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Abstract

Riordan group concepts are combined with the basic properties of convolution fam-
ilies of polynomials and Sheffer sequences, to establish a duality law, canonical forms
ρ(n, m) =

(
n
m

)
cmFn−m(m), c 6= 0, and extensions ρ(x, x − k) = (−1)kxk+1cx−kFk(x),

where the Fk(x) are polynomials in x, holding for each ρ(n, m) in a Riordan array. Ex-
amples ρ(n, m) =

(
n
m

)
Sk(x) are given, in which the Sk(x) are “orthogonal” polynomials

currently found in mathematical physics and combinatorial analysis.

1 Introduction

We derive from basic principles in the theory of convolution families [10] and Sheffer se-

quences [16] of polynomials, canonical forms ρ(n,m) =
(

n
m

)
cmFn−m(m), c 6= 0, and exten-

sions ρ(x, x − k) = xkcx−kFk(x − k)/k! = (−1)kxk+1cx−kρk(x), holding for all elements ρ
in the Riordan group. We show in Section 3 that the extensions are of polynomial type
when c = 1. In Section 2, we define transformation rules and a duality law, that will greatly
simplify algebraic manipulations. In Section 4, we give examples ρ(n,m) =

(
n
m

)
Sn−m(m),

in which Sk(x) are “orthogonal” polynomials currently found in mathematical physics and
combinatorial analysis. The concluding remarks are in Section 5.
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For easy reference, we recall some definitions. The Riordan group is a set of invertible
infinite lower triangular matrices M = {ρ(n,m)}n,m≥0, called Riordan matrices, with entries:

ρ(n,m) =

[
un

n!

]
g(u)

f(u)m

m!
=

n!

m!
[un−m]g(u)

(
f(u)

u

)m

, ρ(0, 0) = 1, (1)

equivalently,
∑

n≥m≥0

ρ(n,m)
un

n!
= g(u)

f(u)m

m!
(“exponential” Riordan group),

where g(u) = 1+ g1u+ g2u
2 + . . . is invertible, with ĝ(u) = 1/g(u) =

∑
n≥0 ĝnu

n, and f(u) =

f1u + f2u
2 + . . . is a delta series with compositional inverse f(u), f(f(u)) = f(f(u)) = u.

A group element is denoted by ρ = (g(u), f(u)) and the group law ⋆ is (l(u), h(u)) ⋆
(g(u), f(u)) = (l(u)g(h(u)), f(h(u)), with identity I = (1, u) and group inverse ρ−1 =
(1/g(f(u)), f(u)). A group representation ρ = ρ1 ⋆ ρ2, in matrix notation, is ρ(n,m) =∑

i ρ1(n, i)ρ2(i,m). As we know, group representations are extensively used in the study
of identities [13, 18, 14, 15] and they will play an essential role in this work. A sequence
ak(x), given by

∑
k ak(x)uk = a(u)x, is a convolution family of polynomials iff a(0) = 1

[10]. In a convolution family the polynomials ak(x) are multiples of x for k > 0, having
degree ≤ k, and xa0(x) ≡ 1. A Sheffer sequence Sk(x) for (g(u), f(u)) [16] is given by∑

k≥0 Sk(x)uk/k! = (1/g(f(u)))exf(u), where (g(u), f(u)) are as in Riordan group theory;
the Sheffer sequence for f = (1, f(u)) is the associated sequence for f(u), and the Sheffer
sequence for (g(u), u) is the Appell sequence for g(u).

2 Transformation Rules and the Duality Law

We first define some useful transformation rules, noting that transformation rules and Barry’s
“transforms” [2] are different concepts.

1) The duality rule “∼” for a function f(n,m), n,m integers, is f̃(n,m) = f(−m,−n)

and for a function fk(x), the rule is f̃k(x) = fk(k − x). When x = n and k = n−m, the two
rules coincide. The following special cases will be used in the sequel, without reference.

(̃
n

m

)
=

˜( n

n − m

)
=

(
−m

n − m

)
= (−1)n−m

(
n − 1

m − 1

)
, n ≥ m ≥ 0,

ñ!

m!
= ñn−m = (−m)n−m = (−1)n−m(n − 1)n−m = (−1)n−m n!

m!

m

n
,

ñ!

(m − 1)!
= ñn−m+1 = (−1)n−m+1 n!

(m − 1)!
.

The dual ρ̃(n,m) of ρ(n,m) and the dual of a group representation ρ = ρ1 ⋆ ρ2 are

ρ̃(n,m) = ρ(−m,−n) = (−1)n−m n!

m!

m

n
[un−m]g(u)

(
f(u)

u

)−n

from (1),

ρ̃(n,m) =
∑

i

ρ1(−m,−i)ρ2(−i,−n) =
∑

i

ρ̃2(n, i)ρ̃1(i,m), ρ̃ = ρ̃2 ⋆ ρ̃1,
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after a change i → −i; this change is legal because we are allowed to use summation
∑

i

over an unbounded range.
2) For any number µ, the scaling rule “(µ)” is a group automorphism:

(µ)ρ = (1, µu) ⋆ ρ ⋆

(
1,

u

µ

)
=

(
g(µu),

f(µu)

µ

)
, lim

µ→0
(µ)(g(u), f(u)) = (1, u) = I,

((µ)ρ)(n,m) = µn−mρ(n,m), ((µ)ρ)−1 = (µ)ρ−1, (µ)(ρ1 ⋆ ρ2) = (µ)ρ1 ⋆ (µ)ρ2.

3) The negation rule “(-)” is the special scaling µ = −1:

(−)ρ = (g(−u), −f(−u)) : ((−)ρ)(n,m) = (−1)n−mρ(n,m).

Duality and negation applied to (1) and Lagrange’s inversion formula yield, respectively,

(−1)n−mf̃(n,m) = (−1)n−mf(−m,−n) =
n!

m!

m

n
[un−m]

(
f(u)

u

)−n

,

f−1(n,m) =
n!

m!
[un]f(u)m =

n!

m!

m

n
[un−m]

(
f(u)

u

)−n

.

Combining the two formulas, we find a duality law in the associated subgroup {(1, f(u))}:

f−1(n,m) = (−1)n−mf̃(n,m), f−1 = (−)f̃ , (2)

For g in the Appell subgroup {(g(u), u)} and ρ−1 = f−1 ⋆ g−1 = (−)f̃ ⋆ g−1, (1) yields:

g(n,m) =
n!

m!
gn−m =

(
n

m

)
(n − m)!gn−m, g−1(n,m) =

(
n

m

)
(n − m)!ĝn−m,

ρ−1(n,m) =
n−m∑

i=0

(−1)if̃(n, n − i)(n − i)n−m−iĝn−m−i.

3 Canonical Forms and Extensions

Let us write the delta series f(u) in f = (1, f(u)) and the defining relation (1) as:

f(u) = uca(u) = uc(1 + a1u + · · · ), c 6= 0,

ρ(n,m) =

(
n

m

)
cm

[
un−m

(n − m)!

]
g(u)

(
f(u)

cu

)m

=

(
n

m

)
cmFn−m(m), (3)

and call c 6= 0 the weight of f , {can} the f-reference sequence (f -refseq) and
(

n
m

)
cmFn−m(m)

the canonical form of ρ(n,m). The remarkable structure of canonical forms, namely, a
binomial coefficient multiplied by a factor cmFn−m(m), implies the following.

Proposition 1. A numerical array with entries ρ(n,m) =
(

n
m

)
cmFn−m(m) is a Riordan

matrix iff the Fk(x) are polynomials forming a Sheffer sequence.
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Proof. If the ρ(n,m) are numbers related to an element ρ = (g(u), f(u)), then according to
(3) we can write

∑

n−m

Fn−m(m)

(n − m)!
un−m = g(u)em ln( f(u)

cu ) = g(u)

(
f(u)

cu

)m

,

thus the Fk(x) form a Sheffer sequence given by
∑

k Fk(x)uk/k! = g(u)ex ln(f(u)/cu). Con-
versely, if the above Sheffer sequence is given, then, by letting x = m, we obtain (3), proving
that the ρ(n,m) define a Riordan matrix.

Corollary 2. Each ρ(n,m) in a Riordan matrix has an extension

ρ(x, x − k) = (−1)kxk+1ρk(x), ρk(x) = cx−k (−1)k

k!

Fk(x − k)

x − k
, (4)

which is of polynomial type when c = 1.

Proof. Since Fn−m(m) is a polynomial in m, we can put in the canonical form n − m = k,
n = x and m = x − k, thus obtaining immediately well-defined extensions (4), which are
clearly of polynomial type when c = 1.

Since f(u)/cu = a(u) is invertible and a(0) = 1, the coefficients (−1)kxfk(x + k) in the
power series expansion of (f(u)/cu)x, written as (f(u)/cu)x = x

∑
k(−1)kfk(x + k)uk, form

a convolution family. Similarly, (1) written for f−1(n,m) = (−1)n−mf̃(n,m), with u → cu
and m = −x, implies:

(
cf(u)

u

)m

= −m
∑

n−m≥0

(−1)n−mfn−m(−m)
un−m

cn−m
,

(
f(cu)

u

)−x

=

(
f(u)/c

u

)−x

= x
∑

k≥0

(−1)kfk(x)uk, cf
(
f
(u

c

))
= u,

showing that the (−1)k+1xfk(−x) form a convolution family for (f(u)/c/u)x. Moreover,

f(n,m) = (−1)n−m n!

(m − 1)!
cmfn−m(n),

f−1(n,m) = (−1)n−mf̃(n,m) = (−1)n−m+1 n!

(m − 1)!
c−nfn−m(−m)

f(x, x − k) = cx−k(−1)kxk+1fk(x), f−1(x, x − k) = c−x(−1)k+1xk+1fk(k − x).

The fk(x), k > 0, will be called the f -polynomial sequence (f -polseq).
One can verify that if f has weight c, then f−1 has weight 1/c, and that changes of scale

keep weights invariant, hence, they cannot modify the characteristics of an extension.
For g ∈ {(g(u), u)}, we have simply:

g(n,m) =

(
n

n

)
(n − m)!gn−m, g−1(n,m) =

(
n

n

)
(n − m)!ĝn−m,

g(x, x − k) = gkx
k, g−1(x, x − k) = ĝkx

k.

4



For ρ(n,m), in addition to (3) and (4), and for ρ−1(n,m) we write relations that, when
g(u) ≡ 1, reduce to the corresponding expressions for f(n,m) and f−1(n,m):

ρ(n,m) = (−1)n−m n!

(m − 1)!
ρn−m(n),

ρ−1(n,m) =

(
n

m

)
c−nGn−m(m) = (−1)n−m+1 n!

(m − 1)!
ρ−1

n−m(−m),

ρ−1(x, x − k) = (−1)k+1xk+1ρ−1
k (k − x), ρ−1

k (x) = c−x (−1)k

k!

Gk(−x)

x
.

When the nonzero entries in a f -refseq are of the same sign, we say that ρ = (g(u), f(u))
is of the second kind, otherwise, of the first kind. In a pair {ρ, ρ−1}, at most one element can
be of the 2nd kind; when such an element exists, it will be denoted ρ−1. Similarly, capital
letters in an inverse pair {φ, Φ} will, in general, indicate elements of the 2nd kind.

Duality defines a dual element ρ̃ that extends ρ(n,m) to all integers n, m, and since, as
we have seen, ρ̃(n,m), ρ(n,m) and ρ−1(n,m) are tied together, it is natural to include these
numbers in a single extended ρ-array that will represent the pair {ρ, ρ−1}.

We adopt the term generalized numbers for the ρ(n,m) in the sense that these numbers
extend to all integer values n,m,. The ρ-refseq: c

∑n
i=0 gian−i given by

ρ(n + 1, 1)

(n + 1)!
= c[un]g(u)

f(u)

cu
= c[un]g(u)a(u) = c

n∑

i=0

gian−i.

4 Riordan Arrays and “Orthogonal” Polynomials

Consider a Sheffer sequence Sk(x) for (g(u), f(u)) and the elements U =
(
1/g(f(u)), uef(u)

)

and C = (1/g(f(u)), f(u)), then we can write:

∑

k≥0

Sk(x)

k!
uk =

exf(u)

g(f(u))
=
∑

i≥0

xi 1

i!

f(u)i

g(f(u))
=
∑

i≥0

xi
∑

k≥0

C(k, i)
uk

k!
,

Sk(x) =
k∑

i=0

C(k, i)xi, C(n,m) =

(
n

m

)[
un−m

(n − m)!

] (f(u)
u

)m

g(f(u))
,

U(n,m) =

(
n

m

)[
un−m

(n − m)!

]
emf(u)

g(f(u))
=

(
n

m

)
Sn−m(m) =

(−1)n−m+1n!

(m − 1)!
Un−m(−m),

U(x, x − k) = (−1)k+1xk+1Uk(k − x), Uk(x) =
(−1)k

k!

Sk(−x)

x
, k > 0, U0(x) =

1

x
.

An immediate consequence of these equations is the following important relationship between
Riordan group elements and Sheffer sequences.

Proposition 3. Sk(x) =
∑k

i=0 C(k, i)xi are polynomials forming a Sheffer sequence for

(g(u), f(u)) iff the coefficients C(n,m) are generalized numbers for C = (1/g(f(u)), f(u)).
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We now give examples where the Sk(x) are classical “orthogonal” polynomials, currently
found in mathematical physics and combinatorial analysis.

Example 1. In the typical Stirling-array {s = (1, ln(1 + u)), S = (1, eu − 1)}, we have:

s(n,m) = (−1)n−m n!

(m − 1)!
σn−m(n), S(n,m) = (−1)n−m+1 n!

(m − 1)!
σn−m(−m);

s(x, x − k) = (−1)kxk+1σk(x), S(x, x − k) = (−1)k+1xk+1σk(k − x);

Stirling-polseq : σk(x); s-refseq :
(−1)n

n + 1
, S-refseq :

1

(n + 1)!
;

(
ln(1 + u)

u

)x

= x
∑

k≥0

(−1)kσk(x + k)uk,

(
eu − 1

u

)−x

= x
∑

k≥0

(−1)kσk(x)uk.

The Stirling-array is related to the Exponential Polynomials φk(x) [12, p. 63] forming

the associated sequence for f(u) = ln(1 + u), f(u) = eu − 1, γ−1 = (1, eu − 1):

∑

k

φk(x)

k!
uk = exf(u) = ex(eu−1), C(n,m) = S(n,m) : Stirling numbers (2d kind),

Φ = U =
(
1, ueeu−1

)
, φk(x) =

k∑

i=0

S(k, i)xi : Touchard polynomials;

Φ(n,m) =

(
n

m

)
φn−m(m) =

(−1)n−m+1n!

(m − 1)!
Φn−m(−m), Φk(x) =

(−1)k

k!

φk(−x)

x
;

φk(1) = ̟n =
k∑

i=0

S(k, i) : Bell numbers, given by eeu−1 =
∑

k

̟nu
k/k!.

The Iterated Exponential Polynomials φ
[q]
k (x) form the associated sequence for f(u) =

s[q](u) = s(s[q−1](u)), s[0] = u; f(u) = S[q](u) = S(S[q−1](u)), S[0] = u:

∑

k

φ
[q]
k (x)

k!
uk = exS[q]

, φ
[q]
k (x) =

k∑

i=0

S[q](k, i)xi; S[q] = S ⋆ S ⋆ . . . ⋆ S︸ ︷︷ ︸
q terms

,

Φ[q] = U[q] =
(
1, ueS[q](u)

)
, Φ[1] = Φ, C [q] = (1, S[q](u))

S[q](n,m) =

(
n

m

)
φ

[q]
n−m(m), Φ

[q]
k (x) =

(−1)k

k!

φ
[q]
k (−x)

x
.

The Stirling-array corresponds to q = 1, and for q = 2, we have the Stir[2]-array {β =
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(1, β(u)), B}, β(u) = ln(1 + ln(1 + u)), B(u) = eeu−1 − 1, B-refseq : ̟n+1/(n + 1)!,

β(n,m) =
n∑

i=m

s(n, i)s(i,m), B(n,m) =
n∑

i=m

S(n, i)S(i,m),

∑

k

φ
[2]
k (x)

k!
uk = ex ln(1+ln(1+u)) = (1 + ln(1 + u))x, φ

[2]
k (x) =

k∑

j≥i≥0

s(k, j)s(j, i)xi,

Stir[2]-polseq : σ
[2]
k (x) =

k∑

i=0

(x − i)σk−i(x − i)σi(x).

Example 2. For the Lah-array {λ, Λ = (1, Λ(u))}1, Λ(u) = −λ(−u) = u/(1 − u/2):

Λ(n,m) =
(−1)n−m+1n!

(m − 1)!
Lahn−m(−m) =

(
n

m

)
(n − m)!

2n−m

(
n − 1

m − 1

)
: scaled Lah numbers,

and for the Pascal -array {p, P = (1/(1 − u), u/(1 − u))}, p = P−1 = (−)P :

P (n,m) =
(−1)n−m+1n!

(m − 1)!
Pask(−m) =

n!

m!
[un−m]

1

(1 − u)m+1
=

(
n

m

)
n!

m!
, by [8, (5.56)],

Pascal-polseq : Pascalk(x) =
(−1)k

k!
(x − 1)k−1.

The above arrays are related to the Laguerre Polynomials L
(a)
k (x) of order a [12, p. 31,

p. 108] forming the Sheffer sequence for (g(u) = (1 + u)−a−1, f(u) = u/(u − 1) = f(u)),

given by
∑

k L
(a)
k (x)uk/k! = (1− u)−a−1exu/(u−1); L

{0}
k (x): (simple) Laguerre polynomials.

Lag(a) = U = ((1 − u)−a−1, uef(u)), C(a) =

(
(1 − u)−a−1,

u

u − 1

)
,

Lag(a)(n,m) =

(
n

m

)
L
{a}
n−m(m) = (−1)n−m+1 n!

(m − 1)!
Lag

(a)
n−m(−m),

C(a)(n,m) = (−1)m n!

m!
[un−m](1 − u)−a−1−m = (−1)m n!

m!

(
a + n

n − m

)
, by [8, (5.56)],

L
(a)
k (x) =

k∑

i=0

C(a)(k, i)xi =
k∑

i=0

k!

i!

(
a + k

k − i

)
(−x)i. (5)

The Lah-array corresponds to a = −1 and the Pascal -array to a = 0.

1Erratum: in Della Riccia [5, p. 3, line before last]: Λ(u) = u/(1 + u/2) should be Λ(u) = u/(1 − u/2).
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Example 3. Let us consider the Tanh-array {θ = (1, θ(u)), Θ = (1, Θ(u))}, with

θ(u) = 2
eu − 1

eu + 1
= 2 tanh

u

2
, Θ(u) = ln

1 + u/2

1 − u/2
= 2 arg tanh

u

2
, Θ = Λ ⋆ s, S = Λ ⋆ θ :

θ(n,m) = (−1)n−m n!

(m − 1)!
δn−m(n), Θ(n,m) = (−1)n−m+1 n!

(m − 1)!
δn−m(−m),

δk(x) =
k∑

i=0

(−1)i+1

2i

(k − x − 1)i

i!
σk−i(k − x − i), σk(x) = −

k∑

i=0

(x − 1)i

2ii!
δk−i(k − x),

Tanh-polseq : δk(x).

The Tanh-array and the Tangent-array {arctan = (1, arctan u), tan = (1, tan u)} are
related by the elementary trigonometric formulas:

tan u =
1

ı
tanh(ıu) =

1

2ı
2 tanh

(
2ı

u

2

)
=

θ(2ıu)

2ı
, arctan u =

1

ı
arg tanh(ıu) =

Θ(2ıu)

2ı
,

which look like a scaling of θ and Θ with µ = 2ı, ı2 = −1: tan(n,m) = (2ı)n−mθ(n,m),
arctan(n,m) = (2ı)n−mΘ(n,m). The numbers tan(n,m) and arctan(n,m) appear in Comtet
[4, p.p.259-260] as T (n, k) and t(n, k). Putting T (n,m) = (2ı)n−m(n!/(m − 1)!)δn−m(n) in
the recursion for T (n, k) and after common factors are divided out, we are left with

(x + 1)δk(x + 1) = (x − k)δk(x) −
x − k + 2

4
δk−2(x), δk(x) ≡ 0, k < 0, xδ0(x) ≡ 1,

(compare with(x + 1)σk(x + 1) = (x − k)σk(x) + xσk−1(x) [8, Exercise 6.18]. (6)

One can prove by induction that the δk(x), k = 2j > 0, have degree j − 1 and δk(x) ≡ 0
when k is odd; hence factors (−1)k may be omitted, leaving us with simplified formulas:

(
2 tanh u

2

u

)x

= x
∑

k≥0

δk(x + k)uk,

(
1

u
ln

1 + u
2

1 − u
2

)−x

= x
∑

k≥0

δk(x)uk; Θ = θ̃.

The Tanh-array is related to the Mittag-Leffler Polynomials Mk(x) [12, p.75] forming
the associated sequence for

f(u) =
eu − 1

eu + 1
= tanh

u

2
, f(u) = ln

1 + u

1 − u
= 2 arg tanhu,

∑

k

Mk(x)

k!
uk =

(
1 + u

1 − u

)x

.

MiLef = U =

(
1, u

1 + u

1 − u

)
, C = (1, 2 arg tanhu), MiLefk(x) =

(−1)k

k!

Mk(−x)

x
,

MiLef(n,m) =

(
n

m

)
Mn−m(m) =

(−1)n−m+1n!

(m − 1)!
MiLefn−m(−m),

Mk(x) = 2k

k∑

i=0

Θ(k, i)xi = 2k

k∑

i=0

∑

j

Λ(k, j))s(j, i)xi =
k∑

j=0

k!

j!

(
k − 1

k − j

)
2jxj, (7)

8



where we used the identity
∑

i s(j, i)x
i = xj.

Example 4. The simple Binom-array {bin = (exp−u, u), Bin},

bin(n,m) = (−1)n−m

(
n

m

)
, Bin(n,m) =

(
n

m

)
, Bin(x, x− k) = (−1)kbin(x, x− k) =

xk

k!
,

is related to the Poisson-Charlier Polynomials c
{a}
k (x) = a−kL

{x−k}
k (a) [12, p.119], since

the egf of c
{a}
k (0) = a−kL

{−k}
k (a) = (−1)k is e−u, by using L

{−k}
k (a) = (−1)kak from (5). The

Tree-array {r = (1, ue−u), R = (1, ue−u)},

r(n,m) = (−1)n−m

(
n

m

)
mn−m, R(n,m) =

(
n

m

)
m

n
nn−m,

(
r(u)

u

)x

= e−xu,

(
R(u)

u

)−x

= x
∑

k

(−1)k

k!
(x − k)k−1uk, T reek(x) =

1

k!
(x − k)k−1,

R(n, 1) = nn−1 : number of rooted trees of n vertices [4, p.152].

can be related to the case a = −1 of the Abel Polynomials Ak(x; a), a 6= 0, [12, p.73],
forming the associated sequence for f(u) = ueau; f(u) = ueau, Ak(x; a) = x(x − ak)k−1.

Abel(a) = U(a) = (1, ueueau

), Abel
(a)
k (x) =

(−1)k

k!

Ak(−x; a)

x
, C(a) = (1, ueau);

Abel(a)(n,m) = (−1)n−m+1 n!

(m − 1)!
Abel

(a)
n−m(−m) =

(
n

m

)
An−m(m; a).

For a = −1, Abel
(−1)
k (x) = (−1)k

k∑

i=0

(
k

i

)
ik−i(−x)i,

(
k

i

)
ik−i : idempotent numbers.

Example 5. The Sinh-array {argshin = (1, 2 arg sinh(u/2)/b), shin = (1, 2 sinh(bu/2))}
is related to the Gould Polynomials Gk(x; a, b), b 6= 0, [12, p.67] forming the associated

sequence for f(u) = eau(ebu − 1), b 6= 0. In fact, when a = −b/2, Gk(x; b) = Gk(x;−b/2, b),
f(u) = ebu/2 − e−bu/2 = 2 sinh(bu/2), c = b, f(u) = 2 arg sinh(u/2)/b,

∑

k

Gk(x; b)uk/k! = ex(2/b) arg sinh(u/2) = B1/2(u)x/b = (u/2 +
√

1 + u2/4)2x/b [10, p.71],

where B1/2(u) = (u/2 +
√

1 + u2/4)2 is a generalized binomial series [8, p.203].

Gould(b) = U(b) =
(
1, ue

2
b

arg sinh u
2

)
, Gould

(b)
k (x) =

(−1)k

k!

Gk(−x; b)

x
,

Gould(b)(n,m) = (−1)n−m+1 n!

(m − 1)!
Gould

(b)
n−m(−m) =

(
n

m

)
Gn−m(m; b);

Gk(x; 1) = x

(
x +

1

2
k − 1)

)k−1

: central factorial polynomials [12, p.68].
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Example 6. The Bernoulli Polynomials B
(a)
k (x) of order a, a 6= 0, [12, p.93] form the

Appell sequence for g(u) = ((eu − 1)/u)a, given by
∑

k B
(a)
k (x)uk/k! = (u/(eu − 1))aexu.

B
(m)
k = B

(m)
k (0) are the higher order Bernoulli numbers and Bk = B

(1)
k are the Bernoulli

numbers given by
∑

k Bku
k/k! = u/(eu − 1) = B(u).

Bern(a) = U =

((
u

eu − 1

)a

, ueu

)
, Bern(a)(n,m) =

(
n

m

)
B

(a)
n−m(m)

C(a) =

((
u

eu − 1

)a

, u

)
, C(a)(n,m) =

(
n

m

)
B

(a)
n−m,

B
(a)
k (x) =

k∑

i=0

(
k

i

)
B

(a)
k−ix

i, Bk(x) =
k∑

i=0

(
k

i

)
Bk−ix

i : Bernoulli polynomials.

The Nörlund polynomials B
(x)
k = B

(x)
k (0) [1] form the associated sequence for ln B(u),

∑

k

B
(x)
k

k!
uk = ex ln B(u) =

(
eu − 1

u

)−x

= x
∑

k≥0

(−1)kσk(x)uk,

B
(x)
k

xk!
= (−1)kσk(x) =

s(x, x − k)

xk+1
,

B
(−x)
k

xk!
= (−1)k+1σk(−x) =

S(x + k, x)

(x + k)k+1
, (8)

Bk

k!
= σk(1) − [k = 1] = −kσk(0), k > 0, by the recursion (6). (9)

For the Bern-array {ber, Ber = (1, uB(u))}, Ber -refseq: Bn/n!, we have

Ber(n,m) =

(
n

m

)
B

(m)
n−m, Bernk(x) =

(−1)k

k!

B
(−x)
k

x
= −σk(−x), k ≥ 0.

In passing, we remark that the associated sequence Uk(x) for f(u) = uB(u) is given by

∑

k

Uk(x)

k!
uk = exuB(u) =

∑

i

xi (uB(u))i

i!
, Uk(x) =

k∑

i=0

(
k

i

)
B

(i)
k−ix

i.

Now consider the Stirling polynomials convolution formula [8, (6.46)], written with t = 1,
i → i − m, r → r + m and s → s + m:

−(r + m)(s + n)
n∑

i=m

σi−m(r + i)σn−i(−s − i) = (r − s + m − n)σn−m(r − s).

Using (8), we can write σn−m(r−s), σi−m(r+i) and σn−i(−s−i) in terms of Stirling numbers
and Nörlund polynomials; after substitution in the convolution relation, we get

n∑

i=m

s(r + i, r + m)

(r + i)i−m

S(s + n, s + i)

(s + n)n−i+1
=

r − s + m − n

s + n

B
(r−s)
n−m

(r − s)(n − m)!
.

10



For a = r − s, integers r, s ≥ 0,
1

(r + i)i−m
=

(r + m)!

(r + i)!
,

1

(s + n)n−i+1
=

(s + i − 1)!

(s + n)!
:

n∑

i=m

s(r + i, r + m)S(s + n, s + i)
(s + i − 1)i−1

(r + i)!
=

a + m − n

s + n

(s + n)!

(r + m)!

B
(a)
n−m

a(n − m)!
.

With r = s, a = 0, we get from (8): and (9),

n∑

i=m

s(r + i, r + m)S(r + n, r + i)
1

i
=

(r + n)n−m

r + n

(
Bn−m

(n − m)!
+ [m = n − 1]

)
, m > 0,

which is a generalization of the case r = s = 0, that corresponds to the known identity:

n∑

i=m

s(i,m)S(n, i)
1

i
=

1

n

(
n

m

)
Bn−m

(n − m)!
+ [m = n − 1], m > 0 [8, (6.100)], (10)

The identity (10), in turn, generalizes the identity Bn =
∑n

i=0(−1)ii!S(n, i)/(i+1) appearing
in Comtet [4, p.220] and which is the special case m = 1 of (10) and, at the same time, of
Kaneko’s identity Bn−m = (−1)n−m+iS(n − m, i)i!/(i + 1)m [9, Theorem 1].

Example 7. The Euler Polynomials E
(a)
k (x) of order a, a 6= 0, [12, p.100] form the Appell

sequence for g(u) = ((eu + 1)/2)a,

∑

k

E
(a)
k (x)

k!
uk =

(
2

eu + 1

)a

exu =

(
e−

u
2

cosh u
2

)a

exu, Ek(x) = E
(1)
k (x) : Euler polynomials,

for u → 2u, x =
a

2
:
∑

k

2kE
(a)
k (a

2
)

k!
uk =

(
1

cosh u

)a

, Ek = 2kEk

(
1

2

)
: Euler numbers.

Euler(a) = U =

((
2

eu + 1

)a

, ueu

)
, Euler(a)(n,m) =

(
n

m

)
E

(a)
n−m(m),

C(a) =

((
2

eu + 1

)a

, u

)
, C(a)(n,m) =

(
n

m

)
E

(a)
n−m(0),

E
(a)
k (x) =

k∑

i=0

C(a)(k, i)xi =
k∑

i=0

(
k

i

)
E

(a)
k−i(0)xi.

For the Euler -array {eul, Eul = (1, uE(u))}, E(u) = 1/ cosh u, Eul -refseq: En/n!, we find

Eul(n,m) =
n!

m!
[un−m]E(u)m =

(
n

m

)
2n−mE

(m)
n−m

(m

2

)

2n−mE
(m)
n−m

(m

2

)
=

n−m∑

i=0

(
n − m

i

)
2imiE

(m)
i (0),

Eul(n + 1, 1)

n + 1
= En =

n∑

i=0

(
n

i

)
2iEi(0).
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The egf of Euler polynomials evaluated at x = 0 and the gf G(u) for the Genocchi
numbers Gn are related by

∑

n

En(0)

n!
un =

(
1 − tanh

u

2

)
=

2

eu + 1
=
∑

n≥0

Gn+1

(n + 1)!
un =

G(u)

u
[4, p.49],

thus, for the Geno-array {gen, Gen = (1, G(u))}, Gen-refseq: Gn+1/(n + 1)!, we have

Gen(n,m) =
n!

m!
[un]

(
G(u)

u

)m

=

(
n

m

)
E

(m)
n−m(0), Genk(x) =

(−1)k

k!

E
(−x)
k

x
.

With G(u) = u
(
1 − tanh

u

2

)
= u

(
1 −

θ(u)

2

)
and

θ(u)i

i!
=
∑

j

θ(j, i)
uj

j!
, we find :

Gen(n,m) =
n!

m!
[un−m]

∑

i

(
m

i

)
(−1)i

2i
θ(u)i =

(
n

m

) n−m∑

i=0

(
m

i

)
(−1)ii!

2i
θ(n − m, i)

=

(
n

m

)
(−1)n−m(n − m)!

n−m∑

i=0

(
m

i

)
i

2i
δn−m−i(n − m),

Gen(n + 1, 1) = Gn+1 = (−1)n

n−m∑

i=0

(
1

i

)
i

2i
δn−i(n) = [n = 0] +

(−1)n(n + 1)!

2
δn−1(n).

With G(u) =
2u

eu + 1
=

2u(eu − 1)

e2u − 1
= B(2u)S(u), we get the binomial convolution

Gen(n,m) =
n−m∑

i=0

(
n

i

)
2iB

(m)
i S(n − i,m).

With
Ber(2u)

2
= u

2u

e2u − 1
=

u

eu − 1

2u

eu + 1
= B(u)G(u), we get :

2n−mBer(n,m) =
n−m∑

i=0

(
n

i

)
B

(m)
i Gen(n − i,m) =

(
n

m

) n−m∑

i=0

(
n − m

i

)
B

(m)
i E

(m)
n−m−i(0);

Gen(n + 1, 1) = Gn+1 = (n + 1)En(0) =
n∑

i=0

(
n + 1

i

)
2iBi,

Ber(n + 1, 1) = (n + 1)Bn =
1

2n

n∑

i=0

(
n + 1

i

)
BiGn+1−i.

Writing G(2u)/2 = 2u/(e2u + 1) = e−uu/ cosh u = e−uEul(u), and applying the binomial
coefficients inversion formula, we obtain a pair of inverse relations, presumably original,

2n−m

mn
Gen(n,m) =

∑

i

(
n

i

)
(−1)n−i Eul(i,m)

mi
↔

Eul(n,m)

mn
=
∑

i

(
n

i

)
2i−mGen(i,m)

mi
,

2nGn+1 =
n∑

i=0

(
n + 1

i + 1

)
(−1)n−i(i + 1)Ei ↔ (n + 1)En =

n∑

i=0

(
n + 1

i + 1

)
2iGi+1.
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Example 8. We consider the Harm1 -array {har1, Har1 = (1, Har1(u))} and the Harm2 -array
{har2, Har2 = (1, Har2(u))}, where Har1(u) and Har2(u) are gf’s related to the harmonic
numbers Hn:

∑

k>0

Hnu
n =

− ln(1 − u)

1 − u
= Har1(u) [8, (7.43)],

2

∫
− ln(1 − u)

1 − u
du =

ln2(1 − u)

u
= u

(
ln(1 − u)

−u

)2

=
∑

n>0

2Hn

n + 1
un = Har2(u),

Har1(n,m) =
n!

m!
[un−m]

(
− ln(1 − u)

u(1 − u)

)m

, Har2(n,m) =
n!

m!
[un−m]

(
ln(1 − u)

−u

)2m

.

Using the inverse pair of group representations Har1 = (−)s⋆(−)r and (−)r = (−)S⋆Har1,
and Har1(n + 1, 1)/(n + 1)! = Hn+1, we get:

Har1(n,m) =
∑

i

(−1)n−is(n, i)

(
i

m

)
mi−m ↔

(
n

m

)
mn−m =

∑

i

(−1)n−iS(n, i)Har1(i,m),

(n+1)!Hn+1 =
n∑

i=0

(−1)n−is(n+1, i+1)(i+1) ↔ n+1 =
n∑

i=0

(−1)n−iS(n+1, i+1)(i+1)!Hi+1.

Similarly, with (−)Har2 = s ⋆ Ber and Ber = S ⋆ (−)Har2, and Har2(n + 1, 1)/(n + 1)! =
2Hn+1/(n + 2), we find:

(−1)n−mHar2(n,m) =
n∑

i=m

s(n, i)

(
i

m

)
B

(m)
i−m =

n!

(m − 1)!
2σn−m(n + m)

↔

(
n

m

)
B

(m)
n−m =

n∑

i=m

S(n, i)(−1)i−mHar2(i,m);

2Hn+1

n + 2
=

(−1)n

(n + 1)!

n∑

i=0

s(n + 1, i + 1)(i + 1)Bi = 2σn(n + 2), (11)

Bn =
2

n + 1

n∑

i=0

S(n + 1, i + 1)
(−1)i(i + 1)!

i + 2
Hi+1.

The identity (11) appears in [12, p.100], written in a different form. Finally:

Har1k(x) = (−1)k

k∑

i=0

(x − i)σk−i(k − x)(−x)i−1, Har2k(x) = (−1)k+12σk(k − 2x).

The elements Har1 and Har2 are related to the Narumi Polynomials Nar
(a)
k (x) [12,

p.127], forming the Sheffer sequence for (g(u) = (u/(eu−1))a, f(u) = eu−1), f(u) = ln(1+u):

∑

k

Nar
(a)
k (x)

k!
uk =

(
u

ln(1 + u)

)a

(1 + u)x. (12)
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In fact, from (12) and the definitions of Har1 and Har2, we derive the canonical forms:

Har1(n,m) =

(
n

m

)
(−1)n−mNar

(−m)
n−m (−m), Har2(n,m) =

(
n

m

)
(−1)n−mNar

(−2m)
n−m (0).

Nar(a) = U(a) =

((
u

ln(1 + u)

)a

, u(1 + u)

)
, C(a) =

((
u

ln(1 + u)

)a

, ln(1 + u)

)
;

Nar(a)(n,m) =

(
n

m

)
Nar

(a)
n−m(m), Nar

(a)
k (x) =

k∑

i=0

C(k, i)xi,

C(a)(n,m) =
n!

m!
[un−m]

(
ln(1 + u)

u

)m−a

= (−1)n−m n!

m!
(m − a)σn−m(n − a).

In addition, with u → −u, v = − ln(1 − u) and x = −a = m, (12) yields:

(−1)kNar
(−m)
k (m)

k!
= [uk]

(
ln(1 − u)(1 − u)

−u

)m

= [uk]

(
v

ev − 1

)m

= [uk]
∑

i

B
(m)
i

vi

i!

=
k∑

i=1

(−1)k−i

k!
B

(m)
i s(k, i); (13)

when m = 1,
k∑

i=1

(−1)k−is(k, i)Bi =

[
uk

k!

]
ln(1 − u)(1 − u)

−u
= k!

(
1

k + 1
−

1

k

)
=

−(k − 1)!

k + 1
,

that is an identity which appears in Wilf [17, (4.3.21)].
Consider the T au-array {τ, T }, τ = s ⋆ (−)r, τ(u) = −r(−s(u)) = (1 + u) ln(1 + u):

τ(n,m) = Nar(−m)(n,m) =

(
n

m

)
Nar

(−m)
n−m (m) =

n∑

i=m

s(n, i)

(
i

i − m

)
mi−m,

T (n,m) = (−1)n−mτ̃(n,m) =
n∑

i=m

S(i,m)

(
n − 1

n − i

)
nn−i.

The numbers τ(n,m) are denoted b(n,m) in Comtet [4, pp. 139–140], wherein they are used
in the computation of the n-th derivative of xax, x > 0, a real 6= 0. For completeness, we
also mention the group representation τ = (2)λ ⋆ Har1.

5 Concluding remarks

In this paper we obtained several known or original identities between sequences by setting
m = 1 in identities between generalized numbers, for example, (11). Conversely, we found
identities between generalized numbers, extending identities between numerical sequences
like, for instance, (13) which is an original generalization of Wilf’s identity [17, (4.3.21)]. The
Akiyama-Tanigawa algorithm and the Euler-Seidel construction are also based on extensions
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of numerical sequences, but the matrices have properties different from those of Riordan
matrices and, at any rate, the purpose there is to develop efficient methods for calculating
special sequences. The interested reader may consult the literature on the subject, for
instance, [6, 11, 3, 7], in order to compare the various approaches.

Canonical forms implied Corollary 2, readily proving the existence of extensions ρ(x, x−
k), that are of polynomial type when ρ has weight c = 1, and they established a connection
with the family of “orthogonal” polynomials, but some care should be exercised because
certain “orthogonal” polynomials may have different names, for instance, Mittag-Leffler
polynomials and Meixner polynomials of the second kind M(x; 0, 0) [12, p. 126] coincide,
similarly, Bernoulli polynomials of the second kind bk(x) [12, p. 113] and Narumi polynomials

Nar
(−1)
k (x) are the same. Recall also that, applying Proposition (3), we easily obtained the

formula (5) for L
(α)
k (x) and (7) for Mk(x), which are found in [12, p. 109 and p. 76] after

longer algebraic manipulations (and a printing error in the last expression of Mk(x)).
Finally, we remember that transformation rules greatly simplified algebraic manipula-

tions, and that the duality law played an important role in the computation of inverse
numbers, especially when one of the two gf’s: f(u), f(u), was not available in closed form.
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