On a Class of Polynomials with Integer Coefficients

Milan Janjić
Department of Mathematics and Informatics
University of Banja Luka
Republic of Srpska, Bosnia and Herzegovina
agnus@blic.net

Abstract

We define a certain class of polynomials denoted by $P_{n, m, p}(x)$, and give the combinatorial meaning of the coefficients. Chebyshev polynomials are special cases of $P_{n, m, p}(x)$. We first show that $P_{n, m, p}(x)$ can be expressed in terms of $P_{n, 0, p}(x)$. From this we derive that $P_{n, 2,2}(x)$ can be obtained in terms of trigonometric functions, from which we obtain some of its important properties. Some questions about orthogonality are also addressed. Furthermore, it is shown that $P_{n, 2,2}(x)$ fulfills the same threeterm recurrence as the Chebyshev polynomials. We also obtain some other recurrences for $P_{n, m, p}(x)$ and its coefficients. Finally, we derive a formula for the coefficients of Chebyshev polynomials of the second kind.

1 Introduction

In the paper [1] I proved the following result:
Theorem 1. If a finite set X consists of n blocks of size p and an additional block of size m then, for $n \geq 0, k \geq 0$, the number $f(n, k, m, p)$ of $(n+k)$-subsets of X intersecting each block of size p is

$$
f(n, k, m, p)=\sum_{i=0}^{n}(-1)^{i}\binom{n}{i}\binom{n p+m-i p}{n+k} .
$$

I also proved the following relations for the function f [1]:

$$
\begin{equation*}
f(n, k, m, p)=\sum_{i=0}^{m}\binom{m}{i} f(n, k-i, 0, p) \tag{1}
\end{equation*}
$$

$$
\begin{gather*}
f(n, k, m, p)=\sum_{i=0}^{t}(-1)^{i}\binom{t}{i} f(n, k+t, m+t-i, p), \tag{2}\\
f(n, k, m, p)=\sum_{i=1}^{p}\binom{p}{i} f(n-1, k-i+1, m, p), \tag{3}\\
f(n, k, m, p)=\sum_{i=0}^{n} \sum_{j=0}^{i}\binom{n}{i}\binom{i}{j} f(n-j, k-i+j, m, p-1) . \tag{4}
\end{gather*}
$$

Furthermore, I showed that $(-1)^{k} f(n, k, 0,2)$ is the coefficient of the Chebyshev polynomial $U_{n+k}(x)$ by x^{n-k}, and that $(-1)^{k} f(n, k, 1,2)$ is the coefficient of the Chebyshev polynomial $T_{n+k-1}(x)$ by x^{n-k+1}.

Definition 2. We define the set of coefficients

$$
\{c(n, k, m, p): n=m, m+1, \ldots ; k=0,1, \ldots, n\}
$$

such that

$$
c(n, k, m, p)=(-1)^{\frac{n-k}{2}} f\left(\frac{n+k-2 m}{2}, \frac{n-k}{2}, m, p\right)
$$

if n and k are of the same parity, and $c(n, k, m, p)=0$ otherwise. The polynomials $P_{n, m, p}(x)$ are defined to be

$$
P_{n, m, p}(x)=\sum_{k=0}^{n} c(n, k, m, p) x^{k} .
$$

Example 3. The Chebyshev polynomials are particular cases of $P_{n, m, p}(x)$, obtained for $m=1, p=2$ and $m=0, p=2$, that is,

$$
U_{n}(x)=P_{n, 0,2}(x), T_{n}(x)=P_{n, 1,2}(x)
$$

The polynomial $P_{n, 2,2}(x)$ is the closest to the Chebyshev polynomials, and will be denoted simply by $P_{n}(x)$.

In the next table we state the first few values of $P_{n}(x)$.

$$
\begin{gathered}
x^{2} \\
2 x^{3}-2 x \\
4 x^{4}-5 x^{2}+1 \\
8 x^{5}-12 x^{3}+4 x \\
16 x^{6}-28 x^{4}+13 x-1 \\
32 x^{7}-64 x^{5}+38 x^{3}-6 x .
\end{gathered}
$$

Among coefficients of the above polynomials the following sequences from [2] appear: A024623, A049611, A055585, A001844, A035597.

Triangles of coefficients for $P_{n, m, 2}(x),(m=2,3,4,5,6)$ are given in A136388, A136389, A136390, A136397, and A136398, respectively.

2 Reduction to the case $m=0$.

We shall first prove an analog of the formula (1) for polynomials.
Theorem 4. The following equation is fulfilled:

$$
P_{n, m, p}(x)=\sum_{i=0}^{m}(-1)^{i}\binom{m}{i} x^{m-i} P_{n-m-i, 0, p}(x) .
$$

Proof. The following equation holds:

$$
P_{n, m, p}(x)=\sum_{k=0}^{n}(-1)^{\frac{n-k}{2}} f\left(\frac{n+k-2 m}{2}, \frac{n-k}{2}, m, p\right) x^{k} .
$$

Using (1) one obtains

$$
P_{n, m, p}(x)=\sum_{k=0}^{n} \sum_{i=0}^{m}(-1)^{\frac{n-k}{2}}\binom{m}{i} f(r, s, 0, p) x^{k} .
$$

where

$$
r=\frac{n+k-2 m}{2}, s=\frac{n-k}{2}-i .
$$

Changing the order of summation yields

$$
P_{n, m, p}(x)=\sum_{i=0}^{m}\binom{m}{i} x^{m-i} \sum_{k=0}^{n}(-1)^{\frac{n-k}{2}} f(r, s, 0, p) x^{k-m+i} .
$$

Terms in the sum on the right side of the preceding equation produce nonzero coefficients only in the case $0 \leq s \leq r$, that is,

$$
m-i \leq k \leq n-2 i
$$

It follows that

$$
P_{n, m, p}(x)=\sum_{i=0}^{m}(-1)^{i}\binom{m}{i} x^{m-i} \sum_{k=m-i}^{n-2 i}(-1)^{\frac{n-k}{2}-i} f(r, s, 0, p) x^{k-m+i} .
$$

Denoting $k-m+i=j$ we obtain

$$
P_{n, m, p}(x)=\sum_{i=0}^{m}(-1)^{i}\binom{m}{i} x^{m-i} \sum_{j=0}^{n-m-i} c(n-m-i, j, 0, p) x^{j},
$$

which means that

$$
P_{n, m, p}(x)=\sum_{i=0}^{m}(-1)^{i}\binom{m}{i} x^{m-i} P_{n-m-i, 0, p}(x) .
$$

According the the preceding theorem we can express $P_{n}(x)$ in terms of Chebyshev polynomials of the second kind. Namely, for $m=2, n \geq 4$ we have

$$
\begin{equation*}
P_{n}(x)=x^{2} U_{n-2}(x)-2 x U_{n-3}(x)+U_{n-4}(x) . \tag{5}
\end{equation*}
$$

This allow us to express $P_{n}(x)$ in terms of trigonometric functions.
Theorem 5. For each $n \geq 3$ we have

$$
\begin{equation*}
P_{n}(\cos \theta)=-\sin \theta \sin (n-1) \theta . \tag{6}
\end{equation*}
$$

Proof. According to (5) and well-known property of Chebyshev polynomials we obtain

$$
\sin \theta P_{n}(\cos \theta)=\cos ^{2} \theta \sin (n-1) \theta-2 \cos \theta \sin (n-2) \theta+\sin (n-3) \theta
$$

From the identity

$$
2 \cos \theta \sin (n-2) \theta=\sin (n-1) \theta+\sin (n-3) \theta
$$

follows

$$
\sin \theta P_{n}(\cos \theta)=\cos ^{2} \theta \sin (n-1) \theta-\sin (n-1) \theta=-\sin ^{2} \theta \sin (n-1) \theta
$$

Dividing by $\sin \theta \neq 0$ we prove the theorem.
Note that this proof is valid for $n \geq 4$. The case $n=3$ can be checked directly.
In the following theorem we prove that $P_{n}(x)$ have the same important property concerning zeroes as Chebyshev polynomials do.

Theorem 6. For $n \geq 3$, the polynomial $P_{n}(x)$ has all simple zeroes lying in the segment $[-1,1]$.

Proof. Since

$$
U_{n}(1)=n+1, U_{n}(-1)=(-1)^{n}(n+1)
$$

the equation (5) implies

$$
P_{n}(1)=U_{n-2}(1)-2 U_{n-3}(1)+U_{n-4}(1)=n-1-2(n-2)+n-3=0,
$$

and

$$
\begin{gathered}
P_{n}(-1)=U_{n-2}(-1)+2 U_{n-3}(-1)+U_{n-4}(-1)= \\
=(-1)^{n-2}(n-1)+2(-1)^{n-3}(n-2)+(-1)^{n-4}(n-3)=0 .
\end{gathered}
$$

Thus, $x=-1$ and $x=1$ are zeroes of $P_{n}(x)$. The remaining $n-2$ zeroes are obtained from the equation

$$
\sin (n-1) \theta=0
$$

and they are

$$
x_{k}=\cos \frac{k \pi}{n-1},(k=1,2, \ldots, n-2) .
$$

We shall now state an immediate consequence of (6) which shows that values of $P_{n}(x),(x \in$ $[-1,1])$ lie inside the unit circle.

Corollary 7. For $n \geq 3$ and $x \in[-1,1]$ we have

$$
P_{n}(x)^{2}+x^{2} \leq 1
$$

Example 8. Dividing $P_{n}(x)$ by 2^{n-2} we obtain a polynomial with the leading coefficient 1. Thus, its sup norm on $[-1,1]$ is $\leq \frac{1}{2^{n-2}}$, which means that $\frac{1}{2^{n-2}} P_{n}(x)$ has at most 2 times greater sup norm, comparing with the sup norm of $T_{n}(x)$, which is minimal.

Taking the derivative in the equation (6) we obtain the following equation for extreme points of $P_{n}(x)$:

$$
(n-1) \tan \theta+\tan (n-1) \theta=0
$$

The values $\theta=0$, and $\theta=\pi$ obviously satisfied this equation, which implies that endpoints $x=-1$ and $x=1$ are extreme points. The remaining extreme points of $P_{3}(x)$ are $x=\arctan \sqrt{2}$ and $x=-\arctan \sqrt{2}$.

3 Orthogonality

In this section we investigate the set $\left\{P_{n}(x): n=2,3,4, \ldots\right\}$ concerning to the problem of orthogonality, with respect to some standard Jacobi's weights.

The first result is for the weight $\frac{1}{\sqrt{1-x^{2}}}$ of Chebyshev polynomials of the first kind.
So, when $n=m=2, \int_{-1}^{1} \frac{\left[P_{n}(x)\right]^{2}}{\sqrt{1-x^{2}}} d x=\frac{3}{8} \pi$.
Theorem 9. The following equation holds:

$$
\int_{-1}^{1} \frac{P_{n}(x) P_{m}(x)}{\sqrt{1-x^{2}}} d x= \begin{cases}\frac{\pi}{4}, & \text { if } m=n>2 \\ -\frac{\pi}{8}, & \text { if }|n-m|=2 \\ 0, & \text { otherwise }\end{cases}
$$

Proof. Puting $x=\cos \theta$ implies

$$
I=\int_{-1}^{1} \frac{P_{n}(x) P_{m}(x)}{\sqrt{1-x^{2}}} d x=\int_{0}^{\pi} P_{n}(\cos \theta) P_{m}(\cos \theta) d \theta
$$

Using (6) we obtain

$$
I=\int_{0}^{\pi} \sin ^{2} \theta \sin (n-1) \theta \sin (m-1) \theta d \theta
$$

Transforming the integrating function we obtain

$$
\begin{gathered}
\sin ^{2} \theta \sin (n-1) \theta \sin (m-1) \theta=\frac{1}{4} \cos (n-m) \theta-\frac{1}{4} \cos (n+m-2) \theta- \\
-\frac{1}{8} \cos (n-m-2) \theta-\frac{1}{8} \cos (n-m+2) \theta+\frac{1}{8} \cos (n+m-4) \theta+\frac{1}{8} \cos (n+m) \theta .
\end{gathered}
$$

Taking into account that $m, n \geq 3$ we conclude that integrals of the terms on the right side of the preceding equation are zero if $n \neq m$ and $|n-m| \neq 2$. If $n=m$ we obtain $I=\frac{\pi}{4}$, and $I=-\frac{\pi}{8}$, if $|n-m|=2$.

Corollary 10. Each subset of the set $\left\{P_{n}(x): n \geq 3\right\}$, not containing polynomials $P_{k}(x)$ and $P_{m}(x)$ such that $|k-m|=2$ and $k \neq m$ is orthogonal.

The next result concerns the weight $\sqrt{1-x^{2}}$ of Chebyshev polynomials of the second kind. The result is similar to the result of the preceding theorem.

First of all we have

$$
\int_{-1}^{1} \sqrt{1-x^{2}} P_{n}(x) P_{m}(x) d x= \begin{cases}\frac{5 \pi}{32}, & \text { if }(n, m)=(3,3) \\ -\frac{\pi}{32}, & \text { if }(n, m)=(2,4) \text { or }(4,2) .\end{cases}
$$

Theorem 11. For m, n such that $(m, n) \neq(2,4)$ and $(4,2)$ we have

$$
\int_{-1}^{1} \sqrt{1-x^{2}} P_{n}(x) P_{m}(x) d x= \begin{cases}\frac{3 \pi}{16}, & \text { if } m=n>3 \\ -\frac{\pi}{8}, & \text { if }|n-m|=2 \\ \frac{\pi}{32}, & \text { if }|n-m|=4 \\ 0, & \text { otherwise }\end{cases}
$$

Proof. In this case we have

$$
\int_{-1}^{1} \sqrt{1-x^{2}} P_{n}(x) P_{m}(x) d x=\int_{0}^{\pi} \sin ^{2} \theta P_{n}(\cos \theta) P_{m}(\cos \theta) d \theta
$$

We therefore need to calculate the integral

$$
\int_{0}^{\pi} \sin ^{4} \theta \sin (n-1) \theta \sin (m-1) \theta d \theta .
$$

We have

$$
\begin{gathered}
\sin ^{4} \theta \sin (n-1) \theta \sin (m-1) \theta=\frac{3}{16} \cos (n-m) \theta-\frac{3}{16} \cos (n+m-2) \theta+ \\
+\frac{1}{32} \cos (n-m-4) \theta+\frac{1}{32} \cos (n-m+4) \theta-\frac{1}{32} \cos (n+m-6) \theta-\frac{1}{32} \cos (n+m+2) \theta- \\
-\frac{1}{8} \cos (n-m-2) \theta-\frac{1}{8} \cos (n-m+2) \theta+\frac{1}{8} \cos (n+m-4) \theta+\frac{1}{8} \cos (n+m) \theta .
\end{gathered}
$$

The integral of each term on the right side with $m \neq n,|m-n| \neq 2,|n-m| \neq 4$ is zero. For these particular values we easily obtain the desired result.

Taking, for instance, the weight $\left(1-x^{2}\right)^{\frac{3}{2}}$ in a similar way one obtains

$$
\int_{-1}^{1}\left(1-x^{2}\right)^{\frac{3}{2}} P_{n}(x) P_{m}(x) d x= \begin{cases}\frac{7 \pi}{64}, & \text { if }(m, n)=(3,3) \\ \frac{21 \pi}{128}, & \text { if }(m, n)=(4,4) ; \\ -\frac{\pi}{128}, & \text { if }(m, n)=(4,2) \text { or }(2,4) \\ -\frac{7 \pi}{64}, & \text { if }(m, n)=(3,5) \text { or }(5,3)\end{cases}
$$

For m, n such that $(m, n) \neq(2,4),(4,2),(3,5)$, and $(5,3)$ we have

$$
\int_{-1}^{1}\left(1-x^{2}\right)^{\frac{3}{2}} P_{n}(x) P_{m}(x) d x= \begin{cases}\frac{5 \pi}{32}, & \text { if } m=n>4 \\ -\frac{15 \pi}{128}, & \text { if }|n-m|=2 \\ \frac{3 \pi}{64}, & \text { if }|n-m|=4 \\ -\frac{\pi}{128}, & \text { if }|n-m|=6 \\ 0, & \text { otherwise }\end{cases}
$$

Considering the weight 1 leads to the following result:
Theorem 12. If m and n are of different parity then

$$
\int_{-1}^{1} P_{n}(x) P_{m}(x) d x=0
$$

Proof. In this case we need to calculate the integral

$$
\int_{0}^{\pi} \sin ^{3} \theta \sin (n-1) \theta \sin (m-1) \theta d \theta
$$

We have

$$
\begin{gathered}
\sin ^{3} \theta \sin (n-1) \theta \sin (m-1) \theta=-\frac{1}{16} \sin (n-m+3) \theta+\frac{1}{16} \sin (n-m-3) \theta+ \\
\quad+\frac{1}{16} \sin (n+m+1) \theta-\frac{1}{16} \sin (n+m-5) \theta+\frac{3}{16} \sin (n-m+1) \theta- \\
\quad-\frac{3}{16} \sin (n-m-1) \theta-\frac{3}{16} \sin (n+m-1) \theta+\frac{1}{16} \sin (n+m-3) \theta
\end{gathered}
$$

Since m and n are of different parity each function on the right is of the form $\sin 2 k \theta$, which implies that its integral equals zero.

4 Some recurrence relations

In this section we prove some recurrence relation for $P_{n, m, p}(x)$ as well as some recurrence relations for their coefficients.

Theorem 13. For each integer $t \geq 0$ we have

$$
P_{n, m, p}(x)=\sum_{i=0}^{t}(-1)^{t-i}\binom{t}{i} x^{i} P_{n+2 t-i, m+t-i, p}(x) .
$$

Proof. Translating (2) into the equation for coefficients we obtain

$$
c(n, k, m, p)=\sum_{i=0}^{t}(-1)^{i+t}\binom{t}{i} c(n+2 t-i, k-i, m+t-i, p) .
$$

Multiplying by x^{k} yields

$$
c(n, k, m, p) x^{k}=\sum_{i=0}^{t}(-1)^{i+t}\binom{t}{i} x^{i} c(n+2 t-i, k-i, m+t-i, p) x^{k-i}
$$

which easily implies the claim of the theorem.
In the case $t=1, m=1, p=2$ we obtain the following formula, expressing $P_{n}(x)$ in terms of Chebyshev polynomials of the first kind:

$$
P_{n}(x)=x T_{n-1}(x)-T_{n-2}(x)
$$

From this we easily conclude that $P_{n}(x)$ satisfies the same three-term recurrence as Chebyshev polynomials.

Corollary 14. The polynomials $P_{n, m, 2}(x)$ satisfy the following equation:

$$
P_{n, m, 2}(x)=2 x P_{n-1, m, 2}(x)-P_{n-2, m, 2}(x),
$$

with initial conditions

$$
P_{0, m, 2}(x)=x^{m}, P_{1, m, 2}(x)=2 x^{m+1}-m x^{m-1} .
$$

Combining equations (1) and (4) we obtain

$$
f(n, k, m, p)=\sum_{i=0}^{n} \sum_{j=0}^{i} \sum_{t=0}^{m}\binom{n}{i}\binom{m}{t}\binom{i}{j} f(n-j, k-i+j-t, 0, p-1) .
$$

Translating this equation into an equation for the coefficients, we obtain
$c(n, k, m, p)=\sum_{i=0}^{\tilde{n}} \sum_{j=0}^{i} \sum_{t=0}^{m}\binom{\tilde{n}}{i}\binom{m}{t}\binom{i}{j}(-1)^{i-j+t} c(n-m-i-t, k-m+i-2 j+t, 0, p-1)$,
where $\tilde{n}=\frac{n+k-2 m}{2}$.
Applying the preceding equation several times we obtain the following:
Corollary 15. The coefficients of $P_{n, m, p}(x)$ can be expressed as functions of coefficients of Chebyshev polynomials of the second kind.

Converting (3) into the equation for coefficients we obtain

$$
c(n, k, m, p)=\sum_{i=1}^{p}(-1)^{i-1}\binom{p}{i} c(n-i, k+i-2, m, p) .
$$

This equation implies the following:
Corollary 16. The coefficients of $P_{n, m, p}(x)$ can be expressed in terms of coefficients of the polynomials $P_{n^{\prime}, m, p}(x)$, where $n^{\prime}<n$.

We shall finish the paper with a formula for coefficients of Chebyshev polynomials of the second kind. Taking $p=2$ in (4) we obtain

$$
f(n, k, m, 2)=\sum_{i=0}^{n} \sum_{j=0}^{i}\binom{n}{i}\binom{i}{j} f(n-j, k-i+j, m, 1) .
$$

Since $f(r, s, m, 1)=\binom{m}{s}$ we have

$$
f(n, k, m, 2)=\sum_{i=0}^{n} \sum_{j=0}^{i}\binom{n}{i}\binom{i}{j}\binom{m}{k-i+j} .
$$

For $m=0$, in the sum on the right side of this equation only terms with $k=i-j$ remains. We thus obtain

$$
f(n, k, 0,2)=\sum_{s=0}^{n-k}\binom{n}{s}\binom{n-s}{k} .
$$

Accordingly, the following formula follows.
Corollary 17. For coefficients $c(n, k)$ of Chebyshev polynomial $U_{n}(x)$ hold

$$
c(n, k)=(-1)^{\frac{n-k}{2}} \sum_{i=0}^{k}\binom{\frac{n+k}{2}}{i}\binom{\frac{n+k}{2}-i}{\frac{n-k}{2}},
$$

if $n i k$ are of the same parity and $c(n, k)=0$ otherwise.

References

[1] M. Janjić, An enumerative function, http://arxiv.org/abs/0801.1976.
[2] N. J. Sloane, The Encyclopedia of Integer Sequences, published electronically at http://www.research.att.com/~njas/sequences/

2000 Mathematics Subject Classification: Primary 05A10; Secondary 33C99.
Keywords: Chebyshev polynomials, binomial coefficients, recurrence relations.
(Concerned with sequences A001844, A024623, A035597, A049611, A055585, A136388, A136389, A136390, A136397, A136398.)

Received April 12 2008; revised version received October 29 2008; December 7 2008. Published in Journal of Integer Sequences, December 112008.

Return to Journal of Integer Sequences home page.

