{(r)}$ have arisen similarly in connection with statistics on Morse code sequences [7] as well as on linear and circular r-mino arrangements $[10,11]$.

In the next section, we consider the q-generalization

$$
\begin{equation*}
F_{n}^{(r)}(q, t):=\sum_{0 \leqslant k \leqslant\lfloor n / r\rfloor} q^{k+r\binom{k}{2}}\binom{n-(r-1) k}{k}_{q} t^{k} \tag{1.3}
\end{equation*}
$$

of $F_{n}^{(r)}$. The $r=2$ case of (1.3) or close variants thereof have appeared several times in the literature starting with Carlitz (see, e.g., $[3,4,5,8,9]$. The $F_{n}^{(r)}(q, t)$ arise as joint distribution polynomials for two statistics on linear r-mino arrangements which naturally extend well known statistics on domino arrangements. When defined, more broadly, on phased r-mino arrangements, these statistics lead to a further generalization of the $F_{n}^{(r)}(q, t)$ which we denote by $G_{n}^{(r)}(q, t)$. In the third section, we consider the q-generalization

$$
\begin{equation*}
L_{n}^{(r)}(q, t):=\sum_{0 \leqslant k \leqslant\lfloor n / r\rfloor} q^{k+r\binom{k}{2}}\left[\frac{n_{q}}{(n-(r-1) k)_{q}}\right]\binom{n-(r-1) k}{k}_{q} t^{k} \tag{1.4}
\end{equation*}
$$

of $L_{n}^{(r)}$, which arises as the joint distribution polynomial for the same two statistics, now defined on circular r-mino arrangements. The $r=2$ case of (1.4) was introduced by Carlitz [3] and has been subsequently studied (see, e.g., [9]).

2 Linear and Phased r-Mino Arrangements

Let $\mathcal{R}_{n, k}^{(r)}$ denote the set of coverings of the numbers $1,2, \ldots, n$ arranged in a row by k indistinguishable r-minos and $n-r k$ indistinguishable squares, where pieces do not overlap, an r-mino, $r \geqslant 2$, is a rectangular piece covering r numbers, and a square is a piece covering a single number. Each such covering corresponds uniquely to a word in the alphabet $\{r, s\}$ comprising $k r$'s and $n-r k$ s's so that

$$
\begin{equation*}
\left|\mathcal{R}_{n, k}^{(r)}\right|=\binom{n-(r-1) k}{k}, \quad 0 \leqslant k \leqslant\lfloor n / r\rfloor \tag{2.1}
\end{equation*}
$$

for all $n \in \mathbb{P}$. (If we set $\mathcal{R}_{0,0}^{(r)}=\{\emptyset\}$, the "empty covering," then (2.1) holds for $n=0$ as well.) In what follows, we will identify coverings c with such words $c_{1} c_{2} \cdots$ in $\{r, s\}$. With

$$
\begin{equation*}
\mathcal{R}_{n}^{(r)}:=\bigcup_{0 \leqslant k \leqslant\lfloor n / r\rfloor} \mathcal{R}_{n, k}^{(r)}, \quad n \in \mathbb{N}, \tag{2.2}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
\left|\mathcal{R}_{n}^{(r)}\right|=\sum_{0 \leqslant k \leqslant\lfloor n / r\rfloor}\binom{n-(r-1) k}{k}=F_{n}^{(r)}, \tag{2.3}
\end{equation*}
$$

where $F_{0}^{(r)}=F_{1}^{(r)}=\cdots=F_{r-1}^{(r)}=1$, with $F_{n}^{(r)}=F_{n-1}^{(r)}+F_{n-r}^{(r)}$ if $n \geqslant r$. Note that

$$
\begin{equation*}
\sum_{n \geqslant 0} F_{n}^{(r)} x^{n}=\frac{1}{1-x-x^{r}} \tag{2.4}
\end{equation*}
$$

Given $c \in \mathcal{R}_{n}^{(r)}$, let $v(c):=$ the number of r-minos in the covering c, let $\sigma(c):=$ the sum of the numbers covered by the leftmost segments of each of these r-minos, and let

$$
\begin{equation*}
F_{n}^{(r)}(q, t):=\sum_{c \in \mathcal{R}_{n}^{(r)}} q^{\sigma(c)} t^{v(c)}, \quad n \in \mathbb{N} . \tag{2.5}
\end{equation*}
$$

Categorizing linear covers of $1,2, \ldots, n$ according to the final and initial pieces, respectively, yields the recurrences

$$
\begin{equation*}
F_{n}^{(r)}(q, t)=F_{n-1}^{(r)}(q, t)+q^{n-r+1} t F_{n-r}^{(r)}(q, t), \quad n \geqslant r, \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{n}^{(r)}(q, t)=F_{n-1}^{(r)}(q, q t)+q t F_{n-r}^{(r)}\left(q, q^{r} t\right), \quad n \geqslant r, \tag{2.7}
\end{equation*}
$$

where $F_{0}^{(r)}(q, t)=F_{1}^{(r)}(q, t)=\cdots=F_{r-1}^{(r)}(q, t)=1$. Iterating (2.6) or (2.7) gives $F_{-i}^{(r)}(q, t)=0$ if $1 \leqslant i \leqslant r-1$ with $F_{-r}^{(r)}(q, t)=q^{r-1} t^{-1}$, which we'll take as a convention.

With the ordinary generating function

$$
\begin{equation*}
\Phi^{(r)}(x, q, t):=\sum_{n \geqslant 0} F_{n}^{(r)}(q, t) x^{n} \tag{2.8}
\end{equation*}
$$

recurrence (2.6) is equivalent to the identity

$$
\begin{equation*}
\Phi^{(r)}(x, q, t)=1+x \Phi^{(r)}(x, q, t)+q t x^{r} \Phi^{(r)}(q x, q, t) \tag{2.9}
\end{equation*}
$$

which may be rewritten, with the operator $\varepsilon f(x):=f(q x)$, as

$$
\left(1-x-q t x^{r} \varepsilon\right) \Phi^{(r)}(x, q, t)=1,
$$

or

$$
\begin{equation*}
\left(1-\frac{q t x^{r}}{1-x} \varepsilon\right) \Phi^{(r)}(x, q, t)=\frac{1}{1-x} \tag{2.10}
\end{equation*}
$$

From (2.10), we immediately get

$$
\Phi^{(r)}(x, q, t)=\sum_{k \geqslant 0}\left(\frac{q t x^{r}}{1-x} \varepsilon\right)^{k} \frac{1}{1-x},
$$

which implies

Theorem 2.1.

$$
\begin{equation*}
\Phi^{(r)}(x, q, t)=\sum_{k \geqslant 0} \frac{q^{k+r\binom{k}{2}} t^{k} x^{r k}}{(1-x)(1-q x) \cdots\left(1-q^{k} x\right)} . \tag{2.11}
\end{equation*}
$$

By (2.11) and (1.2),

$$
\begin{aligned}
\Phi^{(r)}(x, q, t) & =\sum_{k \geqslant 0} q^{k+r\binom{k}{2}} t^{k} x^{(r-1) k} \cdot \frac{x^{k}}{(1-x)(1-q x) \cdots\left(1-q^{k} x\right)} \\
& =\sum_{k \geqslant 0} q^{k+r\binom{k}{2}} t^{k} x^{(r-1) k} \sum_{n \geqslant r k}\binom{n-(r-1) k}{k}_{q} x^{n-(r-1) k} \\
& =\sum_{n \geqslant 0}\left(\sum_{0 \leqslant k \leqslant\lfloor n / r\rfloor} q^{k+r\binom{k}{2}}\binom{n-(r-1) k}{k}_{q} t^{k} x^{n},\right.
\end{aligned}
$$

which establishes the explicit formula:
Theorem 2.2. For all $n \in \mathbb{N}$,

$$
\begin{equation*}
F_{n}^{(r)}(q, t)=\sum_{0 \leqslant k \leqslant\lfloor n / r\rfloor} q^{k+r\binom{k}{2}}\binom{n-(r-1) k}{k}_{q} t^{k} . \tag{2.12}
\end{equation*}
$$

Remark: Cigler [7] has studied algebraically the polynomials

$$
F_{n}(j, x, s, q):=\sum_{0 \leqslant j k \leqslant n-j+1} q^{j\binom{k}{2}}\binom{n-(j-1)(k+1)}{k}_{q} s^{k} x^{n-j(k+1)+1}, \quad n \geqslant 0
$$

which, by (2.12), are related to the $F_{n}^{(r)}(q, t)$ by

$$
\begin{equation*}
F_{n}(j, x, s, q)=x^{n-j+1} F_{n-j+1}^{(j)}\left(q, \frac{s}{q x^{j}}\right), \quad n \geqslant 0 . \tag{2.13}
\end{equation*}
$$

From (2.5) and (2.13), one gets a combinatorial interpretation for the $F_{n}(j, x, s, q)$ in terms of j-mino arrangements; viz., $F_{n}(j, x, s, q)$ is the joint distribution polynomial for the statistics on $\mathcal{R}_{n-j+1}^{(j)}$ recording the number of squares, the number of j-minos, and the sum of the numbers directly preceding leftmost segments of j-minos.

Note that (2.11) and (2.12) reduce, respectively, to (2.4) and (2.3) when $q=t=1$. Setting $q=1$ and $q=-1$ in (2.11) gives

Corollary 2.3.

$$
\begin{equation*}
\Phi^{(r)}(x, 1, t)=\frac{1}{1-x-t x^{r}} . \tag{2.14}
\end{equation*}
$$

and
Corollary 2.4.

$$
\begin{equation*}
\Phi^{(r)}(x,-1, t)=\frac{1+x-t x^{r}}{1-x^{2}+(-1)^{r+1} t^{2} x^{2 r}} . \tag{2.15}
\end{equation*}
$$

Taking the even and odd parts of both sides of (2.15), replacing x with $x^{1 / 2}$, and applying (2.14) yields

Theorem 2.5. Let $m \in \mathbb{N}$. If m and r have the same parity, then

$$
\begin{equation*}
F_{m}^{(r)}(-1, t)=F_{\lfloor m / 2\rfloor}^{(r)}\left(1,(-1)^{r} t^{2}\right)-t F_{(m-r) / 2}^{(r)}\left(1,(-1)^{r} t^{2}\right), \tag{2.16}
\end{equation*}
$$

and if m and r have different parity, then

$$
\begin{equation*}
F_{m}^{(r)}(-1, t)=F_{\lfloor m / 2\rfloor}^{(r)}\left(1,(-1)^{r} t^{2}\right) . \tag{2.17}
\end{equation*}
$$

One can provide combinatorial proofs of (2.16) and (2.17) similar to those in [10, 11] given for comparable formulas involving other q-Fibonacci polynomials.

The $F_{n}^{(r)}(q, t)$ may be generalized as follows:
If $r \geqslant 2$ and $a, b \in \mathbb{P}$, then define the sequence $\left(G_{n}^{(r)}\right)_{n \in \mathbb{Z}}$ by the recurrence $G_{n}^{(r)}=$ $G_{n-1}^{(r)}+G_{n-r}^{(r)}$ for all $n \in \mathbb{Z}$ with the initial conditions $G_{-(r-2)}^{(r)}=\cdots=G_{-1}^{(r)}=0, G_{0}^{(r)}=a$, and $G_{1}^{(r)}=b$. When $r=2$, these are the Gibonacci numbers G_{n} (shorthand for generalized Fibonacci numbers) occurring in Benjamin and Quinn [2, p. 17]. When $a=b=1$ and $a=r$, $b=1$, the $G_{n}^{(r)}$ reduce to the r-Fibonacci and r-Lucas numbers, respectively. We'll call the $G_{n}^{(r)} r$-Gibonacci numbers.

From the initial conditions and recurrence, one sees that the $G_{n}^{(r)}$, when $n \geqslant 1$, count linear r-mino coverings of length n in which an initial r-mino is assigned one of a phases and an initial square is assigned one of b phases. We'll call such coverings phased r-mino tilings (of length n), in accordance with Benjamin and Quinn [1, 2] in the case $r=2$. Let $\widehat{\mathcal{R}}_{n}^{(r)}$ be the set consisting of these phased tilings and let

$$
\begin{equation*}
G_{n}^{(r)}(q, t):=\sum_{c \in \hat{\mathcal{R}}_{n}^{(r)}} q^{\sigma(c)} t^{v(c)}, \quad n \geqslant 1, \tag{2.18}
\end{equation*}
$$

where the σ and v statistics on $\widehat{\mathcal{R}}_{n}^{(r)}$ are defined as above. When $a=b=1$, the $G_{n}^{(r)}(q, t)$ reduce to the $F_{n}^{(r)}(q, t)$.

Conditioning on the final and initial pieces of a phased r-mino tiling yields the respective recurrences

$$
\begin{equation*}
G_{n}^{(r)}(q, t)=G_{n-1}^{(r)}(q, t)+q^{n-r+1} t G_{n-r}^{(r)}(q, t), \quad n \geqslant r+1, \tag{2.19}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{n}^{(r)}(q, t)=b F_{n-1}^{(r)}(q, q t)+a q t F_{n-r}^{(r)}\left(q, q^{r} t\right), \quad n \geqslant r+1, \tag{2.20}
\end{equation*}
$$

with $G_{1}^{(r)}(q, t)=\cdots=G_{r-1}^{(r)}(q, t)=b$ and $G_{r}^{(r)}(q, t)=b+a q t$. From (2.20), one gets formulas for $G_{n}^{(r)}(q, t)$ similar to those for $F_{n}^{(r)}(q, t)$. For example, taking $a=r, b=1$ in (2.20), and applying (2.12), yields

$$
\begin{equation*}
\widehat{L}_{n}^{(r)}(q, t):=\sum_{0 \leqslant k \leqslant\lfloor n / r\rfloor} q^{k+r\binom{k}{2}}\left[\frac{(r-1) k_{q}+(n-(r-1) k)_{q}}{(n-(r-1) k)_{q}}\right]\binom{n-(r-1) k}{k}_{q} t^{k}, \tag{2.21}
\end{equation*}
$$

a q-generalization of the r-Lucas numbers.

3 Circular r-Mino Arrangements

If $n \in \mathbb{P}$ and $0 \leqslant k \leqslant\lfloor n / r\rfloor$, let $\mathcal{C}_{n, k}^{(r)}$ denote the set of coverings by $k r$-minos and $n-r k$ squares of the numbers $1,2, \ldots, n$ arranged clockwise around a circle:

By the initial segment of an r-mino occurring in such a cover, we mean the segment first encountered as the circle is traversed clockwise. Classifying members of $\mathcal{C}_{n, k}^{(r)}$ according as (i) 1 is covered by one of r segments of an r-mino or (ii) 1 is covered by a square, and applying (2.1), yields

$$
\begin{align*}
\left|\mathcal{C}_{n, k}^{(r)}\right| & =r\binom{n-(r-1) k-1}{k-1}+\binom{n-(r-1) k-1}{k} \\
& =\frac{n}{n-(r-1) k}\binom{n-(r-1) k}{k}, \quad 0 \leqslant k \leqslant\lfloor n / r\rfloor . \tag{3.1}
\end{align*}
$$

Below we illustrate two members of $\mathcal{C}_{5,1}^{(4)}$:

In covering (i), the initial segment of the 4-mino covers 1 , and in covering (ii), the initial segment covers 4.

With

$$
\begin{equation*}
\mathcal{C}_{n}^{(r)}:=\bigcup_{0 \leqslant k \leqslant\lfloor n / r\rfloor} \mathcal{C}_{n, k}^{(r)}, \quad n \in \mathbb{P}, \tag{3.2}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
\left|\mathcal{C}_{n}^{(r)}\right|=\sum_{0 \leqslant k \leqslant\lfloor n / r\rfloor} \frac{n}{n-(r-1) k}\binom{n-(r-1) k}{k}=L_{n}^{(r)}, \tag{3.3}
\end{equation*}
$$

where $L_{1}^{(r)}=L_{2}^{(r)}=\cdots=L_{r-1}^{(r)}=1, L_{r}^{(r)}=r+1$, and $L_{n}^{(r)}=L_{n-1}^{(r)}+L_{n-r}^{(r)}$ if $n \geqslant r+1$. Note that

$$
\begin{equation*}
\sum_{n \geqslant 1} L_{n}^{(r)} x^{n}=\frac{x+r x^{r}}{1-x-x^{r}} \tag{3.4}
\end{equation*}
$$

and that

$$
\begin{equation*}
L_{n}^{(r)}=F_{n}^{(r)}+(r-1) F_{n-r}^{(r)}, \quad n \geqslant 1 . \tag{3.5}
\end{equation*}
$$

Given $c \in \mathcal{C}_{n}^{(r)}$, let $v(c):=$ the number of r-minos in the covering c, let $\sigma(c):=$ the sum of the numbers covered by the initial segments of each of these r-minos, and let

$$
\begin{equation*}
L_{n}^{(r)}(q, t):=\sum_{c \in \mathcal{C}_{n}^{(r)}} q^{\sigma(c)} t^{v(c)} . \tag{3.6}
\end{equation*}
$$

Conditioning on whether the number 1 is covered by a square or by an initial segment of an r-mino or by an r-mino with initial segment $n-(r-1-i)$ for some $i, 1 \leqslant i \leqslant r-1$, yields the formula

$$
\begin{equation*}
L_{n}^{(r)}(q, t)=F_{n}^{(r)}(q, t)+q^{n-r+1} t \sum_{i=1}^{r-1} q^{i} F_{n-r}^{(r)}\left(q, q^{i} t\right), \quad n \geqslant 1, \tag{3.7}
\end{equation*}
$$

which reduces to the well known formula (see, e.g., [10])

$$
\begin{equation*}
L_{n}^{(r)}(1, t)=F_{n}^{(r)}(1, t)+(r-1) t F_{n-r}^{(r)}(1, t), \quad n \geqslant 1, \tag{3.8}
\end{equation*}
$$

when $q=1$. The $L_{n}^{(r)}(q, t)$, though, do not appear to satisfy a simple recurrence like (2.6) or (2.7).

With the ordinary generating function

$$
\begin{equation*}
\lambda^{(r)}(x, q, t):=\sum_{n \geqslant 1} L_{n}^{(r)}(q, t) x^{n}, \tag{3.9}
\end{equation*}
$$

one sees that (3.7) is equivalent to

$$
\begin{equation*}
\lambda^{(r)}(x, q, t)=-1+\Phi^{(r)}(x, q, t)+q t x^{r} \sum_{i=1}^{r-1} q^{i} \Phi^{(r)}\left(q x, q, q^{i} t\right) . \tag{3.10}
\end{equation*}
$$

By (2.11), identity (3.10) is equivalent to

Theorem 3.1.

$$
\begin{equation*}
\lambda^{(r)}(x, q, t)=\frac{x}{1-x}+\sum_{k \geqslant 1} \frac{q^{k+r\binom{k}{2}} t^{k} x^{r k}\left[1+(1-x) \sum_{i=1}^{r-1} q^{k i}\right]}{(1-x)(1-q x) \cdots\left(1-q^{k} x\right)} . \tag{3.11}
\end{equation*}
$$

The following theorem gives an explicit formula for the $L_{n}^{(r)}(q, t)$:
Theorem 3.2. For all $n \in \mathbb{P}$,

$$
\begin{equation*}
L_{n}^{(r)}(q, t)=\sum_{0 \leqslant k \leqslant\lfloor n / r\rfloor} q^{k+r\binom{k}{2}}\left[\frac{n_{q}}{(n-(r-1) k)_{q}}\right]\binom{n-(r-1) k}{k}_{q} t^{k} \tag{3.12}
\end{equation*}
$$

Proof. It suffices to show

$$
\sum_{\substack{c \in \mathcal{C}_{n, k}^{(r)}}} q^{\sigma(c)}=q^{k+r\binom{k}{2}}\left[\frac{n_{q}}{(n-(r-1) k)_{q}}\right]\binom{n-(r-1) k}{k}_{q} .
$$

Partitioning $\mathcal{C}_{n, k}^{(r)}$ into three classes according to whether (i) 1 is covered by an initial segment of an r-mino, (ii) 1 is covered by an r-mino with initial segment $n-(r-1-i)$ for some i, $1 \leqslant i \leqslant r-1$, or (iii) 1 is covered by a square, and applying (2.12) to each class, yields

$$
\begin{aligned}
& \sum_{c \in \mathcal{C}_{n, k}^{(r)}} q^{\sigma(c)}=q^{(k-1)+r\binom{k-1}{2}}\binom{n-(r-1) k-1}{k-1}_{q}\left(q^{r(k-1)+1}+\sum_{i=1}^{r-1} q^{(k-1) i+(n-r+1+i)}\right) \\
& \quad+q^{k+r\binom{k}{2}}\binom{n-(r-1) k-1}{k}_{q} \cdot q^{k} \\
& \quad=q^{k+r\binom{k}{2}}\binom{n-(r-1) k-1}{k-1}_{q}\left(1+\sum_{i=1}^{r-1} q^{n-(r-i) k}\right)+q^{2 k+r\binom{k}{2}}\binom{n-(r-1) k-1}{k}_{q} \\
& \quad=q^{k+r\binom{k}{2}}\left[\binom{n-(r-1) k-1}{k-1}_{q}\left(1+\sum_{i=1}^{r-1} q^{n-k i}\right)+q^{k}\binom{n-(r-1) k-1}{k}_{q}\right] \\
& \quad=\frac{q^{k+r\binom{k}{2}}}{(n-(r-1) k)_{q}}\binom{n-(r-1) k}{k}_{q}\left[k_{q}\left(1+\sum_{i=1}^{r-1} q^{n-k i}\right)+q^{k}(n-r k)_{q}\right]
\end{aligned}
$$

from which (3.12) now follows from the easily verified identity

$$
n_{q}=k_{q}\left(1+\sum_{i=1}^{r-1} q^{n-k i}\right)+q^{k}(n-r k)_{q} .
$$

Note that (3.11) and (3.12) reduce, respectively, to (3.4) and (3.3) when $q=t=1$. Setting $q=1$ and $q=-1$ in (3.11) gives

Corollary 3.3.

$$
\begin{equation*}
\lambda^{(r)}(x, 1, t)=\frac{x+r t x^{r}}{1-x-t x^{r}} . \tag{3.13}
\end{equation*}
$$

and

Corollary 3.4.

$$
\begin{equation*}
\lambda^{(r)}(x,-1, t)=\frac{x+x^{2}-t x^{2\left\lfloor\frac{r}{2}\right\rfloor+1}+r(-1)^{r} t^{2} x^{2 r}}{1-x^{2}+(-1)^{r+1} t^{2} x^{2 r}} \tag{3.14}
\end{equation*}
$$

Either setting $q=-1$ in (3.7) and applying (2.16), (2.17), and (3.8) or taking the even and odd parts of both sides of (3.14), replacing x with $x^{1 / 2}$, and applying (3.13) and (2.14) yields

Theorem 3.5. If $m \in \mathbb{P}$, then

$$
\begin{equation*}
L_{2 m}^{(r)}(-1, t)=L_{m}^{(r)}\left(1,(-1)^{r} t^{2}\right) \tag{3.15}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{2 m-1}^{(r)}(-1, t)=F_{m-1}^{(r)}\left(1,(-1)^{r} t^{2}\right)-t F_{m-\left\lfloor\frac{r}{2}\right\rfloor-1}^{(r)}\left(1,(-1)^{r} t^{2}\right) \tag{3.16}
\end{equation*}
$$

For a combinatorial proof of (3.15) and (3.16), we first associate to each $c \in \mathcal{C}_{n}^{(r)}$ a word $u_{c}=u_{1} u_{2} \cdots$ in the alphabet $\{r, s\}$, where

$$
u_{i}:= \begin{cases}r, & \text { if the } i^{\text {th }} \text { piece of } c \text { is an } r \text {-mino } \\ s, & \text { if the } i^{\text {th }} \text { piece of } c \text { is a square }\end{cases}
$$

and one determines the $i^{\text {th }}$ piece of c by starting with the piece covering 1 and proceeding clockwise from that piece. Note that for each word starting with r, there are exactly r associated members of $\mathcal{C}_{n}^{(r)}$, while for each word starting with s, there is only one associated member.

Assign to each covering $c \in \mathcal{C}_{n}^{(r)}$ the weight $w_{c}:=(-1)^{\sigma(c)} t^{v(c)}$, where t is an indeterminate. Let $\mathcal{C}_{n}^{(r)^{\prime}}$ consist of those c in $\mathcal{C}_{n}^{(r)}$ whose associated words $u_{c}=u_{1} u_{2} \cdots$ satisfy the conditions $u_{2 i}=u_{2 i+1}, i \geqslant 1$. Suppose $c \in \mathcal{C}_{n}^{(r)}-\mathcal{C}_{n}^{(r)^{\prime}}$, with i_{0} being the smallest value of i for which $u_{2 i} \neq u_{2 i+1}$. Exchanging the positions of the $\left(2 i_{0}\right)^{t h}$ and $\left(2 i_{0}+1\right)^{s t}$ pieces within c produces a σ-parity changing, v-preserving involution of $\mathcal{C}_{n}^{(r)}-\mathcal{C}_{n}^{(r)^{\prime}}$.

First assume $n=2 m$ and let $\mathcal{C}_{2 m}^{(r) *} \subseteq \mathcal{C}_{2 m}^{(r)^{\prime}}$ comprise those c whose first and last pieces are the same and containing an even number of pieces in all. We extend the involution of $\mathcal{C}_{2 m}^{(r)}-\mathcal{C}_{2 m}^{(r)^{\prime}}$ above to $\mathcal{C}_{2 m}^{(r)^{\prime}}-\mathcal{C}_{2 m}^{(r) *}$ as follows. Let $c \in \mathcal{C}_{2 m}^{(r)^{\prime}}-\mathcal{C}_{2 m}^{(r) *}$, first assuming r is even. If the initial segment of the r-mino covering 1 in c lies on an odd (resp., even) number, then rotate the entire arrangement counterclockwise (resp., clockwise) one position, moving the pieces but keeping the numbered positions fixed.

Now assume r is odd. If 1 is covered by a segment of an r-mino which isn't initial, the rotate the entire arrangement clockwise or counterclockwise depending on whether the initial segment of this r-mino covers an odd or an even number. If 1 is covered by a square or by an initial segment of an r-mino, then pair c with the covering obtained by reading $u_{c}=u_{1} u_{2} \ldots$ backwards. Thus,

$$
\begin{aligned}
L_{2 m}^{(r)}(-1, t) & =\sum_{c \in \mathcal{C}_{2 m}^{(r)}} w_{c}=\sum_{c \in \mathcal{C}_{2 m}^{(r) *}} w_{c}=\sum_{c \in \mathcal{C}_{2}^{(r) *}}(-1)^{r v(c) / 2} t^{v(c)} \\
& =\sum_{c \in \mathcal{C}_{m}^{(r)}}(-1)^{r v(c)} t^{2 v(c)}=L_{m}^{(r)}\left(1,(-1)^{r} t^{2}\right),
\end{aligned}
$$

which gives (3.15).
Next, assume $n=2 m-1$ and let $\mathcal{C}_{2 m-1}^{(r) *} \subseteq \mathcal{C}_{2 m-1}^{(r)^{\prime}}$ comprise those c in which 1 is covered by a square or by an initial segment of an r-mino and containing an odd number of pieces in all if 1 is covered by a square. Define an involution of $\mathcal{C}_{2 m-1}^{(r)^{\prime}}-\mathcal{C}_{2 m-1}^{(r) *}$ as follows. If r is odd, then use the mapping defined above for $\mathcal{C}_{2 m}^{(r)^{\prime}}-\mathcal{C}_{2 m}^{(r) *}$ when r was even. If r is even, then slightly modify the mapping defined above for $\mathcal{C}_{2 m}^{(r)^{\prime}}-\mathcal{C}_{2 m}^{(r) *}$ when r was odd (i.e., replace the word "initial" with "second" in a couple of places). Thus,

$$
\begin{aligned}
L_{2 m-1}^{(r)}(-1, t) & =\sum_{\substack{c \in \mathcal{C}_{2 m-1}^{(r) *}}} w_{c}=\sum_{\substack{c \in \mathcal{C}_{2 m-1}^{(r) *} \\
u_{1}=s \text { in } u_{c}}} w_{c}+\sum_{\substack{c \in \mathcal{C}_{2 m-1}^{(r) *} \\
u_{1}=r \text { in } u_{c}}} w_{c} \\
& =\sum_{\substack{c \in \mathcal{R}_{2 m-2}^{(r)} \\
v(c) \text { even }}} w_{c}-t \sum_{\substack{c \in \mathcal{R}_{2 m-r-1}^{(r)^{\prime}}}} w_{c} \\
& =F_{m-1}^{(r)}\left(1,(-1)^{r} t^{2}\right)-t F_{m-\left\lfloor\frac{1}{2}\right\rfloor-1}^{(r)}\left(1,(-1)^{r} t^{2}\right),
\end{aligned}
$$

which gives (3.16), where $\mathcal{R}_{n}^{(r)^{\prime}} \subseteq \mathcal{R}_{n}^{(r)}$ consists of those $c=c_{1} c_{2} \cdots$ such that $c_{2 i-1}=c_{2 i}$, $i \geqslant 1$.

Acknowledgment

The authors would like to thank the anonymous referee for a prompt, thorough reading of this paper and for many excellent suggestions which improved it. We are indebted to the referee for formulas (2.9), (2.10), (3.7), and (3.10).

References

[1] A. Benjamin, J. Quinn, and F. Su, Phased tilings and generalized Fibonacci identities, Fibonacci Quart. 38 (2000), 282-288.
[2] A. Benjamin and J. Quinn, Proofs that Really Count: The Art of Combinatorial Proof, The Dolciani Mathematical Expositions, 27, Mathematical Association of America, 2003.
[3] L. Carlitz, Fibonacci notes 3: q-Fibonacci numbers, Fibonacci Quart. 12 (1974), 317322.
[4] L. Carlitz, Fibonacci notes 4: q-Fibonacci polynomials, Fibonacci Quart. 13 (1975), 97-102.
[5] J. Cigler, q-Fibonacci polynomials, Fibonacci Quart. 41 (2003), 31-40.
[6] J. Cigler, A new class of q-Fibonacci polynomials, Electron. J. Combin. 10 (2003), \#R19.
[7] J. Cigler, Some algebraic aspects of Morse code sequences, Discrete Math. Theor. Comput. Sci. 6 (2003), 55-68.
[8] J. Cigler, q-Fibonacci polynomials and the Rogers-Ramanujan identities, Ann. Combin. 8 (2004), 269-285.
[9] M. Shattuck and C. Wagner, Parity theorems for statistics on domino arrangements, Electron. J. Combin. 12 (2005), \#N10.
[10] M. Shattuck and C. Wagner, A new statistic on linear and circular r-mino arrangements, Electron. J. Combin. 13 (2006), \#R42.
[11] M. Shattuck and C. Wagner,
Periodicity and parity theorems for a statistic on r-mino arrangements, J. Integer Seq. 9 (2006), Art. 6.3.6.
[12] C. Wagner, Generalized Stirling and Lah numbers, Discrete Math. 160 (1996), 199-218.
[13] H. Wilf, generatingfunctionology, Academic Press, 1990.

2000 Mathematics Subject Classification: Primary 11B39; Secondary 05A15.
Keywords: r-mino arrangement, polynomial generalization, Fibonacci numbers, Lucas numbers, Gibonacci numbers.
(Concerned with sequences A000045 and A000204.)

Received February 20 2007; revised version received May 7 2007. Published in Journal of Integer Sequences, May 72007.

Return to Journal of Integer Sequences home page.

