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Abstract

We first explain the historical and logical relations of hyperstructures introduced

by M. Krasner and R. Rota, and generalized by T. Vougiouklis. Then, with our new

algorithm based on our previous results on hypergroups and Hv-groups of order 2, 3

and 4, we enumerate hyperrings and Hv-rings. More precisely, we found 63 hyperrings

of order 2, 875 Hv-rings of order 2 and 33,277,642 hyperrings of order 3. Finally, in

this new context, we study a new connection between groups and hypergroups via the

notion of duality.

1 Introduction and Definitions

More than seventy years have gone by since the creation of the concept of hypergroup [21].
M. Krasner and H. S. Wall [28, 35] introduced similar definitions, but only F. Marty’s concept
is accepted [14, 15, 16, 17, 19, 30, 31, 32].

Definition 1. A hypergroupoid 〈H, .〉 is a set H equipped with an hyperoperation (.) : H ×
H −→ P(H).

Definition 2. A quasigroup is an hypergroupoid verifying the axiom of reproduction: ∀x ∈
H xH = Hx = H.
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Definition 3. A semigroup is an hypergroupoid verifying associativity: ∀x, y, z ∈ H x(yz) =
(xy)z.

Definition 4 (F. Marty [21, 22, 23]). A hypergroup 〈H, .〉 is a quasigroup verifying associa-
tivity: ∀x, y, z ∈ H x(yz) = (xy)z.

In 1991 T. Vougiouklis generalized the definition of F. Marty by weakening associativity
[30].

Definition 5. A hyperoperation is weakly associative if for any x, y, z ∈ H, x(yz)∩(xy)z 6= ∅.

Definition 6 (T. Vougiouklis [30]). 〈H, .〉 is a Hv-group if (.) : H × H → p(H) is a weakly
associative hyperoperation for which the reproduction axiom hH = Hh = H is valid for any
h of H.

The essential idea which governs the existence of these Hv-groups is a weaken associa-
tivity. This weakening simply consists in considering the two terms of the associative law as
sets, since this is possible, and in requiring that their intersection shall not be empty.

The Hv-groups have a property of which the hypergroups are deprived. This one is built
from the definition of the following partial order.

Definition 7 (T. Vougiouklis [31]). Let 〈H, .〉 and 〈H, ∗〉 two Hv-groups. We say that (.)
is less or equal than (∗), and note ≤, if and only if there exists f ∈ Aut(H, ∗) such that
xy ⊆ f(x ∗ y) for any x, y of H.

From this definition we can deduce the following theorem:

Theorem 8 (T. Vougiouklis [31]). If a hyperoperation is weakly associative, then any hyper-
operation superior to it and defined on the same set is weakly associative too.

From this property, we can show the concept of minimality in a natural way.

Definition 9 (T. Vougiouklis [30]). (R, +, .) A hyperstructure is called a hyperring if (R, +)
is a hypergroup, (R, .) is a semigroup and (.) is distributive in respect to (+).

Definition 10 (S. Spartalis, A. Dramalides and T. Vougiouklis [29]). (R, +, .) A hyperstruc-
ture is called an Hv-ring if (R, +) is an Hv-group, (R, .) is a weak semigroup and (.) is weakly
distributive in respect to (+).

A. Dramalidis enumerated a restricted class
of Hv-rings, the dual Hv-rings.

Definition 11 (A. Dramalidis [16]). An Hv-ring (R, +, .) is dual if (R, ., +) is an Hv-ring.

He classified all Hv-ring such that R = {0, 1, a} where 0 is the scalar unit of Hv-group
(R, +) and absorbing element of semi-hypergroup (H, .) and 1 is the scalar unit of semi-
hypergroup (H, .). In the same way, he classified all hyperannoids, where (.) is not dis-
tributive in respect to (+). He needed to avoid a maximum of computations because they
were done case-by-case. So he tried to minimize the role of associativity because of its high
computational cost and use the symmetry of duality.
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We enumerate hyperrings and Hv-rings of small orders and this will probably improve
our understanding of the hyperannoids [6]. Indeed certain categories of hypergroups were
studied because of their low computational cost, but they were useless for the understanding
of hyperstructures. Our research [4, 2] already showed the greater importance of cyclic and
single-power hypergroups than the canonical hypergroups [25, 26].

From an historical point of view, M. Krasner introduced the notion of hyperring in 1966,
ten years after the notion of hyperfield. So the hyperring in M. Krasner’s sense generalizes
his notion of hyperfield. This one was considered as the natural extension of F. Martys’s
hypergroups. But this extension is not as natural as it seems. In order to avoid technical
problems, Krasner used ad hoc properties which were studied by his disciple J. Mittas.
Mittas introduced canonical hypergroups which are, in short, a restriction of hyperring and
consequently of hyperfield in Krasner’s sense. This global schema seemed complete and
closed, but in fact was not. The radically different approach of T. Vougiouklis showed this
critical point. T. Vougiouklis started his work by weakening associativity in the hypergroup
of Marty. It was then easy to extend this notion to hyperring and to hyperfield in a natural
way. Moreover, this approach generalizes Krasner’s and Rota’s approaches. Vougiouklis
does not work in a specific case as canonical hypergroups. His approach is based on the
hypergroup in Marty’s sense and moreover, he introduces Hv-groups. He avoids the pitfall
of representativity in the world of hypergroups. Indeed in our research, we show the low
importance of canonical hypergroups in the set of hypergroups. From this observation, we
easily deduce that M. Krasner’s generalization of hyperrings and hyperfields are analogous
in the corresponding world. So the generalization of Vougiouklis embraces the whole set of
hyperstructures.

2 Enumeration

In enumeration theory we have already obtained some results in different fields (see [8, 9,
11, 12, 18, 20] and A108089, A132590.

In our previous work we enumerate and classify the hypergroups of order 3 [3, 4] and
abelian hypergroups of order 4 [5] with Birkhoff’s point of view [10]. We then study the Hv-
groups of order 3 [7], and abelian Hv-groups of order 4 with Marty-Moufang hypergroups
[1].

Thanks to these enumerative results we can characterize some hyperstructures, as shown
with rigid hyperstructures or with hypocomplete hypergroups [4]. The obtained results
contribute consequently to validate our algorithm. We could also confirm the results of R.
Migliorati [24], some results of S-C. Chung and B-M Choi [13] and results of T. Vougiouklis
[33, 34] too. Now we present the best computational results in these fields A132591.

Theorem 12 (G. Nordo [27]). There are 3,999 isomorphism classes of hypergroups of order
3.

We give a more precise presentation with the classification of hypergroups by projectivity
and cyclicity (see table 1).
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Classes of isomorphism
Abelians non Abelians

Cyclics
non Cyclics

Cyclics
non Cyclics

Proj. non Proj. Proj. non Proj.

|Aut(H)|

1 4 2 - - - -
2 3 - - 6 1 -
3 70 3 5 154 8 4
6 360 2 17 3279 20 61

Table 1: Classification of Hypergroups of Order 3

Theorem 13 (R. Bayon & N. Lygeros [7]). There are 20 isomorphism classes of Hv-groups
of order 2 (see table 2), ∗ indicates hypergroups).

Hv-group |Aut(Hv)| Hv-group |Aut(Hv)|
(a; b; b; a)∗ 2 (H; a; H; b)∗ 2
(H; b; b; a) 2 (a; H; H; b)∗ 1
(a; H; b; a) 2 (H; a; a; H) 2
(a; b; H; a) 2 (H; b; a; H) 1
(H; a; a; b)∗ 2 (H; a; b; H) 1
(H; H; b; a) 2 (H; H; H; a)∗ 2
(H; b; H; a) 2 (H; H; H; b)∗ 2
(a; H; H; a) 2 (H; H; a; H) 2
(b; H; H; a) 1 (H; H; b; H) 2
(H; H; a; b)∗ 2 (H; H; H; H)∗ 1

Table 2: Hv-groups of Order 2 (H = {a, b})

Theorem 14 (R. Bayon & N. Lygeros [7]). There are 1,026,462 isomorphism classes of
Hv-groups of order 3 (see table 3).

Classes of isomorphism
Abelian non Abelians

Cyclics
non Cyclics

Cyclics
non Cyclics

Proj. non Proj. Proj. non Proj.

|Aut(Hv)|

1 5 2 - 4 2 -
2 8 1 1 47 5 7
3 243 8 14 2034 66 76
6 7439 10 195 1003818 1083 11394

Table 3: Classification of Hv-groups of Order 3
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3 Hyperrings

A natural approach to hyperrings is to construct them from their underlying hyperstructures.
With this manner, we can easily check intermediate results. Consequently, we use the enu-
meration of hypergroups, semi-hypergroups, Hv-groups and Sv-groups (which are analogue
of Hv-groups for semi-hypergroups).

Fact 1 (R. Bayon & N. Lygeros). Let (R, +, .) be a hyperring then Aut(R) = Aut(+)∪Aut(.).

Corollary 15 (R. Bayon & N. Lygeros). Let (R, +, .) be a hyperring then |Aut(R)| ≥
max(|Aut(+)|, |Aut(.)|).

Theorem 16 (R. Bayon & N. Lygeros). There are 63 isomorphism classes of hyperrings of
order 2 (see table 4).

Classes

|Aut(R)|
1 6
2 114

Table 4: Classification of Hyperrings of Order 2

Theorem 17 (R. Bayon & N. Lygeros). There are 875 isomorphism classes of Hv-rings of
order 2 (see table 5).

Classes

|Aut(R)|
1 33
2 1684

Table 5: Classification of Hv-rings of Order 2

Theorem 18 (R. Bayon & N. Lygeros). There are 33,277,642 isomorphism classes of hy-
perrings of order 3 (see Table 6).

Classes

|Aut(R)|

1 31
2 506
3 67,857
6 199,528,434

Table 6: Classification of Hyperrings of Order 3

This global approach generalize the partial results obtained by T. Vougiouklis and A.
Dramalidis [16, 31].
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3.1 Algorithm

We generate all the simple hyperstructures (hypergroups, semigroups, Hv-groups,... ) and
for each of them we compute the order of its automorphisms group. The number of hyper-
structures, up to isomorphism, p is:

p =
n!∑

i=1

si

i

where n is the order of the hyperstructures, and si is the number of hyperstructures having
an automorphisms group of order i.

The algorithm for hyperrings is a natural extension of this one. We generate all simple
hyperstructures and check distributivity for each valid pair of hyperstructures. If the hy-
perringoid verifies distributivity, we compute and we store the order of their automorphisms
group. As all paires have been checked, we determine the number of hyperrings, up to
isomorphism.

4 Remarks on the notion of the dual of a group

Our research on the notion of the dual of a group is leaded by the program of M. Mizony. We
want to establish a structural link between groups and hypergroups. The dual of a group G,
denoted Ĝ is the set of characters which are morphism from the group to the multiplicative
group C

∗. So Ĝ is a group for product of morphism. If G is a finite group of order n then
the elements of Ĝ are the morphisms from G to the group of the nth root of unity.

For the cyclic group Z/pZ if we denote ω = e
2νx

p , with i ∈ {0, . . . , n−1}, all the elements
of Ĝ are written:

χi : G → C
∗

x 7→ (ωi)x = e
2νxi

p

We have G ∼= Ĝ and Ĝ is an orthogonal basis of E the set of functions from G to C, vector
space with an Hermitian product: 〈f, g〉 =

∑
x∈G

¯f(x).g(x) ( ¯f(x) is the conjugate of f(x)),
and we know that this product definition is important for classical hypergroups. It is a way
to catch hyperrings in the sense of F. Marty. It is possible resolve an more generic case, the
one of abelian finite group. In this case, the dual of G is an orthogonal basis of E too. We
can observe it by considering the decomposition of Z-modules:

G ∼= Z/p1Z × . . . × Z/prZ

But this kind of approach is not possible in the non-abelian case. To see this, we can
study the symmetric group of order n. Indeed, by choosing two specific transpositions and
combining them to have a permutation, we obtain only two characters. This problem in
classical group theory is an opening to the theory of hypergroups.
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