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Abstract

In this paper, we investigate those positive integers n for which the equality σ(φ(n)) =
σ(n) holds, where σ is the sum of the divisors function and φ is the Euler function.

1 Introduction

For a positive integer n we write σ(n) and φ(n) for the sum of divisors function and for the
Euler function of n, respectively. In this note, we study those positive integers n such that

σ(φ(n)) = σ(n)

holds. This is sequence A033631 in Sloane’s Online Encylopedia of Integer Sequences. Let
A be the set of all such positive integers n and for a positive real number x we put A(x) =
A ∩ [1, x]. Our result is the following.
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Theorem 1. The estimate

#A(x) = O

(

x

(log x)2

)

holds for all real numbers x > 1.

The above upper bound might actually be the correct order of magnitude of #A(x).
Indeed, note that if m is such that

σ(2φ(m)) = 2σ(m) (1)

and if q > m is a Sophie Germain prime, that is a prime number q such that p = 2q + 1 is
also prime, then n = mp ∈ A. The numbers m = 2318, 2806, 5734, 5937, 7198, 8097, . . .
all satisfy relation (1), and form Sloane’s sequence A137733. More generally, if k and m are
positive integers such that

σ(2kφ(m)) = 2kσ(m) (2)

and q1 < . . . < qk are primes with pi = 2qi + 1 also primes for i = 1, . . . , k and q1 > m,
then n = p1 . . . pkm ∈ A. Now recall that the Prime K-tuplets Conjecture of Dickson
(see, for instance, [2, 4, 8]) asserts that, except in cases ruled out by obvious congruence
conditions, K linear forms ain+ bi, i = 1, . . . , K, take prime values simultaneously for about
cx/(log x)K integers n ≤ x, where c is a positive constant which depends only on the given
linear forms. Under this conjecture (applied with K = 2 and the linear forms n and 2n+1),
we obtain that there should be ≫ x/(log x)2 Sophie Germain primes q ≤ x, which suggests
that #A(x) ≫ x/(log x)2. We will come back to the Sophie Germain primes later.

Throughout, we use the Vinogradov symbols ≫ and ≪ and the Landau symbols O and
o with their regular meanings. We use log for the natural logarithm and p, q and r with or
without subscripts for prime numbers.

2 Preliminary Results

In this section, we point out a subset B(x) of all the positive integers n ≤ x of cardinality
O(x/(log x)2). For the proof of Theorem 1 we will work only with the positive integers
n ∈ A(x)\B(x). Further, x0 is a sufficiently large positive real number, where the meaning
of sufficiently large may change from a line to the next.

We put

y = exp

(

log x

log log x

)

.

For a positive integer n we write P (n) for the largest prime factor of n. It is well known
that

Ψ(x, y) = #{n ≤ x | P (n) ≤ y} = x exp(−(1 + o(1))u log u) (u → ∞), (3)

where u = log x/ log y, provided that u ≤ y1/2 (see [1], Corollary 1.3 of [6], or Chapter III.5
of [9]). In our case, u = log log x, so, in particular, the condition u ≤ y1/2 is satisfied for
x > x0. We deduce that

u log u = (log log x)(log log log x).
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Thus, if we set B1(x) = {n ≤ x | P (n) ≤ y}, then

#B1(x) = Ψ(x, y) = x exp (−(1 + o(1))(log log x)(log log log x))

<
x

(log x)10
for x > x0. (4)

We now let
z = (log x)26

and for a positive integer n we write ρ(n) for its largest squarefull divisor. Recall that a
positive integer m is squarefull if p2 | m whenever p is a prime factor of m. It is well known
that if we write S(t) = {m ≤ t | m is squarefull}, then

#S(t) =
ζ(3/2)

ζ(3)
t1/2 + O(t1/3),

where ζ is the Riemann Zeta-Function (see, for example, Theorem 14.4 in [7]). By partial
summation, we easily get that

∑

m≥t
m squarefull

1

m
≪ 1

t1/2
. (5)

We now let B2(x) be the set of positive integers n ≤ x such that one of the following
conditions holds:

(i) ρ(n) ≥ z,

(ii) p | n for some prime p such that ρ(p ± 1) ≥ z,

(iii) there exist primes r and p such that p | n, p ≡ ±1 (mod r) and ρ(r ± 1) ≥ z.

We will find an upper bound for #B2(x). Let B2,1(x) be the set of those n ∈ B2(x) for which
(i) holds. We note that for every n ∈ B2,1(x) there exists a squarefull positive integer d ≥ z
such that d | n. For a fixed d, the number of such n ≤ x does not exceed x/d. Hence,

#B2,1(x) ≤
∑

d≥z
d squarefull

x

d
≪ x

(log x)13
, (6)

where we have used estimate (5) with t = z. Now let B2,2(x) be the set of those n ∈ B2(x)
for which (ii) holds. We note that each n ∈ B2,2(x) has a prime divisor p such that p ≡ ±1
(mod d), where d is as above. Given d and p, the number of such n ≤ x does not exceed
x/p. Summing up over all choices of p and d we get that

#B2,2(x) ≤
∑

d≥z
d squarefull

∑

p≡±1 (mod d)
p≤x

x

p
≪ x

∑

d≥z
d squarefull

log log x

φ(d)

≪ x(log log x)2
∑

d≥z
d squarefull

1

d
≪ x(log log x)2

(log x)13
, (7)
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where in the above estimates we used aside from estimate (5), the fact that the estimate

∑

p≡a (mod b)
p≤x

1

p
≤ 1

p1(a, b)
+ O

(

log log x

φ(b)

)

(8)

holds uniformly in a, b and x when b ≤ x, where a and b are coprime and p1(a, b) is the
smallest prime number p ≡ a (mod b) (note that p1(1, b) ≥ b+1 and p1(−1, b) = p1(b−1, b) ≥
b−1 ≥ φ(b) for all b ≥ 2), together with the well known minimal order φ(n)/n ≫ 1/ log log x,
valid for n in the interval [1, x].

Let B2,3(x) be the set of those n ∈ B2(x) for which (iii) holds. Then there exists r such
that r ≡ ±1 (mod d) for some d as above, as well as p | n such that r | p − 1 or r | p + 1.
Given d, r and p, the number of such n ≤ x does not exceed x/p, and now summing up over
all choices of d, r and p, we get that

#B2,3(x) ≤
∑

d≥z
d squarefull

∑

r≡±1 (mod d)
r≤x

∑

p≡±1 (mod r)
p≤x

x

p

≪ x
∑

d≥z
d squarefull

∑

r≡±1 (mod d)
r≤x

log log x

φ(r)

≪ x(log log x)2
∑

d≥z
d squarefull

∑

r≡±1 (mod d)
r≤x

1

r

≪ x(log log x)3
∑

d≥z
d squarefull

1

φ(d)

≪ x(log log x)4
∑

d≥z
d squarefull

1

d
≪ x(log log x)4

(log x)13
, (9)

where in the above estimates we used again estimate (5), estimate (8) twice as well as the
minimal order of the Euler function on the interval [1, x].

Hence, using estimates (6)–(9), we get

#B2(x) ≤ #B2,1(x) + #B2,2(x) + #B2,3(x) <
x

(log x)10
for x > x0. (10)

We now put
w = 10 log log x

and set

S(w, x) =
∑

ω(m)≥w
m≤x

1

m
,
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where ω(m) denotes the number of distinct prime factors of the positive integer m. Note that,

using the fact that
∑

p≤t

1

p
= log log t + O(1) and Stirling’s formula k! = (1+o(1))kke−k

√
2πk,

we have

S(w, x) =
∑

k≥w

∑

ω(m)=k
m≤x

1

m
=
∑

k≥w

1

k!

(

∑

p≤x

∑

α≥1

1

pα

)k

=
∑

k≥w

1

k!

(

∑

p≤x

1

p
+ O

(

∑

p≥2

1

p2

))k

≪
∑

k≥w

1

k!
(log log x + O(1)))k

≤
∑

k≥w

(

e log log x + O(1)

k

)k

≤
∑

k≥w

(

e log log x + O(1)

w

)k

≪
(

e log log x + O(1)

w

)w

≪ 1

(log x)10 log(10/e)
<

1

(log x)11
(11)

for x > x0 because 10 log(10/e) > 11.

We now let B3(x) be the set of positive integers n ≤ x such that one of the following
conditions holds:

(i) ω(n) ≥ w,

(ii) p | n for some prime p for which ω(p ± 1) ≥ w,

(iii) there exist primes r and p such that p | n, p ≡ ±1 (mod r) and ω(r ± 1) ≥ w.

Let B3,1(x), B3,2(x) and B3,3(x) be the sets of n ∈ B3(x) for which (i), (ii) and (iii) hold,
respectively.

To bound the cardinality of B3,1(x), note that, using (11), we have

#B3,1(x) =
∑

ω(n)≥w
n≤x

1 ≤
∑

ω(n)≥w
n≤x

x

n
= xS(w, x) <

x

(log x)11
(12)

for x > x0. To bound the cardinality of B3,2(x), note that each n ∈ B3,2(x) admits a prime
divisor p such that ω(p±1) ≥ w. Fixing such a p, the number of such n ≤ x does not exceed
x/p. Summing up over all such p we have, again in light of (11),

#B3,2(x) ≤
∑

ω(p±1)≥w
p≤x

x

p
≤ x









∑

ω(p+1)≥w
p+1≤x+1

2

p + 1
+

∑

ω(p−1)≥w
p−1≤x

1

p − 1









≤ x(2S(w, x + 1) + S(w, x)) < 3xS(w, x) + 2

≪ x

(log x)11
(13)
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for x > x0. To bound the cardinality of B3,3(x), note that for each n ∈ B3,3(x) there exist
some prime r with ω(r ± 1) ≥ w and some prime p | n such that p ≡ ±1 (mod r). Given
such r and p, the number of such n ≤ x does not exceed x/p. Summing up over all choices
of r and p given above we get, again using (11),

#B3,3(x) ≤
∑

ω(r±1)≥w
r≤x

∑

p≡±1 (mod r)
p≤x

x

p
= x(log log x)

∑

ω(r±1)≥w
r≤x

1

φ(r)

= x(log log x)
∑

ω(r±1)≥w
r≤x

1

r − 1

≤ x(log log x)









∑

ω(r−1)≥w
r−1≤x

1

r − 1
+

∑

ω(r+1)≥w
r+1≤x

3

r + 1









≤ x(log log x)(S(w, x) + 3S(w, x + 1))

≤ 4x(log log x)S(w, x) + O(log log x) ≪ x(log log x)

(log x)11
(14)

for x > x0.

Hence, using estimates (12) to (14), we get

#B3(x) ≤ #B3,1(x) + #B3,2(x) + #B3,3(x) <
x

(log x)10
for x > x0. (15)

We now let

B4(x) = {n ≤ x | n 6∈ (B1(x) ∪ B2(x)) and p2 | φ(n) for some p > z}.

Let n ∈ B4(x) and let p2 | φ(n) for some prime p. Then it is not possible that p2 | n (because
n 6∈ B2(x)), nor is it possible that p2 | q − 1 for some prime factor q of n (again because
n 6∈ B2(x)). Thus, there must exist distinct primes q and r dividing n such that q ≡ 1
(mod p) and r ≡ 1 (mod p). Fixing such p, q and r, the number of acceptable values of
such n ≤ x does not exceed x/(qr). Summing up over all the possible values of p, q and r
we arrive at

#B4(x) ≤
∑

z≤p≤x

∑

q≡1 (mod p)
r≡1 (mod p)

q<r, qr≤x

x

qr
≤ x

∑

z≤p≤x

1

2









∑

q≡1 (mod p)
q≤x

1

q









2

≪ x
∑

z≤p≤x

(log log x)2

(p − 1)2
≪ x(log log x)2

∑

z≤p≤x

1

p2

≪ x(log log x)2

(log x)13
,
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where we used estimates (8) and (5). Hence,

#B4(x) <
x

(log x)10
for all x > x0. (16)

We now let
τ = exp

(

(log log x)2
)

and let B5(x) stand for the set of n ≤ x which are multiples of a prime p for which either
p− 1 or p + 1 has a divisor d > τ with P (d) < z. Fix such a pair d and p. Then the number
of n ≤ x divisible by p is at most x/p. This shows that

#B5(x) ≤
∑

P (d)<z
τ<d≤x

∑

p≡±1 (mod d)
p≤x

x

p
≪ x log log x

∑

P (d)<z
τ<d≤x

1

d
. (17)

It follows easily by partial summation from the estimates (3) for Ψ(x, v), that if we write
v = log τ/ log z, then

S =
∑

P (d)<z
τ<d≤x

1

d
≤ log x

exp((1 + o(1))v log v)
.

Since v = (log log x)/26, we get that

v log v = (1/26 + o(1))(log log x)(log log log x)

and therefore that

S ≤ log x

exp((1 + o(1))v log v)
<

1

(log x)11
(18)

for all x > x0, which together with estimate (17) gives

#B5(x) <
x

(log x)10
for x > x0. (19)

Thus, setting

B(x) =
5
⋃

i=1

Bi(x), (20)

we get, from estimates (4), (10), (15), (16) and (19) that

#B(x) ≤
5
∑

i=1

#Bi(x) ≪ x

(log x)10
for all x > x0. (21)

3 The Proof of Theorem 1

We find it convenient to prove a stronger theorem.
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Theorem 2. Let a and b be any fixed positive integers. Setting

Aa,b = {n | σ(aφ(n)) = bσ(n)},

then the estimate

#Aa,b(x) ≪a,b
x

(log x)2

holds for all x ≥ 3.

Proof. Let x be large and let B(x) be as in (20). We assume that n ≤ x is a positive integer
not in B(x). We let A1(x) be the set of n ∈ Aa,b(x)\B(x) for which (P (n)−1)/2 is not prime
but such that there exists a prime number r > z and another prime number q | P (n) − 1
for which r | gcd(P (n) + 1, q + 1). To count the number of such positive integers n ≤ x,
let r and q be fixed primes such that r | q + 1, and let P be a prime such that q | P − 1
and r | P + 1. The number of positive integers n ≤ x such that P (n) = P does not exceed
x/P . Note that the congruences P ≡ −1 (mod r) and P ≡ 1 (mod q) are equivalent to
P ≡ aq,r (mod qr), where aq,r is the smallest positive integer m satisfying m ≡ −1 (mod r)
and m ≡ 1 (mod q). We distinguish two instances:

Case 1: qr < P .

Let A′
1(x) be the set of such integers n ∈ A1(x). Then

#A′
1(x) ≤

∑

z<r≤x

∑

q≡−1 (mod r)
q≤x

∑

P≡aq,r (mod qr)
qr<P≤x

x

P

≪ x log log x
∑

z<r≤x

∑

q≡−1 (mod r)
q≤x

1

φ(qr)

≪ x log log x
∑

z<r≤x

1

r

∑

q≡−1 (mod r)
q≤x

1

q

≪ x(log log x)2
∑

z<r≤x

1

rφ(r)

≪ x(log log x)2
∑

z<r

1

r2
≪ x(log log x)2

(log x)11
, (22)

where in the above inequalities we used estimates (8) and (5).

Case 2: qr ≥ P .

Let A′′
1(x) be the set of such integers n ∈ A1(x). Here we write n = Pm. Note that

P > P (m) because y > z for large x and n 6∈ B1(x)∪B2(x). Furthermore, since r | q + 1, we
may write q = rℓ−1. Since q | P −1, we may write P = sq +1 = s(rℓ−1)+1 = srℓ+1− s.
Since r | P + 1, we get that 1 − s ≡ −1 (mod r), and therefore that s ≡ 2 (mod r). Hence,
there exists a nonnegative integer λ such that s = λr + 2. If λ = 0, then s = 2 leading to
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P = 2q + 1, which is impossible. Thus, λ > 0. Let us fix the value of λ as well as that of r.
Then

rℓ − 1 = q and (λr2 + 2r)ℓ − (λr + 1) = P (23)

are two linear forms in the variable ℓ which are simultaneously primes. Note that P ≤ x/m
and since P ≥ ℓr(λr + 2), we get that ℓ ≤ x/(mr(λr + 2)). In particular, mr(λr + 2) ≤ x.
Recall that a typical consequence of Brun’s sieve (see for example Theorem 2.3 in [3]), is
that if

L1(m) = Am + B and L2(m) = Cm + D

are linear forms in m with integer coefficients such that AD−BC 6= 0 and if we write E for
the product of all primes p dividing ABCD(AD−BC), then the number of positive integers
m ≤ y such that L1(m) and L2(m) are simultaneously primes is

≤ Ky

(log y)2

(

E

φ(E)

)2

for some absolute constant K. Applying this result for our linear forms in ℓ shown at (23)
for which A = r, B = −1, C = λr2 + 2r and D = −(λr + 1), we get that the number of
acceptable values for ℓ does not exceed

K
x

mr(λr + 2) (log(x/(mr(λr + 2)))2

(

(λr + 2)(λr + 1)r

φ((λr + 2)(λr + 1)r)

)2

≪ x(log log x)2

mr(λr + 2)
,

where for the rightmost inequality we used again the minimal order of the Euler function on
the interval [1, x]. Here, K is some absolute constant. Summing up over all possible values
of λ, r and m, we get

#A′′
1(x) ≪

∑

z<r≤x

∑

1≤λ≤x

∑

1≤m≤x

x(log log x)2

mr(λr + 2)

< x(log log x)2

(

∑

z<r≤x

1

r2

)(

∑

1≤λ≤x

1

λ

)(

∑

1≤m≤x

1

m

)

≪ x(log log x)2(log x)2

(log x)13
=

x(log log x)2

(log x)11
, (24)

where we used again estimate (5).

From estimates (22) and (24), we get

#A1(x) ≤ #A′
1(x) + A′′

1(x) <
x

(log x)10
for all x > x0. (25)

Now let A2(x) be the set of those n ∈ Aa,b(x)\(A1(x)∪B(x)) and such that (P (n)−1)/2
is not prime. With n ∈ A2(x), we get that n = Pm, where P > P (m) for x > x0 because
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y > z for large x and n 6∈ B1(x) ∪ B2(x). Then bσ(n) = bσ(m)(P + 1). Let d1 be the
largest divisor of P + 1 such that P (d1) ≤ z. Then P + 1 = d1ℓ1, and bσ(n) = bσ(m)d1ℓ1.
Furthermore, φ(n) = φ(m)(P − 1), so that aφ(n) = aφ(m)(P − 1). Let d be the largest
divisor of P − 1 which is z-smooth; that is, with P (d) ≤ z. Then P − 1 = dℓ. Note that ℓ
is squarefree (because n 6∈ B2(x)) and ℓ and φ(m) are coprime (for if not, there would exist
a prime r > z such that r | ℓ and r | φ(m), so that r2 | φ(n), which is impossible because
n 6∈ B4(x)). Since z > a for x > x0, we get that aφ(m)d and ℓ are coprime, and therefore
that σ(φ(n)) = σ(aφ(m)d)σ(ℓ). We thus get the equation

σ(aφ(m)d)σ(ℓ) = bσ(m)d1ℓ1.

Now note that ℓ1 and σ(ℓ) are coprime. Indeed, if not, since ℓ is squarefree, there would
exist a prime factor r of ℓ1 (necessarily exceeding z) dividing q + 1 for some prime factor q
of ℓ, that is of P − 1. But this is impossible because n 6∈ A1(x).

Thus, ℓ1 | σ(aφ(m)d). Note now that Pm ≤ x, so that m ≤ x/P ≤ x/y. Furthermore,
max{d, d1} ≤ τ because n 6∈ B5(x). Let us now fix m, d and d1. Then ℓ1 | σ(aφ(m)d),
and therefore the number of choices for ℓ1 does not exceed τ(σ(aφ(m)d)), where τ(k) is the
number of divisors of the positive integer k. The above argument shows that if we write M
for the set of such acceptable values for m, then

#A2(x) ≤ xτ 2

y
max{τ(σ(aφ(m)d)) | m ∈ M, d ≤ τ, d1 ≤ τ}. (26)

To get an upper bound on τ(σ(aφ(m)d)), we write aφ(m)d as

aφ(m)d = AB,

where A is squarefull, B is squarefree, and A and B are coprime. Clearly,

σ(aφ(m)d) = σ(AB) = σ(A)σ(B),

so that
τ(σ(aφ(m)d)) ≤ τ(σ(A))τ(σ(B)).

Since B is squarefree, it is clear that

σ(B)
∣

∣

∣

∏

q|aφ(m)d

(q + 1).

Furthermore,

ω(aφ(m)d) ≤ ω(aφ(n)) ≤ ω(a) + ω(n) +
∑

p|n

ω(p − 1) ≤ w2 + w + O(1), (27)

so that we have ω(aφ(m)d) ≤ 2w2 if x > x0. The above inequalities follow from the fact that
n 6∈ B3(x). Also, for each one of the at most 2w2 prime factors q of aφ(m)d, the number q+1
has at most w prime factors itself and its squarefull part does not exceed z, again because
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n 6∈ B3(x). In conclusion, σ(B) | C, where C is a number with at most 2w3 prime factors
whose squarefull part does not exceed z2w2

. Thus,

τ(σ(B)) ≤ τ(C) ≤ 2ω(C)τ(ρ(C)),

where ω(C) ≤ 2w3 and ρ(C) ≤ z2w2

. Clearly,

τ(ρ(C)) ≤ ρ(C) ≤ zw2

= exp(w2 log z) = exp(O(log log x)3),

and since also
2ω(C) ≤ 22w3

= exp(O(log log x)3),

we finally get that
τ(σ(B)) = exp(O(log log x)3). (28)

We now deal with σ(A). We first note that P (A) ≤ z for x > x0. Indeed, if q > z divides
A, then q2 | aφ(n). If x > x0, then z > a, in which case the above divisibility relation forces
q2 | φ(n) which is not possible because n 6∈ B3(x). By looking at the multiplicities of the
prime factors appearing in A, we easily see that

A
∣

∣

∣ρ(a)ρ(d)
∏

p|m

ρ(p − 1)









∏

q | aφ(m)d
q≤z

q









ω(aφ(m)d)

.

As we have seen at estimate (27), ω(aφ(m)d) ≤ 2w2, in which case the above relation shows
that

A ≤ ρ(a)zω(aφ(m)d)+ω(aφ(m)d)2 ≪ z4w4+2w2

= exp(O(log log x)5).

But since σ(A) < A2 and τ(σ(A)) ≪ σ(A) ≤ A2, we get that

τ(σ(A)) = exp(O(log log x)5), (29)

which together with estimate (28) gives

τ(σ(aφ(m)d)) ≤ τ(σ(A))τ(σ(B)) = exp(O(log log x)5).

Returning to estimate (26), we get that

#A2(x) ≤ xτ 2

y
exp(O(log log x)5) = x exp

(

− log x

log log x
+ O((log log x)5)

)

<
x

(log x)10
for all x > x0. (30)

Thus, writing C(x) = Aa,b(x)\(A1(x) ∪ A2(x) ∪ B(x)), we get that

Aa,b(x) = #C(x) + O

(

x

(log x)10

)

. (31)

11



Moreover, if n ∈ C(x), then n = Pm, with P > P (m) for x > x0, and (P − 1)/2 is a prime.
Hence, P − 1 = 2q, where q is a Sophie Germain prime. Since also P ≤ x/m, it follows by
Brun’s method that the number of such values for P is

≪ x

m(log x/m)2
≤ x

m(log y)2
=

x(log log x)2

m(log x)2
.

In the above inequalities we used the fact that x/m ≥ P ≥ y. Summing up over all m ≤ x,
we get

#C(x) ≪
∑

m≤x

x(log log x)2

m(log x)2
≪ x(log log x)2

log x
. (32)

In particular,

#Aa,b(x) ≪ x(log log x)2

log x
. (33)

This is weaker than the bound claimed by our Theorem 2. However, it implies, by partial
summation, that

∑

n∈Aa,b(x)

1

n
≤ 1 +

∫ x

2
−

1

t
d(#Aa,b(t))

= 1 +
#Aa,b(t)

t

∣

∣

∣

t=x

t=2
−

+ O

(∫ x

2
−

t(log log t)2

t2 log t
dt

)

= O((log log x)3). (34)

To get some improvement, we return to C(x). Let n ∈ C(x) and write it as n = Pm, where
P > P (m). Write also P = 2q + 1. Then φ(n) = 2φ(m)q. Moreover, q > (y − 1)/2 > z
for x > x0 so that q does not divide aφ(m) (because q > a and n 6∈ B3(x)). Hence,
σ(aφ(n)) = σ(2aφ(m))(q + 1). On the other hand, bσ(n) = bσ(m)(P + 1) = 2bσ(m)(q + 1).
Thus, the equation σ(aφ(n)) = σ(bn) forces σ(2aφ(m)) = 2bσ(m), implying that m ∈
A2a,2b(x/P ) ⊂ A2a,2b(x/y). The argument which leads to estimate (32) now provides the
better estimate

#C(x) ≪
∑

m∈A2a,2b(x)

x(log log x)2

m(log x)2
≪ x(log log x)5

(log x)2
.

In particular, we get

#Aa,b(x) ≪ x(log log x)5

(log x)2
. (35)

This is still somewhat weaker than what Theorem 2 claims. However, it implies that the
sum of the reciprocals of the numbers in Aa,b is convergent. In fact, by partial summation,
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it follows, as in estimates (34), that

∑

n∈Aa,b

n≥y

1

n
≤

∫ ∞

y−

1

t
d(#Aa,b(t))

=
#Aa,b(t)

t

∣

∣

∣

t=∞

t=y−
+ O

(∫ x

y−

t(log log t)5

t2(log t)2
dt

)

≪ (log log y)5

(log y)2
+

∫ ∞

y−

1

t(log t)3/2
dt

≪ 1

(log y)1/2
. (36)

We now take another look at C(x). Let again n ∈ C(x) and write n = Pm. Fixing m and
using the fact that P ≤ x/m is a prime such that (P − 1)/2 is also a prime, we get that the
number of choices for P is

≪ x

m(log(x/m))2
.

Hence,

#C(x) ≪
∑

m∈A2a,2b(x/y)

x

m(log(x/m))2
.

We now split the above sum at m = x1/2 and use estimate (36) to get

#C(x) ≤
∑

m∈A2a,2b(x1/2)

x

m(log(x/m))2
+

∑

m∈A2a,2b

x1/2≤m≤x/y

x

m(log(x/m))2

≤ x

(log x1/2)2

∑

m∈A2a,2b

1

m
+

x

(log y)2

∑

m∈A2a,2b

m≥x1/2

1

m

≪ x

(log x)2
+

x

(log y)5/2
=

x

(log x)2
+

x(log log x)5/2

(log x)5/2

≪ x

(log x)2
, (37)

which together with estimate (31) leads to the desired conclusion of Theorem 2.
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