On a Class of Polynomials with Integer Coefficients

Milan Janjić
Department of Mathematics and Informatics
University of Banja Luka
Republic of Srpska, Bosnia and Herzegovina
agnus@blic.net

Abstract

We define a certain class of polynomials denoted by $P_{n,m,p}(x)$, and give the combinatorial meaning of the coefficients. Chebyshev polynomials are special cases of $P_{n,m,p}(x)$. We first show that $P_{n,m,p}(x)$ can be expressed in terms of $P_{n,0,p}(x)$. From this we derive that $P_{n,2,2}(x)$ can be obtained in terms of trigonometric functions, from which we obtain some of its important properties. Some questions about orthogonality are also addressed. Furthermore, it is shown that $P_{n,2,2}(x)$ fulfills the same three-term recurrence as the Chebyshev polynomials. We also obtain some other recurrences for $P_{n,m,p}(x)$ and its coefficients. Finally, we derive a formula for the coefficients of Chebyshev polynomials of the second kind.

1 Introduction

In the paper [1] I proved the following result:

Theorem 1. If a finite set X consists of n blocks of size p and an additional block of size m then, for $n \ge 0$, $k \ge 0$, the number f(n, k, m, p) of (n + k)-subsets of X intersecting each block of size p is

$$f(n,k,m,p) = \sum_{i=0}^{n} (-1)^{i} \binom{n}{i} \binom{np+m-ip}{n+k}.$$

I also proved the following relations for the function f [1]:

$$f(n, k, m, p) = \sum_{i=0}^{m} {m \choose i} f(n, k-i, 0, p),$$
 (1)

$$f(n, k, m, p) = \sum_{i=0}^{t} (-1)^{i} {t \choose i} f(n, k+t, m+t-i, p),$$
 (2)

$$f(n, k, m, p) = \sum_{i=1}^{p} {p \choose i} f(n-1, k-i+1, m, p),$$
(3)

$$f(n,k,m,p) = \sum_{i=0}^{n} \sum_{j=0}^{i} \binom{n}{i} \binom{i}{j} f(n-j,k-i+j,m,p-1).$$
 (4)

Furthermore, I showed that $(-1)^k f(n, k, 0, 2)$ is the coefficient of the Chebyshev polynomial $U_{n+k}(x)$ by x^{n-k} , and that $(-1)^k f(n, k, 1, 2)$ is the coefficient of the Chebyshev polynomial $T_{n+k-1}(x)$ by x^{n-k+1} .

Definition 2. We define the set of coefficients

$$\{c(n, k, m, p): n = m, m + 1, \dots; k = 0, 1, \dots, n\}$$

such that

$$c(n, k, m, p) = (-1)^{\frac{n-k}{2}} f\left(\frac{n+k-2m}{2}, \frac{n-k}{2}, m, p\right),$$

if n and k are of the same parity, and c(n, k, m, p) = 0 otherwise. The polynomials $P_{n,m,p}(x)$ are defined to be

$$P_{n,m,p}(x) = \sum_{k=0}^{n} c(n, k, m, p) x^{k}.$$

Example 3. The Chebyshev polynomials are particular cases of $P_{n,m,p}(x)$, obtained for m=1, p=2 and m=0, p=2, that is,

$$U_n(x) = P_{n,0,2}(x), T_n(x) = P_{n,1,2}(x).$$

The polynomial $P_{n,2,2}(x)$ is the closest to the Chebyshev polynomials, and will be denoted simply by $P_n(x)$.

In the next table we state the first few values of $P_n(x)$.

$$x^{2}$$

$$2x^{3} - 2x$$

$$4x^{4} - 5x^{2} + 1$$

$$8x^{5} - 12x^{3} + 4x$$

$$16x^{6} - 28x^{4} + 13x - 1$$

$$32x^{7} - 64x^{5} + 38x^{3} - 6x$$

Among coefficients of the above polynomials the following sequences from [2] appear: A024623, A049611, A055585, A001844, A035597.

Triangles of coefficients for $P_{n,m,2}(x)$, (m = 2, 3, 4, 5, 6) are given in <u>A136388</u>, <u>A136389</u>, <u>A136390</u>, <u>A136397</u>, and <u>A136398</u>, respectively.

2 Reduction to the case m = 0.

We shall first prove an analog of the formula (1) for polynomials.

Theorem 4. The following equation is fulfilled:

$$P_{n,m,p}(x) = \sum_{i=0}^{m} (-1)^{i} {m \choose i} x^{m-i} P_{n-m-i,0,p}(x).$$

Proof. The following equation holds:

$$P_{n,m,p}(x) = \sum_{k=0}^{n} (-1)^{\frac{n-k}{2}} f\left(\frac{n+k-2m}{2}, \frac{n-k}{2}, m, p\right) x^{k}.$$

Using (1) one obtains

$$P_{n,m,p}(x) = \sum_{k=0}^{n} \sum_{i=0}^{m} (-1)^{\frac{n-k}{2}} {m \choose i} f(r, s, 0, p) x^{k}.$$

where

$$r = \frac{n+k-2m}{2}, \ s = \frac{n-k}{2} - i.$$

Changing the order of summation yields

$$P_{n,m,p}(x) = \sum_{i=0}^{m} {m \choose i} x^{m-i} \sum_{k=0}^{n} (-1)^{\frac{n-k}{2}} f(r, s, 0, p) x^{k-m+i}.$$

Terms in the sum on the right side of the preceding equation produce nonzero coefficients only in the case $0 \le s \le r$, that is,

$$m - i \le k \le n - 2i$$
.

It follows that

$$P_{n,m,p}(x) = \sum_{i=0}^{m} (-1)^i \binom{m}{i} x^{m-i} \sum_{k=m-i}^{n-2i} (-1)^{\frac{n-k}{2}-i} f(r,s,0,p) x^{k-m+i}.$$

Denoting k - m + i = j we obtain

$$P_{n,m,p}(x) = \sum_{i=0}^{m} (-1)^i \binom{m}{i} x^{m-i} \sum_{j=0}^{n-m-i} c(n-m-i,j,0,p) x^j,$$

which means that

$$P_{n,m,p}(x) = \sum_{i=0}^{m} (-1)^{i} {m \choose i} x^{m-i} P_{n-m-i,0,p}(x).$$

According the the preceding theorem we can express $P_n(x)$ in terms of Chebyshev polynomials of the second kind. Namely, for $m = 2, n \ge 4$ we have

$$P_n(x) = x^2 U_{n-2}(x) - 2x U_{n-3}(x) + U_{n-4}(x).$$
(5)

This allow us to express $P_n(x)$ in terms of trigonometric functions.

Theorem 5. For each $n \geq 3$ we have

$$P_n(\cos\theta) = -\sin\theta\sin(n-1)\theta. \tag{6}$$

Proof. According to (5) and well-known property of Chebyshev polynomials we obtain

$$\sin \theta P_n(\cos \theta) = \cos^2 \theta \sin(n-1)\theta - 2\cos \theta \sin(n-2)\theta + \sin(n-3)\theta.$$

From the identity

$$2\cos\theta\sin(n-2)\theta = \sin(n-1)\theta + \sin(n-3)\theta$$

follows

$$\sin \theta P_n(\cos \theta) = \cos^2 \theta \sin(n-1)\theta - \sin(n-1)\theta = -\sin^2 \theta \sin(n-1)\theta.$$

Dividing by $\sin \theta \neq 0$ we prove the theorem.

Note that this proof is valid for $n \geq 4$. The case n = 3 can be checked directly.

In the following theorem we prove that $P_n(x)$ have the same important property concerning zeroes as Chebyshev polynomials do.

Theorem 6. For $n \geq 3$, the polynomial $P_n(x)$ has all simple zeroes lying in the segment [-1,1].

Proof. Since

$$U_n(1) = n + 1, \ U_n(-1) = (-1)^n(n+1)$$

the equation (5) implies

$$P_n(1) = U_{n-2}(1) - 2U_{n-3}(1) + U_{n-4}(1) = n - 1 - 2(n-2) + n - 3 = 0,$$

and

$$P_n(-1) = U_{n-2}(-1) + 2U_{n-3}(-1) + U_{n-4}(-1) =$$

$$= (-1)^{n-2}(n-1) + 2(-1)^{n-3}(n-2) + (-1)^{n-4}(n-3) = 0.$$

Thus, x = -1 and x = 1 are zeroes of $P_n(x)$. The remaining n - 2 zeroes are obtained from the equation

$$\sin(n-1)\theta = 0,$$

and they are

$$x_k = \cos \frac{k\pi}{n-1}, \ (k=1,2,\ldots,n-2).$$

We shall now state an immediate consequence of (6) which shows that values of $P_n(x)$, $(x \in [-1, 1])$ lie inside the unit circle.

Corollary 7. For $n \geq 3$ and $x \in [-1, 1]$ we have

$$P_n(x)^2 + x^2 \le 1.$$

Example 8. Dividing $P_n(x)$ by 2^{n-2} we obtain a polynomial with the leading coefficient 1. Thus, its sup norm on [-1,1] is $\leq \frac{1}{2^{n-2}}$, which means that $\frac{1}{2^{n-2}}P_n(x)$ has at most 2 times greater sup norm, comparing with the sup norm of $T_n(x)$, which is minimal.

Taking the derivative in the equation (6) we obtain the following equation for extreme points of $P_n(x)$:

$$(n-1)\tan\theta + \tan(n-1)\theta = 0.$$

The values $\theta = 0$, and $\theta = \pi$ obviously satisfied this equation, which implies that endpoints x = -1 and x = 1 are extreme points. The remaining extreme points of $P_3(x)$ are $x = \arctan \sqrt{2}$ and $x = -\arctan \sqrt{2}$.

3 Orthogonality

In this section we investigate the set $\{P_n(x): n=2,3,4,\ldots\}$ concerning to the problem of orthogonality, with respect to some standard Jacobi's weights.

The first result is for the weight $\frac{1}{\sqrt{1-x^2}}$ of Chebyshev polynomials of the first kind.

So, when
$$n = m = 2$$
, $\int_{-1}^{1} \frac{[P_n(x)]^2}{\sqrt{1-x^2}} dx = \frac{3}{8}\pi$.

Theorem 9. The following equation holds:

$$\int_{-1}^{1} \frac{P_n(x)P_m(x)}{\sqrt{1-x^2}} dx = \begin{cases} \frac{\pi}{4}, & \text{if } m = n > 2; \\ -\frac{\pi}{8}, & \text{if } |n-m| = 2; \\ 0, & \text{otherwise.} \end{cases}$$

Proof. Puting $x = \cos \theta$ implies

$$I = \int_{-1}^{1} \frac{P_n(x)P_m(x)}{\sqrt{1-x^2}} dx = \int_{0}^{\pi} P_n(\cos\theta)P_m(\cos\theta)d\theta.$$

Using (6) we obtain

$$I = \int_0^{\pi} \sin^2 \theta \sin(n-1)\theta \sin(m-1)\theta d\theta.$$

Transforming the integrating function we obtain

$$\sin^2 \theta \sin(n-1)\theta \sin(m-1)\theta = \frac{1}{4}\cos(n-m)\theta - \frac{1}{4}\cos(n+m-2)\theta - \frac{1}{8}\cos(n-m-2)\theta - \frac{1}{8}\cos(n-m-2)\theta - \frac{1}{8}\cos(n-m+2)\theta + \frac{1}{8}\cos(n+m-4)\theta + \frac{1}{8}\cos(n+m)\theta.$$

Taking into account that $m, n \geq 3$ we conclude that integrals of the terms on the right side of the preceding equation are zero if $n \neq m$ and $|n-m| \neq 2$. If n=m we obtain $I=\frac{\pi}{4}$, and $I=-\frac{\pi}{8}$, if |n-m|=2.

Corollary 10. Each subset of the set $\{P_n(x) : n \geq 3\}$, not containing polynomials $P_k(x)$ and $P_m(x)$ such that |k - m| = 2 and $k \neq m$ is orthogonal.

The next result concerns the weight $\sqrt{1-x^2}$ of Chebyshev polynomials of the second kind. The result is similar to the result of the preceding theorem.

First of all we have

$$\int_{-1}^{1} \sqrt{1 - x^2} P_n(x) P_m(x) dx = \begin{cases} \frac{5\pi}{32}, & \text{if } (n, m) = (3, 3); \\ -\frac{\pi}{32}, & \text{if } (n, m) = (2, 4) \text{ or } (4, 2). \end{cases}$$

Theorem 11. For m, n such that $(m, n) \neq (2, 4)$ and (4, 2) we have

$$\int_{-1}^{1} \sqrt{1 - x^2} P_n(x) P_m(x) dx = \begin{cases} \frac{3\pi}{16}, & \text{if } m = n > 3; \\ -\frac{\pi}{8}, & \text{if } |n - m| = 2; \\ \frac{\pi}{32}, & \text{if } |n - m| = 4; \\ 0, & \text{otherwise.} \end{cases}$$

Proof. In this case we have

$$\int_{-1}^{1} \sqrt{1 - x^2} P_n(x) P_m(x) dx = \int_{0}^{\pi} \sin^2 \theta P_n(\cos \theta) P_m(\cos \theta) d\theta.$$

We therefore need to calculate the integral

$$\int_0^{\pi} \sin^4 \theta \sin(n-1)\theta \sin(m-1)\theta d\theta.$$

We have

$$\sin^4 \theta \sin(n-1)\theta \sin(m-1)\theta = \frac{3}{16}\cos(n-m)\theta - \frac{3}{16}\cos(n+m-2)\theta + \frac{1}{32}\cos(n-m-4)\theta + \frac{1}{32}\cos(n-m-4)\theta + \frac{1}{32}\cos(n-m+4)\theta - \frac{1}{32}\cos(n+m-6)\theta - \frac{1}{32}\cos(n+m+2)\theta - \frac{1}{8}\cos(n-m-2)\theta - \frac{1}{8}\cos(n-m+2)\theta + \frac{1}{8}\cos(n+m-4)\theta + \frac{1}{8}\cos(n+m-4)\theta + \frac{1}{8}\cos(n+m)\theta.$$

The integral of each term on the right side with $m \neq n$, $|m-n| \neq 2$, $|n-m| \neq 4$ is zero. For these particular values we easily obtain the desired result.

Taking, for instance, the weight $(1-x^2)^{\frac{3}{2}}$ in a similar way one obtains

$$\int_{-1}^{1} (1-x^2)^{\frac{3}{2}} P_n(x) P_m(x) dx = \begin{cases} \frac{7\pi}{64}, & \text{if } (m,n) = (3,3); \\ \frac{21\pi}{128}, & \text{if } (m,n) = (4,4); \\ -\frac{\pi}{128}, & \text{if } (m,n) = (4,2) \text{ or } (2,4); \\ -\frac{7\pi}{64}, & \text{if } (m,n) = (3,5) \text{ or } (5,3). \end{cases}$$

For m, n such that $(m, n) \neq (2, 4), (4, 2), (3, 5), \text{ and } (5, 3)$ we have

$$\int_{-1}^{1} (1-x^2)^{\frac{3}{2}} P_n(x) P_m(x) dx = \begin{cases} \frac{5\pi}{32}, & \text{if } m=n>4; \\ -\frac{15\pi}{128}, & \text{if } |n-m|=2; \\ \frac{3\pi}{64}, & \text{if } |n-m|=4; \\ -\frac{\pi}{128}, & \text{if } |n-m|=6; \\ 0, & \text{otherwise.} \end{cases}$$

Considering the weight 1 leads to the following result:

Theorem 12. If m and n are of different parity then

$$\int_{-1}^{1} P_n(x) P_m(x) dx = 0.$$

Proof. In this case we need to calculate the integral

$$\int_0^{\pi} \sin^3 \theta \sin(n-1)\theta \sin(m-1)\theta d\theta.$$

We have

$$\sin^3 \theta \sin(n-1)\theta \sin(m-1)\theta = -\frac{1}{16}\sin(n-m+3)\theta + \frac{1}{16}\sin(n-m-3)\theta + \frac{1}{16}\sin(n+m+1)\theta - \frac{1}{16}\sin(n+m-5)\theta + \frac{3}{16}\sin(n-m+1)\theta - \frac{3}{16}\sin(n-m-1)\theta - \frac{3}{16}\sin(n+m-1)\theta + \frac{1}{16}\sin(n+m-3)\theta.$$

Since m and n are of different parity each function on the right is of the form $\sin 2k\theta$, which implies that its integral equals zero.

4 Some recurrence relations

In this section we prove some recurrence relation for $P_{n,m,p}(x)$ as well as some recurrence relations for their coefficients.

Theorem 13. For each integer $t \geq 0$ we have

$$P_{n,m,p}(x) = \sum_{i=0}^{t} (-1)^{t-i} {t \choose i} x^{i} P_{n+2t-i,m+t-i,p}(x).$$

Proof. Translating (2) into the equation for coefficients we obtain

$$c(n, k, m, p) = \sum_{i=0}^{t} (-1)^{i+t} {t \choose i} c(n+2t-i, k-i, m+t-i, p).$$

Multiplying by x^k yields

$$c(n, k, m, p)x^{k} = \sum_{i=0}^{t} (-1)^{i+t} {t \choose i} x^{i} c(n+2t-i, k-i, m+t-i, p)x^{k-i},$$

which easily implies the claim of the theorem.

In the case t = 1, m = 1, p = 2 we obtain the following formula, expressing $P_n(x)$ in terms of Chebyshev polynomials of the first kind:

$$P_n(x) = xT_{n-1}(x) - T_{n-2}(x)$$

From this we easily conclude that $P_n(x)$ satisfies the same three-term recurrence as Chebyshev polynomials.

Corollary 14. The polynomials $P_{n,m,2}(x)$ satisfy the following equation:

$$P_{n,m,2}(x) = 2xP_{n-1,m,2}(x) - P_{n-2,m,2}(x),$$

with initial conditions

$$P_{0,m,2}(x) = x^m, \ P_{1,m,2}(x) = 2x^{m+1} - mx^{m-1}.$$

Combining equations (1) and (4) we obtain

$$f(n, k, m, p) = \sum_{i=0}^{n} \sum_{j=0}^{i} \sum_{t=0}^{m} {n \choose i} {m \choose t} {i \choose j} f(n-j, k-i+j-t, 0, p-1).$$

Translating this equation into an equation for the coefficients, we obtain

$$c(n,k,m,p) = \sum_{i=0}^{\tilde{n}} \sum_{j=0}^{i} \sum_{t=0}^{m} \binom{\tilde{n}}{i} \binom{m}{t} \binom{i}{j} (-1)^{i-j+t} c(n-m-i-t,k-m+i-2j+t,0,p-1),$$

where $\tilde{n} = \frac{n+k-2m}{2}$.

Applying the preceding equation several times we obtain the following:

Corollary 15. The coefficients of $P_{n,m,p}(x)$ can be expressed as functions of coefficients of Chebyshev polynomials of the second kind.

Converting (3) into the equation for coefficients we obtain

$$c(n, k, m, p) = \sum_{i=1}^{p} (-1)^{i-1} \binom{p}{i} c(n-i, k+i-2, m, p).$$

This equation implies the following:

Corollary 16. The coefficients of $P_{n,m,p}(x)$ can be expressed in terms of coefficients of the polynomials $P_{n',m,p}(x)$, where n' < n.

We shall finish the paper with a formula for coefficients of Chebyshev polynomials of the second kind. Taking p = 2 in (4) we obtain

$$f(n, k, m, 2) = \sum_{i=0}^{n} \sum_{j=0}^{i} {n \choose i} {i \choose j} f(n-j, k-i+j, m, 1).$$

Since $f(r, s, m, 1) = {m \choose s}$ we have

$$f(n,k,m,2) = \sum_{i=0}^{n} \sum_{j=0}^{i} {n \choose i} {i \choose j} {m \choose k-i+j}.$$

For m = 0, in the sum on the right side of this equation only terms with k = i - j remains. We thus obtain

$$f(n, k, 0, 2) = \sum_{s=0}^{n-k} {n \choose s} {n-s \choose k}.$$

Accordingly, the following formula follows.

Corollary 17. For coefficients c(n,k) of Chebyshev polynomial $U_n(x)$ hold

$$c(n,k) = (-1)^{\frac{n-k}{2}} \sum_{i=0}^{k} {\binom{\frac{n+k}{2}}{i}} {\binom{\frac{n+k}{2} - i}{\frac{n-k}{2}}},$$

if n i k are of the same parity and c(n, k) = 0 otherwise.

References

- [1] M. Janjić, An enumerative function, http://arxiv.org/abs/0801.1976.
- [2] N. J. Sloane, *The Encyclopedia of Integer Sequences*, published electronically at http://www.research.att.com/~njas/sequences/

2000 Mathematics Subject Classification: Primary 05A10; Secondary 33C99. Keywords: Chebyshev polynomials, binomial coefficients, recurrence relations.

(Concerned with sequences $\underline{A001844}$, $\underline{A024623}$, $\underline{A035597}$, $\underline{A049611}$, $\underline{A055585}$, $\underline{A136388}$, $\underline{A136390}$, $\underline{A136397}$, $\underline{A136398}$.)

Received April 12 2008; revised version received October 29 2008; December 7 2008. Published in *Journal of Integer Sequences*, December 11 2008.

Return to Journal of Integer Sequences home page.