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Abstract

The EKG sequence is defined as follows: a1 = 1, a2 = 2 and an is the smallest
natural number satisfying gcd(an−1, an) > 1 not already in the sequence. The sequence
was previously investigated by Lagarias, Rains and Sloane. In particular, we know that
(an) is a permutation of the natural numbers and that the prime numbers appear in
this sequence in an increasing order.

Lagarias, Rains and Sloane performed many numerical experiments on the EKG
sequence up to the 107th term and came up with several interesting conjectures. This
paper provides proofs for the core part of those conjectures. Namely, let (a′n) be the
sequence (an) with all terms of the form p and 3p, for p prime, changed to 2p. First,
we prove that for any odd prime an = p we have an−1 = 2p. Then we prove that

limn→∞
a′

n

n
= 1, i.e., we have an ∼ n except for the values of p and 3p for p prime: if

an = p then an ∼ n
2 , and if an = 3p then an ∼ 3n

2 .

1 Introduction

The EKG sequence is defined as follows: a1 = 1, a2 = 2 and an is the smallest natural
number not already in the sequence satisfying gcd(an−1, an) > 1. It was originally defined by
Ayres and later investigated by Lagarias, Rains and Sloane [1]. It appears as entry A064413
in the On-line Encyclopedia of Integer Sequences [4]. The first forty terms of the sequence
are

1 2 4 6 3 9 12 8 10 5
15 18 14 7 21 24 16 20 22 11
33 27 30 25 35 28 26 13 39 36
32 34 17 51 42 38 19 57 45 40
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Lagarias, Rains and Sloane [1] describe some basic properties of this sequence. In par-
ticular, they prove that it is a permutation of the natural numbers with linear asymptotic
behavior; more precisely 1
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n ≤ an ≤ 14n. We recall some of their lemmas and theorems in

Section 3. Their numerical experiments resulted in several interesting conjectures. First, if
an = p and p is a prime, then an−1 = 2p, which we will prove in Section 4.2. Second, that
an ∼ n except for when an = p is prime; then an = p ∼ n

2
and an+1 = 3p ∼ 3n

2
.

We will prove the conjectures mentioned above. To formulate what is proved let us
introduce some notation. Let (zn) be the inverse of the permutation (an), let (pi) be the
sequence of prime numbers in increasing order, and let (a′

n) be defined as follows: a′
n = 2p

if an = 3p or an = p for p prime, a′
n = an otherwise. This definition was introduced by

Lagarias, Rains and Sloane [1]. We prove that that limn→∞
a′

n

n
= 1. More precisely, we will

prove that there exists a universal constant C such that for all natural numbers n we have

n − Cn

log log log n
≤ an ≤ n +

Cn

log log log n
.

Note that the speed of convergence is extremely slow. In particular, this result is weaker
than a more precise conjecture made by Lagarias, Rains and Sloane [1] that a′

n ∼ n(1+ 1
3 log n

).
In Section 5 we discuss some drawbacks and possible improvements of the proofs in this work.

In this work, we will use several strong results from number theory. These facts are
gathered in Section 2.

In this work the letters c, C, C ′, c′, Ci, ci denote constants. If it is not specified otherwise,
they are absolute numerical constants.

2 Number theory tools

Let us define pn to be the n-th prime number and π(n) the number of primes smaller than
n. According to Rosser [3], the following version of the prime number theorem holds:

Theorem 2.1. If n ≥ 55 then

π(n) <
n

log n − 4
.

We conclude that

Corollary 2.2. If n > 25000 > e10.1 then

π(n) <
2n

log n

and
π(n) <

n

6
− 2

Let us now estimate the number of different prime divisors of n.

Lemma 2.3. Any natural number n has at most C log n

log log n
different prime divisors.
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Proof. If n has at least k prime divisors, then n ≥ 2 · 3 · · · · · pk > k!, so by Stirling’s formula
log n > C1k log k. Let f(x) = C1x log x. Then

f
(

C2
log n

log log n

)

= C1C2
log n

log log n
(log C2 + log log n − log log log n) > C3C2 log n.

Therefore k < C4
log n

log log n
.

The following is a well-known fact from calculus.

Theorem 2.4. Let p1, p2, . . . be the sequence of the prime numbers primes in increasing
order (p1 = 2, p2 = 3, . . .). Then

∞
∏

n=1

(

1 − 1

pn

)

= 0.

However, in our work we will need a stronger result; namely, Merten’s theorem [2].

Theorem 2.5. Let p1, p2, . . . be the sequence of prime numbers in increasing order (p1 =
2, p2 = 3, . . .). Then

lim
n→∞

(log pn)
∞
∏

n=1

(

1 − 1

pn

)

= e−γ

where γ is the Euler-Mascheroni constant.

Since pn ∼ n log n the following is straightforward:

Corollary 2.6. There exists a universal constant C such that for all natural numbers n the
following holds:

∞
∏

n=1

(

1 − 1

pn

)

<
C

log n
.

Note: all results cited above are independent of the Riemann hypothesis.

3 Already known simple facts

As Lagarias, Rains and Sloane [1] defined, a prime dividing both an−1 and an is called a con-
trolling prime for an. Note that a controlling prime is not unique; if not specified otherwise,
in proofs we choose any of the controlling primes. We will define g(n) = gcd(an, an−1). As
observed by Lagarias, Rains and Sloane [1], we can define the sequence in a different way.
For every prime p let Bn(p) be the smallest multiple of p that has not appeared in the first
n terms of the sequence. Then an+1 is smallest among all Bn(p) for primes p dividing an.
The following lemmas and theorems were proved by Lagarias, Rains and Sloane [1] and for
some of them we quote the proofs, since they are quite basic and will be important in the
next section.

Lemma 3.1. Let p > 2 be a prime. If an is the first term divisible by p, then an+1 = p and
an = pq where q is the smallest prime divisor of an−1.
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Proof. For any k | an−1 the number kp is a good candidate for an, so an = qp, where q is the
smallest possible controlling prime, i.e., the smallest prime divisor. Since q is a controlling
prime, q, 2q, . . . , q(p − 1) were already used. So if q was a controlling prime for an+1, then
an+1 ≥ q(p + 1) > p, where p is a good candidate. So p will be a controlling prime and
an+1 = p.

Lemma 3.2. The prime numbers appear in an in increasing order.

Proof. If an+1 = p, then an = qp is the first term divisible by p. For any p′ < p we have
qp′ < qp = an, so the term qp′ appeared in the sequence earlier.

Lemma 3.3. If {m, 2m, . . . , km} ⊂ {ai : 1 ≤ i ≤ M}, then {1, 2, . . . , k} ⊂ {ai : 1 ≤ i ≤
M + 1}.

Proof. By induction on k. For k = 1 it is obvious, since a1 = 1. Let {m, 2m, . . . , km} ⊂
{ai : 1 ≤ i ≤ M}. Let an = km, n ≤ M . Let q be a controlling prime for an. If q | m, then
all the numbers m, 2m, . . . , (k − 1)m were good candidates for an, so they were before an,
so, by the induction hypothesis, {1, 2, . . . , k − 1} ⊂ {ai : i ≤ n}. The number k is a great
candidate for an+1, because all smaller numbers were used, so {1, 2, . . . , k} ⊂ {ai : i ≤ n+1}.
If q | k, then k was a candidate for an, so it was before an. By the induction hypothesis
{1, 2, . . . , k − 1} ⊂ {ai : i ≤ M + 1}. This completes the proof.

Lemma 3.4. For any prime p, the numbers 1, 2, . . . p−1 appear in the EKG sequence before
p.

Proof. As in the proof of Lemma 3.1, before an+1 = p for p prime, there was an = qp and all
the numbers q, 2q, . . . , q(p− 1) were used before. Therefore, by Lemma 3.3, all the numbers
1, 2, . . . , p − 1 were before p.

Theorem 3.5. For all n the EKG sequence satisfies the following inequality

1

260
n < an < 14n.

Corollary 3.6. If for some a, b, we have za < zb then a < 14za < 14zb < 14 · 260b.

4 New results

4.1 The fundamental lemma

Most of the proofs in this paper are based on the following observation.

Lemma 4.1. Fix any real number x. Then for every prime q there can be at most one index
n for which q is a controlling prime for an and an−1 < x ≤ an.

Proof. According to the definition, an is the smallest multiple of q not yet used in the
sequence. Since an ≥ x, all multiples of q smaller than x were already used, and later in
the sequence there is no term divisible than q smaller than x, i.e., if k > n and q | ak, then
ak ≥ x.

4



This lemma has important consequences; it strongly limits the number of times the
sequence can cross the border of x going upwards. Since all the primes in the sequence
appear in increasing order, if pk+1 has not yet appeared, one can cross the border of x

upwards only k = π(pk+1) = Θ( pk+1

log pk+1
) times.

4.2 2p is before p

In this section we will prove that each odd new prime in the EKG sequence is introduced by
a subsequence 2p, p, 3p. We will simply use Lemma 4.1 and the estimate for π(x).

We will prove the following theorem:

Theorem 4.2. For any primes p, q > 2 the term qp appears in the sequence after 2p.

Proof. We will prove Theorem 4.2 by contradiction. Let us assume that p is the first prime
such that for some N we have aN+1 = p and aN = qp, where q > 2. From Lemmas 3.1 and
3.2 we know that these are the first terms divisible by p and previous terms of the sequence
are divisible only by smaller primes than p. From Lemma 4.1 we know that before the term
aN the sequence can cross the border of 2p upwards only π(p) times — for every prime
smaller than p at most once. Now we will show that for large p, the sequence must have
crossed this border downwards Θ(p) times, which is asymptotically bigger than π(p). We
will try to be tight on the constants, to match the numerical experiments made by Lagarias,
Rains and Sloane [1], and therefore the theorem will be proved for the whole sequence.

Since q is the controlling prime for aN = qp, all multiples of q — {q, 2q, . . . , (p−1)q} have
appeared before the term aN . Particularly important for us are numbers greater than 2p and
divisible by 2q, because if ak is such a number for k < N then there is the possibility that
ak+1 = 2p. This cannot hold for k ≤ N , so for every such ak the next number is smaller than
2p. Among the terms {q, 2q, . . . , (p − 1)q} there are at least ⌊ qp−2p

2q
⌋ ≥ ⌊p

6
⌋ = Θ(p) numbers

both divisible by 2q and greater than 2p. They all appeared in the sequence before aN . So
we have at least ⌊p

6
⌋ moments before aN , where the sequence goes downwards through the

border 2p and, due to Lemma 4.1, at most π(p) moments before aN , where the sequence
goes upwards.

From Theorem 2.2 we know that if p > 25000 we have π(p) < ⌊p

6
⌋ − 1. The number of

upward and downward crossing should differ by at most 1, so we have a contradiction for
p > 25000.

Lagarias, Rains and Sloane [1] computed the first 10 000 000 terms of the sequence. The
last prime number not greater than 25 000 is 24 989 and it appears around the 50 000-th
term. Up to this bound all primes p were preceded by the term 2p. Therefore the theorem
is proved for the whole sequence.

From this the following theorem is an obvious corollary:

Theorem 4.3. If an = p and p > 2 is prime, then an−1 = 2p.

Proof. From Lemma 3.1 we know that an−1 = qp for some prime q and this is the first term
divisible by p. Therefore q = 2, since 2p could not have appeared before.
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The above idea can be generalized. As in the proof of Theorem 4.2 we can use any
natural number n instead of p and any fixed number a instead of 2. This leads to the
following theorem, which we do not use later, but which is an interesting result on its own.
This theorem could also be deduced from the final theorem — limn→∞

a′

n

n
= 1, but the proof

based on the proof of Theorem 4.2 is much more elementary. We do not include the proof
here, since it is very similar to the proof of Theorem 4.2.

Theorem 4.4. Let a > 1 be a natural number. Then there exists a natural number N such
that for all natural numbers b > a and n > N the term an appears in the sequence before bn,
i.e., zan < zbn. In particular, this holds if log N > Ca3 for some universal constant C.

Lemma 4.1 can be somewhat enhanced, since we know that 2p appears before every odd
prime p, and there 3p appears afterward. The following lemma shows that the moments
when the sequence crosses the border x upwards and it is not the EKG tick (i.e., in the
subsequence of the form q, 3q for q prime) are very rare.

Lemma 4.5. Let x > 1 be a real number and let B be the set

B = {n : an < x ≤ an+1; an is not a prime}.

Then |B| ≤ π(
√

x).

Proof. Let n ∈ B. Since an is composite, it has a prime divisor not greater than
√

an, which
is smaller than

√
x. Let q be any such prime divisor.

Since an+1 ≥ x and all multiples of q are candidates for an+1, all multiples of q smaller
than x must have been used before. Therefore, after an, there are no free multiples of q

smaller than x. So every n ∈ B uses at least one prime q smaller than
√

x — there are no
more unused multiples of q smaller than x, so |B| ≤ π(

√
x).

4.3 Numbers above the border

By Lemma 4.1, we know that the sequence can cross the border of an integer x upwards
at most π(x) times. The interesting question now is: before an integer x appears in the
sequence, how many terms greater than x can appear?

Now we are giving partial answer to that question. We need to assume that x has got
some small divisor, so the numbers greater than x having a common divisor with x (i.e.,
such terms, after which x is a candidate for the next term) are quite dense.

The following lemma will be used later only for a being a small prime different than 3
and while reading one can think of a as such number — much smaller than n and prime.

Lemma 4.6. Let a > 1 be an integer. Then there are at most Ca an
log log an

≤ Ca2 n
log log n

terms of the EKG sequence greater than an and appearing before an, where C is a universal
constant.

Proof. Fix a > 1 and large n and let N = zan, i.e., aN = an. Let A = {1 ≤ i < N : ai > an};
we need to estimate |A|. From Lemma 4.1 we know that the sequence can cross the border
of an upwards at most π(an) times. We will consider several cases.
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Let A1 = {i ∈ A : a | ai}. If i ∈ A1, then an is a candidate for ai+1, so after such i the
sequence goes downwards through the border of an if i+1 < N . Therefore |A1| ≤ π(an)+1.

Now let i ∈ A \ A1 and let q be a controlling prime for ai. The idea now is as follows:
either ai is quite close to the border an, or there is an already used multiple of qa below ai.
The formal argument follows.

Note that Corollary 3.6 implies q ≤ ai ≤ C0 · an for some universal constant C0.
Let f(s) = ai − sq. Note that gcd(q, a) = 1, because otherwise an would be a better

candidate for ai. For all s (if f(s) > 0) f(s) was already used in the sequence before ai.
Among f(1), f(2), . . . , f(a − 1) there is exactly one f(s0(ai)), such that a | f(s0(ai)).

Let A2 = {i ∈ A \ A1 : f(s0(ai)) ≤ an}. For every prime q there are at most a − 1 such
numbers ai, for which q is a controlling prime and i ∈ A2 — these are the first at most a− 1
multiples of q greater than an. Therefore |A2| ≤ (a − 1)π(C0an) ≤ C ′

0(a − 1)π(an).
Let A3 = A \ A1 \ A2 = {i ∈ A \ A1 : f(s0(ai)) > an}. The term f(s0(ai)) was used

before ai, thus for some j < i we have aj = f(s0(ai)) and obviously j ∈ A1. For how many
indices i′ can we have f(s0(ai′)) = aj? For every prime divisor r of aj, at most a − 1 times:
ai′ can be one of the numbers aj + r, aj + 2r, . . . , aj + (a − 1)r. According to Lemma 2.3,

the number aj can have at most C1
log aj

log log aj
distinct prime divisors.

According to Corollary 3.6 we have aj < 14 · 260an, so aj can have at most C2
log(an)

log log(an)

distinct prime divisors, where C2 is a universal constant.
Therefore

|A3| ≤ |A1| · (a − 1) · C2
log(an)

log log(an)
.

Since π(an) ≤ C an
log(an)

for some universal constant C, we have

|A| = |A1| + |A2| + |A3| ≤ π(an) + C ′
0(a − 1)π(an) + C2(a − 1)π(an)

log(an)

log log(an)
≤

≤ Ca
an

log log an
≤ Ca2 n

log log n
.

The following theorem is an obvious corollary:

Theorem 4.7. There exists a universal constant C such that for every integer a > 1 the
following holds: zan ≤ an + Ca an

log log an
≤ an + Ca2 n

log log n
.

Proof. Fix a > 1. From Lemma 4.6 we know that there are at most Ca an
log log an

indices
i < zan such that ai > an. Obviously there are at most an indices i < zan for which ai ≤ an.
Therefore there are at most an + Ca an

log log an
= an + o(n) indices i < zan.

However, Lemma 4.6 is not sufficient for all our purposes. It limits the number of terms
greater than an, but does not limit how big the terms are. The following lemma is an
improvement to Lemma 4.6. It uses almost the same technique, but the proof is more com-
plicated and we will use the enhanced version of Lemma 4.1, i.e., Lemma 4.5 and Lemma 4.6
itself.
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Lemma 4.8. Let a > 1 be an integer not divisible by 3 and let 1
3

> ε > 0. Then there exists
an integer N(a) such that for all integers n > N(a) if the number x > (a + 2ε)n appeared in
the sequence before term an, then x is of the form 3p for some prime p. In particular, the
sufficient condition is that log log N(a) > Ca2

ε
for some universal constant C.

Proof. First, due to Lemma 4.6, we know that there are at most C1a
an

log log(an)
terms greater

than an before the term an appears in the sequence. Choose N(a) so big, that for all
n > N(a) we have C1a

an
log log an

< 1 + εn
3

, i.e., there are more numbers divisible by 3 in the

segment (an, (a + ε)n) than terms of the sequence greater than an before an appears. Note

that this one holds if log log N(a) > C2a2

ε
.

For such a big n, whenever any term of form 3p appears in the sequence before the term
an appears, there is an unused divisible by three candidates for the next term smaller than
(a + ε)n. So the next term will be smaller than the border of (a + ε)n.

From Lemma 4.5, there are at most π(
√

(a + ε)n) indices i smaller than zan, for which
ai < (a + ε)n, and ai+1 ≥ (a + ε)n and ai is composite. In the other case, if ai < (a + ε)n
and ai+1 ≥ (a + ε)n and ai is prime, the next term ai+2 will be smaller than (a + ε)n.

Suppose there is an index i < zan for which ai is composite and ai+1 > (a+2ε)n. Let i be
the first such index. Since ai ≤ (a + 2ε)n, ai has a prime divisor q smaller than

√

(a + 2ε)n.
If ai+1 is greater than (a + 2ε)n, then all multiples of q in the segment ((a + ε)n, (a + 2ε)n)
must have been used before. In this segment there are at least ⌊ ε

aq
n⌋ numbers divisible by

both q and a. Let us call such terms interesting ones. All interesting terms were used before
an appears in the sequence. Therefore after such an interesting term, number an is good
candidate for the next term, so after such terms the sequence goes downwards through the
border of (a + ε)n — the next term will be at most an.

Moreover, since any interesting term is divisible by a, it is not of the form of 3p for some
prime p, since p ≥ an

3
> a and a is not divisible by 3.

Except for the ticks of the form p, 3p, the sequence went upwards through the border
of (a + ε)n at most π(

√

(a + ε)n) times, so there can be at most π(
√

(a + ε)n) interesting
terms, i.e., from the segment ((a + ε)n, (a + 2ε)n) divisible by aq. But for large n we have

ε

aq
n ≥ ε

a
√

2 + 2ε

√
n > π(

√

(a + ε)n),

since π(x) = Θ( x
log x

). Note that this inequality holds if log n > C3a
3
2

ε
for some universal

constant C3. This condition is much weaker than the bound log log n > C2a2

ε
we assumed

earlier.
Therefore if log log n > C2a2

ε
the only terms greater than (2 + 2ε)n are of the form 3p for

p prime.

While analyzing the EKG sequence one question appears very often. Let us fix an integer
a > 1, and let a be not divisible by 3 (in fact, the most interesting case is when a is a prime
different than 3). Imagine the term an has appeared in the sequence; the question is, what is
the smallest k such that ak has yet not appeared in the sequence (i.e., before an)? Lemma 4.9,
which is in fact a simple corollary of Lemma 4.8, provides an answer to that question.
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Lemma 4.9. Let a > 1 be an integer not divisible by 3. Let ma(n) be smallest k, such that
term ak has not appeared in the first n terms of the sequence. Let Ma(n) be the biggest k

such that term ak has appeared in the first n terms of the sequence. Then

lim
n→∞

Ma(n) − ma(n)

n
= 0.

More precisely, there exists a universal constant C such that the following holds:

Ma(n) − ma(n) ≤ Can

log log n
.

Proof. For large n we can apply Lemma 4.8 for ε = C1a2

log log n
obtaining that aMa(n) ≤ (a +

2ε)ma(n). Keeping in mind that, according to Lagarias, Rains and Sloane [1], the EKG
sequence has linear bounds, (i.e., ci < ai < Ci for some constants c, C, so both Ma(n) → ∞
and ma(n) → ∞ with n → ∞ and ma(n) ≤ Cn + a), and that ε → 0 as n → ∞, we have
for sufficiently large n:

Ma(n) − ma(n) <
2ε

a
ma(n) <

C1a
2

a log log n
(Cn + a) <

C2an

log log n
.

4.4 Linear limit for even terms

In this section we will prove that limn→∞
2n
z2n

= 1, i.e., that an even term 2n is at position
approximately 2n. This will give us a skeleton for proving that all the terms x except for p

and 3p are at position approximately x.
From Theorem 4.7 for a = 2 we know that term z2n ≤ 2n + C n

log log n
, which gives us

lim infn→∞
2n
z2n

≥ 1. What we need to prove is that z2n ≥ 2n− o(n). We will try to estimate
the asymptotic behavior of the o(n) part in the proof.

Theorem 4.10.

lim sup
n→∞

2n

z2n

≤ 1.

Moreover, there exists a universal constant C such that

z2n ≥ 2n − Cn

log log log n
.

Proof. Fix a small ε < 1
7
. We will prove, that for large n, namely log log log n > C

ε
, z2n ≥

(2 − 6ε)n. This will lead to the result.
First, from Lemma 4.9, we can assume that n is sufficiently large, so that all even numbers

smaller than (2 − ε)n were already used in the sequence before the term 2n. For this we
need only log log n > C

ε
, which is one log weaker than the assumption made in this theorem.
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Let p1, p2, . . . be a sequence of the prime numbers in increasing order (p1 = 2 and p2 = 3).
By Merten’s theorem (Theorem 2.5 and Corollary 2.6)

K
∏

n=1

(

1 − 1

pn

)

<
C

log K
.

Let K be sufficiently large (namely log K > C
ε
) such that

K
∏

n=3

(

1 − 1

pn

)

< ε.

Notice, that we omitted p1 = 2 and p2 = 3 in this product.
Let P =

∏K

n=3 pi. Since pi ≤ Ci log i,

P ≤ (CK log K)K ≤ (CK)2K ≤ e
2C
ε

e
C
ε ≤ ee

C′

ε
.

Therefore log log P ≤ C
ε
. Since we assumed that log log log n > C

ε
, we can assume that

n > P
ε

+ P by choosing appropriate universal constants.
Let us concentrate on numbers smaller than (2−3ε)n, not divisible by any of the numbers

p3, p4, . . . , pK . Let s = ⌊ (2−3ε)n
P

⌋ > 1
ε
. Then in every segment (iP, (i+1)P ] for i = 0, 1, . . . , s−

1 there are exactly P · ∏K

i=3(1 − 1
pi

) < Pε numbers not divisible by any p3, p4, . . . , pK . So

in [1, (2 − 3ε)n] there are at most sPε + ((2 − 3ε)n − sP ) < 2nε + P < 3εn numbers not
divisible by any of p3, p4, . . . , pK .

Since n > P
ε

+ P , then n > 2pK

ε
. Then, since all even numbers smaller than (2 − ε)n

appear in the sequence before index z2n, for all 3 ≤ i ≤ K some number divisible by 2pi

greater than (2 − 2ε)n appears in the sequence before index z2n. Now we are going to use
Lemma 4.9 to estimate, that for all 3 ≤ i ≤ K all numbers divisible by pi smaller than
(2− 3ε)n were used in the sequence before the term 2n. Let 3 ≤ i ≤ K. To use Lemma 4.9,

we need Cpin

log log n
< εn. However, pi ≤ pK ≤ CK log K < e

C′

ε , so we need to prove that

Ce
C′

ε

ε
< log log n. By applying logarithm to both sides we get C′′

ε
< log log log n, which was

our assumption.
But, as we proved before, there are at most 3εn numbers not divisible by any of the

p3, p4, . . . , pK smaller than (2 − 3ε)n. In total, there are at most (3ε + 3ε)n = 6εn numbers
smaller than 2n, than might not have been used in the sequence before index z2n. Therefore,
for large n, z2n > (2 − 6ε)n, which completes the proof.

Corollary 4.11.

lim
n→∞

2n

z2n

= 1.

More precisely, there exists a universal constant C such that for all n:

2n − Cn

log log log n
≤ z2n ≤ 2n +

Cn

log log n
.
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Since for every prime p > 3, we have zp = z2p + 1 = z3p − 1, and from Corollary 4.11,
limi→∞

2pi

z2pi

= 1, the following corollary is obvious:

Corollary 4.12.

lim
i→∞

pi

zpi

=
1

2

lim
i→∞

3pi

z3pi

=
3

2

From Corollary 4.11 we can conclude a few other facts that can be useful in our final
proof.

Corollary 4.13. Let x > 0. Then there exists a universal constant C such that all even
terms smaller than x appear in the EKG sequence before index x + Cx

log log x
.

Corollary 4.14. Let x > 0. Then there exists a universal constant C such that all even
terms greater than x + Cx

log log log x
appear in the sequence after index x.

Proof. This is straightforward corollary from Corollary 4.11 — if 2n > x + Cx
log log log x

then

z2n > 2n − C′n
log log log n

> x by adjusting the constant C.

4.5 Linear limit for all terms

In this final section we will prove that if (ei) is a sequence of all odd natural numbers except
these of the form 3p and p for p prime, in increasing order, then limi→∞

ei

zei

= 1. This,

together with linear bounds proved by Lagarias, Rains and Sloane [1] and Corollary 4.11,

gives us the desired result: limn→∞
a′

n

n
= 1.

First we will prove that any ei could not appear in the sequence too early, i.e., it can ap-
pear at position ei−o(ei). This will be a quite straightforward corollary from Corollary 4.12:
if some ei appears, there must have been a not much smaller even term before.

Later, we will prove that ei could not appear in the sequence too late, i.e., it can appear
at position ei + o(ei). In this proof once again we will be estimating how many times do the
sequence cross some border upwards or downwards. We will prove, that not much bigger
even term was not used before the term ei.

Theorem 4.15.

lim sup
i→∞

ei

zei

≤ 1.

More precisely, there exists a universal constant C such that for all ei

zei
≥ ei −

Cei

log log log ei

.

Proof. Fix i and let n = zei
, i.e., an = ei. Since ei is not of the form of p or 3p, then an−1 is

composite. Lagarias, Rains and Sloane [1] proved that an−1 < 14(n−1) < 14n < 14·260an =
14 · 260ei. Therefore an−1 has a prime divisor q satisfying q ≤ √

an−1 <
√

14 · 260ei. Since

11



an = ei, all multiples of q smaller than ei must have been used in the sequence before the
term an. Let x(i) be biggest integer divisible by 2q smaller than ei. Since q | x(i), zx(i) < n.

Obviously x(i) ≥ ei − 2q > ei − 2
√

14 · 260
√

ei. But x(i) is even, so from Corollary 4.11 we

have zx(i) ≥ x(i) − Cx(i)
log log log x(i)

for some universal constant C. Therefore

zei
= n > zx(i) ≥ x(i) − Cx(i)

log log log x(i)
> ei − C

√
ei −

Cei

log log log ei

≥ ei −
C ′ei

log log log ei

.

Theorem 4.16.

lim inf
i→∞

ei

zei

≥ 1.

More precisely, there exists a universal constant C such that for all ei

zei
≤ ei +

Cei

log log log ei

.

Proof. We will prove the theorem by contradiction. Assume there exists an increasing un-
bounded sequence 0 < c0 < ci → ∞ such that for all I there exists i > I such that
zei

> (1 + 7εi)ei where εi = ci

log log log ei
. We can assume that εi < 1

7
, i.e., ci ≤ 1

7
log log log ei.

Let ei be a very large term satisfying zei
> (1 + 7εi)ei.

We will start by using Corollaries 4.13 and 4.14 several times. We can use them since

lim supi→∞

ci
log log log ei

C
log log log ei

= ∞ and C
log log log ei

is the worst asymptotic bound in Corollaries 4.13

and 4.14.
First, using Corollary 4.13 we can assume that ei is large enough so that all even terms

smaller than ei appeared before index (1 + εi)ei. In other words, for all 2n < ei we have
z2n < (1 + εi)ei.

Second, using Corollary 4.13 a second time, we can assume that ei is large enough so
that all even terms smaller than (1 + 6εi)ei have appeared before index (1 + 7εi)ei. In other
words, for all 2n < (1 + 6εi)ei we have z2n < (1 + 7εi)ei < zei

.
Third, using Corollary 4.14 we can assume that ei is large enough so that all even terms

greater than (1 + 2εi)ei have appeared after index (1 + εi)ei. In other words, for all 2n >

(1 + 2εi)ei we have z2n > (1 + εi)ei.
To sum up, we have an interval of indices (i.e., a part of sequence) between (1+ εi)ei and

(1+7εi)ei, where all even terms between (1+2εi)ei and (1+6εi)ei appear and no even term
smaller than ei appear. Let us call these even terms between (1 + 2εi)ei and (1 + 6εi)ei the
important terms.

Since ei is composite, it has prime divisor q(i) not greater than
√

ei. Therefore, among
all important terms, we have at least

⌊4εiei

2q(i)

⌋

≥ ⌊2εi

√
ei⌋ ≥ εi

√
ei ≥

c0
√

ei

log log log ei

terms divisible by q(i). Let us call these terms very important ones.

12



Every very important term is not of the form 2p for p > 3 prime, since it is divisible by
2q(i) and greater than 2q(i). And obviously after every very important term the number ei is

a candidate for the next term. Therefore we have at least
c0
√

ei

log log log ei
moments between indices

(1+εi)n and (1+7εi)n, when the EKG sequence crosses the border of ei downwards. Notice,
that none of these moments are subsequences of the form 2p, p, since a very important term
is not of the form 2p.

From Lemma 4.5 we know, that before index zei
the EKG sequence can cross the border

of ei upwards at most π(
√

ei) times, except for the subsequences of the form p, 3p for p prime.
Let us look at the subsequence p, 3p for p prime that appeared in the EKG sequence after

index (1 + εi)ei and before index (1 + 7εi)ei. The term before was obviously 2p and, since
every even term smaller than ei has appeared before index (1 + εi)ei, we have that 2p > ei,
except for maybe one moment where z2p = ⌊(1+εi)ei⌋. Otherwise we have p < ei < 2p < 3p,
so the EKG sequence crossed here the border of ei first downwards and then upwards.

Therefore between indices (1 + εi)ei and (1 + 7εi)ei the number of times the sequence
crosses the border of ei upwards and downwards, without taking into account subsequences
of the form 2p, p and p, 3p for p prime, should differ by at most two. The other ones just
form pairs — subsequences of the form 2p, p, 3p with p < ei < 2p < 3p. But we proved
that we have at least

c0
√

ei

log log log ei
downward crossings and at most π(

√
ei) = O(

√
ei

log ei
) upward

crossings, which is a contradiction. This completes the proof.

To sum up, in the end, we have proved the following theorem, by Theorems 4.15, 4.16
and Corollaries 4.11 and 4.12:

Theorem 4.17.

lim
n→∞

a′
n

n
= 1.

More precisely, there exists a universal constant C such that

n − Cn

log log log n
≤ a′

n ≤ n +
Cn

log log log n
.

5 Conclusion

In this paper we presented a quite elementary proof that in the EKG sequence odd primes
appear in the subsequences 2p, p, 3p (Theorem 4.3) and, building some technical tools on
top of observation made in Lemma 4.1 and Lemma 4.5, we managed to prove asymptotic
behavior of the EKG sequence, namely, that limn→∞

a′

n

n
= 1. We tried to estimate the speed

of the convergence through the proofs to see if we could use these techniques to cope with
the stronger conjecture made by Lagarias, Rains and Sloane [1]:

Conjecture 5.1 (Lagarias, Rains, Sloane).

a′
n ∼ n

(

1 +
1

3 log n

)

.
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The proved result, Theorem 4.17, is far from this goal. We were able to prove a very
weak convergence speed — C

log log log n
tail. This is the reason we were not able to apply any

argument similar to those supporting Conjecture 5.1. Let us repeat the argument. In the
EKG sequence integers appear more or less in the increasing order, except for terms of the
form p and 3p. If an = m, then earlier in the sequence we had all integers smaller than m

except for numbers of the form p and 3p smaller than m, but we had all p and 3p for 2p ≤ m.
This leads to the Conjecture 5.1 by

n ∼ m − π(m) − π
(m

3

)

+ 2π
(m

2

)

∼ m − m

3 log m
.

Unfortunately, in this argument we need to investigate sets of missing terms (numbers of
the form p and 3p) that are of the size Cn

log n
. Such sizes are lost comparing to Cn

log log log n
part.

Moreover, in this paper we get weaker convergence speed ( Cn
log log n

) very early, namely in the
Lemma 4.6, so we were not able to use this technique.

To get closer to proving Conjecture 5.1 using techniques presented in this paper, one
needs to improve the convergence speed. Note that there are two places where we gain one
more log in the speed. One is Lemma 4.6, where we need to multiply π(x) by the number of
different prime divisors of x, which might be log x

log log x
. The proof of Lemma 4.6 is quite tricky

and we were not able to improve it.
The second place where we lose out is the proof of Theorem 4.10, probably the most

technical proof in this paper. The estimations made there are quite rough, therefore we
think they might be somehow improved. However, we do not know how to do it now.

To sum up, although this paper provides some new tools and techniques to cope with
the EKG sequence, and proves the core part of the conjectures made by Lagarias, Rains and
Sloane [1], there is still quite a significant hole between what is done and what is conjectured.
The aforementioned Conjecture 5.1 seems to us to be the most interesting question remaining.
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