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Abstract

A prime number p is called b-elite if only finitely many generalized Fermat numbers

Fb,n = b2n

+ 1 are quadratic residues to p. So far, only the case b = 2 was subjected

to theoretical and experimental researches by several authors. Most of the results

obtained for this special case can be generalized for all bases b > 2. Moreover, the

generalization allows an insight to more general structures in which standard elite

primes are embedded. We present selected computational results from which some

conjectures are derived.

1 Introduction

The numbers of the form

Fb,n = b2n

+ 1

are called generalized Fermat numbers (GFNs) for natural numbers b and n. They were
named after Pierre Simon de Fermat (1601–1665) who studied the special case b = 2 in
the seventeenth century. A lot of research has been done on Fermat numbers and their
generalization since then (compare [9]). One particular field of interest focusses on the
primality and the divisors of GFNs. It is known that a divisor d of Fb,n has the form
d = 2n ·k +1, where k denotes a natural number. Other main theoretical and computational
results on the factors of GFNs can be found in the works of Björn and Riesel [2], Dubner
and Keller [7], resp. Dubner and Gallot [6].
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In 1986 the Austrian mathematician Alexander Aigner studied prime numbers p to which
the Fermat numbers F2,n are quadratic residues modulo p for at most finitely many natural
numbers n. Because of their rareness – Aigner found only 14 such prime numbers less than 35
million – he called them “elite” primes [1]. There has been some research done on this family
of prime numbers in the past few years. If we denote by N(x) the number of elite primes
being less than or equal to x > 0 then it is known by a theorem of Kř́ıžek, Luca and Somer

that N(x) = O
(

x

log2 x

)

, i.e., the series of reciprocals of all elite primes is convergent [10].

This result can be generalized for all bases b ≥ 2. Moreover, all elites up to 2.5 · 1012 have
been computed in [4, 5, 11]. These prime numbers are summerarized in sequence A102742
of Sloane’s On-Line Encyclopedia of Integer Sequences [14].

Aigner’s concept of elite primes can, in analogy to that of Fermat numbers, be generalized
too.

Definition 1.1. Let p be a prime number and b ≥ 2 be a natural number. Then p is called
a b-elite prime if there exists a natural number m, such that for all n ≥ m the GFNs Fb,n

are quadratic non-residues modulo p.

Because of the recurrence relation

Fb,n+1 = (Fb,n − 1)2 + 1 (1)

it is obvious that the congruences Fb,n (mod p) eventually become periodic. We will see in
the following section that if p is of the form 2r · h + 1 with h odd, then this period – we
shall call it b-Fermat period of p – begins at latest with the term Fb,r. So there has to be
a minimal natural number L such that Fb,r+L ≡ Fb,r (mod p), which we call the length of
the b-Fermat period of p. The terms Fb,n (mod p) for n = r, . . . , r + L − 1 are the b-Fermat
remainders of p.

2 Elite primes, bases and periods

2.1 Elementary results

We begin our investigation with some fundamental observations, which are of some impor-
tance for the computational part of this paper.

Observation 2.1. Let b ≡ 0 (mod p). Then p is not b-elite since Fb,n ≡ 1 (mod p) for all
natural numbers n.

Observation 2.2. Because of the congruence relation Fb+pk,n ≡ Fb,n (mod p), we see that
we only need to search for all bases b ∈ {1, 2, . . . , p − 1} to which p is b-elite to know all
possible bases. Notice that for the bases b + pk the Fermat remainders and so the respective
length of the Fermat period are the same.

Observation 2.3. The symmetry relation Fp−b,n ≡ Fb,n (mod p) allows to reduce the search
for suitable bases to b ∈ {1, 2, . . . , p−1

2
} in order to know all possible bases to which p is elite.

Again we obtain equal Fermat remainders and period lengths for the bases b and p − b.
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The following two results are immediate consequences of the law of Quadratic Reciprocity.

Theorem 2.4. Let p be a prime GFN of base b with an index larger than or equal to 2.
Then p is not a b-elite prime.

Proof. It is clear that b is an even number, since odd bases only give even GFNs which hence
are not prime. Let n ≥ 2 be the index of p = Fb,n written as a GFN, this means that p ≡ 1
(mod 8). Because of relation (1) we get

Fb,n+1 ≡ 2 (mod p). (2)

Using induction over the index m ≥ n + 1 we additionally obtain that

Fb,m ≡ 2 (mod p) (3)

is fulfilled for every such m. Hence,
(

Fb,m

p

)

=

(

2

p

)

= 1. (4)

This means that all GFNs with indices larger than n are actually quadratic residues modulo
p.

Theorem 2.5. Let p be a prime factor of Fb,n for any natural index n ≥ 3. Then p is not
a b-elite prime.

Proof. It is known that a prime factor p of Fb,n is of the form 2n · k + 1, i.e., p ≡ 1 (mod 8).
In analogy to the proof of the previous theorem, we here again get the congruence Fb,m ≡ 2
(mod p) for all m > n and hence we will find no quadratic non-residue among all these
GFNs.

2.2 The Fermat periods of b-elite primes

We have seen, that as a consequence of equation (1) we get the periodicity of the system
of equations Fb,n (mod p) for all n that are large enough. We will now give a more precise
characterization of the first term of the Fermat period and its length L.

Theorem 2.6. Let b > 1 be a natural number and let p = 2r · h + 1 be a prime number with
r ≥ 0 and h odd. The multiplicative order of b (mod p) is of the form 2s · t, with 0 ≤ s ≤ r

and t a divisor of h. Then the Fermat period of p begins with the term Fb,s and its length L

is the multiplicative order of 2 modulo t.

Proof. Let k > l be natural numbers such that

Fb,k ≡ Fb,l (mod p). (5)

This implies that

b2l(2k−l
−1) ≡ 1 (mod p), (6)

and hence 2l(2k−l − 1) has to be a multiple of the multiplicative order of b (mod p). The
odd part of this exponent 2k−l − 1 is a multiple of t, i.e., 2k−l ≡ 1 (mod t), and we obtain
the fact that the difference k − l is a multiple of the multiplicative order of 2 (mod t).
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Remark: Theorem 2.6 states that the Fermat period begins at least with the term Fb,r

modulo p = 2r ·h+1. Hence, p is b-elite if and only if the L GFNs Fb,n (n = r, r +1, . . . , r +
L − 1) are quadratic non-residues modulo p.

Moreover, two results of Aigner concerning the period length L can easily be generalized
for b-elites.

Theorem 2.7. Let p be a b-elite prime with L > 1. Then L is an even number.

Proof. Let p = 2rh+1 be a b-elite prime with period length L > 1. Then there is a quadratic
residue c > 1 modulo p such that Fb,r ≡ c + 1 (mod p). Consider the product of all GFNs of
one entire period

Q :=
L−1
∏

ν=0

Fb,r+ν . (7)

From this it follows immediately that

Q ≡
L−1
∏

ν=0

(c2ν

+ 1) (mod p), (8)

and since evaluating this latter product leads us to a geometric sum of all c powers up to
the exponent 2L − 1, we obtain

Q ≡
2L

−1
∑

ν=0

cν =
c2L − 1

c − 1
(mod p). (9)

Now, as L is the length of the b-Fermat period of p we have c2L ≡ c (mod p) and hence

Q ≡ c − 1

c − 1
= 1 (mod p). (10)

This means that
(

Q

p

)

= 1. Using the fact that the Legendre symbol is multiplicative, the

definition of Q gives

1 =

(

Q

p

)

=
L−1
∏

ν=0

(

Fb,r+ν

p

)

= (−1)L (11)

since p is b-elite. From this it follows that L > 1 is an even number.

Theorem 2.8. Let p be a b-elite prime with a b-Fermat period of length L. Then L ≤ p+1
4

.

Proof. It is known from elementary number theory that if p is an odd prime number there
are exactly p−1

2
different quadratic residues modulo p among the numbers 1, 2, . . . , p − 1.

The other half of these numbers actually are quadratic non-residues modulo p. Another
result (probably due to Gauss; see, e.g., Bundschuh [3, p. 148]) states, that among the

4



p−1
2

quadratic residues there are exactly 1
4

(

p − 4 + (−1)
p+1

2

)

pairs of successive quadratic

residues. So we find that at most

p − 1

2
− 1

4

(

p − 4 + (−1)
p+1

2

)

=
p + 2 − (−1)

p+1

2

4
(12)

quadratic residues can be succeeded by a quadratic non-residue less than p. This is of interest
to us because for b-elite p the Fermat remainders of the form c2n

+ 1 always are quadratic
non-residues modulo p succeeding the quadratic residues c2n

(n = 0, . . . , L − 1).
If p ≡ −1 (mod 4) this gives L ≤ p+1

4
as desired. For p ≡ 1 (mod 4) we first get L ≤ p+3

4
.

But, notice that for this congruential class we have
(

−1
p

)

= 1, such that p− 1 is a quadratic

residue, which actually cannot have any successor less than p. Hence, L ≤ p+3
4
−1 = p−1

4
.

2.3 Characterization of b-elite primes

We now turn our attention to different period lengths L, beginning with a characterization
of the bases leading to an elite period with L = 1 for a given prime number p.

Theorem 2.9. Let b be a natural number and let p be a prime number. Then p is b-elite
with L = 1 if and only if either p ≡ 3 (mod 8) and b ≡ ±1 (mod p) or p ≡ −3 (mod 8) and
b4 ≡ 1 (mod p).

Proof. Let p = 2rh+1 with h odd be b-elite with L = 1. Then there is a quadratic non-residue
a modulo p with

Fb,r ≡ a (modp), (13)

and hence, a ≡ Fb,r+1 ≡ (a − 1)2 + 1 (mod p) by using relation (1). This finally leads to

(a − 1)(a − 2) ≡ 0 (mod p), (14)

i.e., a ≡ 1 or a ≡ 2 (mod p). Since a ≡ 1 is a quadratic residue, we get a ≡ 2 (mod p) as the

only possible solution. Notice that the law of Quadratic Reciprocity states that
(

2
p

)

= −1

if and only if p ≡ ±3 (mod 8). The case p = 8k + 3 = 2(4k + 1) + 1 then gives the condition
b2 ≡ 1 (mod p), i.e., b ≡ ±1 (mod p), while p = 8k − 3 = 4(2k − 1) + 1 leads to b4 ≡ 1 (mod
p) in relation (13). The converse is trivial.

From this we immediately obtain

Consequence 2.10. 1) The prime 3 is b-elite if and only if the base b is not a multiple of
3.

2) The prime 5 is b-elite if and only if the base b is not a multiple of 5.
3) If p ∈ {3, 5} is b-elite then it has a b-Fermat period of length L = 1.

Proof. Fermat’s little theorem states that for every prime number p and every natural number
b relatively prime to p we have bp−1 ≡ 1 (mod p). So for p = 3 ≡ 3 (mod 8) we get b2 ≡ 1
(mod 3) for every b not a multiple of 3. For p = 5 ≡ −3 (mod 8) every non-multiple b fulfills
b4 ≡ 1 (mod 5). These facts together with Theorem 2.9 imply the claims.
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We see, that for any given prime p we can decide whether there are bases b such that p is
b-elite with L = 1 and in the affirmative case we are even able to construct all these bases.
Now, we will have a look at the general case L > 1.

Theorem 2.11. Let b be a natural number and let p = 2rh + 1 be a b-elite prime number
with a Fermat period of length L > 1. Then there exists a quadratic residue c modulo p such
that Fb,r ≡ c + 1 (mod p) and which is a solution of the Diophantine equation

2L
−2

∑

ν=0

cν =
c2L

−1 − 1

c − 1
≡ 0 (mod p). (15)

Proof. Let p = 2rh + 1 be a b-elite prime. Write Fb,r ≡ c + 1 (mod p) where c is a quadratic

residue modulo p. Then Fb,r+L ≡ c2L

+ 1 (mod p) and since L is the length of the Fermat
period of p, we obtain

c2L ≡ c (mod p), (16)

which is equivalent to

c(c − 1)
2L

−2
∑

ν=0

cν ≡ 0 (mod p). (17)

Notice that c ≡ 0 gives Fb,r ≡ 1 (mod p) contradicting the eliteness of p. The solution c ≡ 1
only leads, as we have seen in the proof to Theorem 2.9, to L = 1. Hence, for L > 1,

2L
−2

∑

ν=0

cν ≡ 0 (mod p). (18)

The well-known fact that the left side geometric sum sums up to the fraction c2
L
−1

−1
c−1

com-
pletes the proof.

For the special case L = 2 we therefore get the following necessary condition.

Corollary 2.12. Let b be a natural number and let p be a b-elite prime number with L = 2.
Then p ≡ 1 (mod 3).

Proof. If p is b-elite with L = 2 then there must exist a solution c to the Diophantine equation

c2 + c + 1 = kp, (19)

where k is an appropriate natural number. This equation has the two solutions

c1 =
−1 +

√
4kp − 3

2
and c2 =

−1 −
√

4kp − 3

2
,

6



which are natural numbers only if
√

4kp − 3 is a natural number, i.e., 4kp-3 is a perfect
square. Therefore there exists a solution to the quadratic congruential equation x2 ≡ −3

(mod 4p) and hence
(

−3
4p

)

= 1. Now we have

(−3

4p

)

=

(−3

4

)(−1

p

)(

3

p

)

= (−1)
p−1

2 (−1)
p−1

2

(p

3

)

=
(p

3

)

.

A simple computation shows that
(

p

3

)

= 1 if and only if p ≡ 1 (mod 3).

This latter Corollary is used for the proof of a necessary and sufficient characterization
of elites with L = 2.

Theorem 2.13. Let b be a natural number and p be an odd prime number. Then p is b-elite

with L = 2 if and only if p ≡ 7 (mod 12) and either b2 + 1 ≡ b (mod p) with
(

b
p

)

= −1 or

b2 + 1 ≡ −b (mod p) with
(

b
p

)

= 1.

Proof. 1) Let p be b-elite with L = 2. By Corollary 2.12 we know that the even number
p − 1 is a multiple of 3. Hence p−1

6
is a natural number. From group theory we get the fact

that our two Fermat remainders can be considered to be members of a cyclic subgroup G

of order 6 and index ω := p−1
6

. This means that there is a primitive root a modulo p, such
that the numbers aωn with n = 0, 1, . . . , 5 represent the elements of G. As a2l is a quadratic
residue modulo p for all natural number l, we see that ω is odd, i.e., p ≡ 7 (mod 12). This
implies that there is a natural number k such that p = 12k + 7 = 2(6k + 3) + 1, i.e., r = 1
and h = 6k + 3. Hence b8 ≡ b2 (mod p) which is equivalent to

b6 − 1 = (b − 1)(b + 1)(b2 + b + 1)(b2 − b + 1) ≡ 0 (mod p). (20)

As b ≡ ±1 (mod p) leads to L = 1, either b2 + 1 ≡ b or b2 + 1 ≡ −b (mod p) has to be
fulfilled. Notice that b2 + 1 is a quadratic non-residue modulo p.

2) We now turn to showing the reverse implication. Let p ≡ 7 (mod 12).

i) If b2 + 1 ≡ b (mod p) with
(

b
p

)

= −1 then we obtain

− 1 =

(

b

p

)

=

(

b2 + 1

p

)

, (21)

i.e., Fb,r is a quadratic non-residue modulo p. Moreover, we get

b4 + 1 =
(

(b2 + 1) − 1
)2

+ 1 ≡ −(b − 1) (mod p), (22)

where
(

−(b−1)
p

)

= −1 because p ≡ −1 (mod 4). Finally,

b8 + 1 =
(

(b4 + 1) − 1
)2

+ 1 ≡ b2 + 1 (mod p). (23)

So Fb,r+2 ≡ Fb,r (mod p) and therefore, p is b-elite with L = 2.

ii) The case b2 + 1 ≡ −b (mod p) with
(

b
p

)

= 1 works in total analogy to the subpoint

i).
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Remarks: 1) Theorem 2.13 implies that for any given b there are only finitely many b-elite
primes p with L = 2. Notice that for all primes p larger than b2 + b + 1 the congruence
b2 + 1 ≡ ±b (mod p) cannot be fulfilled any more. Hence, for the special case b = 2 the only
elite prime with L = 2 is p = 7.

2) It is easy to see that b2 + 1 ≡ b (mod p) if and only if (b − 1)2 + 1 ≡ −(b − 1) (mod
p), such that we always find pairs (b, b − 1) of bases to which p is b-elite, resp. (b − 1)-elite
with L = 2.

3) Since the cases L = 1 and L = 2 are fully characterized by Theorems 2.9 and 2.13, we
will call “elite periods” of these two lengths trivial periods.

Finally, there is a necessary and sufficient condition for a prime p to be b-elite.

Theorem 2.14. Let p = 2 r · h + 1 be a prime number where r ≥ 1 and h is odd. Then
p is b-elite if and only if the multiplicative order of Fb,n (mod p) is a multiple of 2 r for all
n = r, . . . , r + L − 1.

Proof. This theorem is an immediate consequence of Euler’s criterion, which guarantees

that the congruence F
p−1

2

b,n ≡
(

Fb,n

p

)

(mod p) holds for every prime number p, and hence
(

Fb,n

p

)

= −1 if and only if 2 r divides the multiplicative order of Fb,n modulo p.

2.4 Non-elite primes

To every given prime number p is there always a base b such that p is b-elite? The answer
to this is no.

Theorem 2.15. Let p = 22n

+1 be a prime Fermat number with n ≥ 2. Then p is not b-elite
for all natural numbers b.

Proof. If n ≥ 2 then p = 22n

+ 1 ≡ 1 (mod 8), so that we get
(

2
p

)

= 1. Additionally,

Fermat’s little theorem guarantees that

Fb,2n+m =
(

b2m)22
n

+ 1 ≡ 2 (mod p) (24)

for any given base b 6≡ 0 (mod p) and for all natural numbers m. So there are infinitely many

different GFNs Fb,k with
(

Fb,k

p

)

= 1. The fact that for b ≡ 0 (mod p) the prime number p is

not b-elite was already established in Observation 2.1.

This latter theorem concerns the primes F2 = 17, F3 = 257 and F4 = 65537 which are
b-elite for no base b. Furthermore, one may ask whether there are other prime numbers which
are never b-elite for all natural numbers b. Especially the numbers of the form p = 24k − 1
seem most likely in this respect. And indeed, we can use Theorem 2.6 to characterize a
special family of Sophie Germain primes that always are such non-elite primes!

Theorem 2.16. Let l be a natural number such that q1 := 2l +1, q := 4l +3 and p := 8l +7
are primes. Then p is non-elite.
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Proof. Suppose that there is a natural number b such that p is b-elite. We see that p ≡ −1
(mod 8) and p = 2(4l +3)+1, i.e., r = 1 and h = 4l +3 = q in the notation of Theorem 2.6.
We know that the multiplicative order of a natural number b modulo p has the form 2st,
where s ≤ r and t is a divisor of h. Hence, this multiplicative order of b equals 1, 2, q or 2q.
The first two cases are given by t = 1 which implies L = 1, in order that p cannot be b-elite
by Theorem 2.9.

So we have t = q. Theorem 2.6 now states, that L equals the multiplicative order of 2
modulo q. This order has to be a divisor of φ(q) = 2q1, i.e., 1, 2, q1 or 2q1. Here again, the
case L = 1 is forbidden. Since l ≡ −1 (mod 3), we have p ≡ −1 (mod 3) as well, and so
L = 2 is also contradicting the possible eliteness of p. In fact, l ≡ 0 (mod 3) would lead to
a composite q, while l ≡ 1 (mod 3) implies that q1 is not a prime.

Moreover, the case L = q1 is impossible because L > 1 has to be an even number
(Theorem 2.7). Finally, only L = 2q1 seems compatible to the eliteness of p. But, by
Theorem 2.8 we obtain the contradiction L = 2q1 > q1 + 1 = p+1

4
≥ L. This means that p is

non-elite.

Remark: The first ten primes p with the properties of Theorem 2.16 are 23, 47, 167,
359, 719, 1439, 2039, 2879, 4079 and 4127. In this context, so called Cunningham chains,
i.e., sequences of primes “with each member one more than twice the previous one”, are of
interest. Compare in this respect section A7 of Guy’s problems book [8] or the chapter on
Sophie Germain primes in the book of Ribenboim [13, p. 233ff].

It seems that there are many different kinds of non-elite primes. A lot of them actually
have the form 24k − 1. But notice that not all primes of this shape are non-elite! A first
counterexample is p = 1871 which is b-elite for

b ∈ {33, 217, 293, 314, 323, 388, 447, 567, 782, 864},

where b ≤ p−1
2

and the Fermat period has length L = 10. Another interesting fact is that
there are also non-elites of the form 8k + 1 which are not Fermat primes.

Theorem 2.17. Let h be an odd prime number such that the multiplicative order of 2 modulo
h is equal to an odd number. Then all primes of the form 2r · h + 1 with r ≥ 3 are non-elite.

Proof. Let b be a natural number with multiplicative order 2st modulo p = 2rh + 1. Then
we have either t = 1 or t = h. The first case has to be excluded since for all r ≥ 3 there is
p ≡ 1 (mod 8) and therefore L 6= 1 by Theorem 2.9. Now t = h gives an odd multiplicative
order to 2, such that L is odd and hence p is not b-elite by Theorem 2.7.

Remark: The first prime number fulfilling the condition of the latter theorem is h = 7,
such that all primes of the form p = 2r · 7 + 1 with r ≥ 3 are non-elite, i.e., the primes
p ∈ {113, 449, 114689, 7340033, 469762049, . . .}.

Further examples are h ∈ {23, 31, 47, 71, 73, 79, 89, 103, 127, 151, 167, . . .}. Notice that all
non-elite primes provided by Theorem 2.16 can actually be used as h in Theorem 2.17! More
generally, every odd prime of the form h = 8k − 1 = 2(4k − 1) + 1 is suitable. To see this,
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use Euler’s criterion. We obtain

24k−1 = 2
h−1

2 ≡
(

2

h

)

= 1 (mod h), (25)

because h ≡ −1 (mod 8). This implies that the multiplicative order of 2 modulo h is a
divisor of the odd number 4k − 1. Therefore the length L of the Fermat period of 2r · h + 1
is odd, which makes impossible any eliteness for r ≥ 3.

Moreover, we found other types of 8k +1 non-elite primes not characterized by the latter
result. E.g., the primes 73 = 23 · 9 + 1, 89 = 23 · 11 + 1 or 97 = 25 · 3 + 1 are non-elites.

To conclude this section, we can summarize that the two incongruent residue classes
modulo 8 which do not produce trivial eliteness with L = 1, actually have both elite and
non-elite prime members. See section 4 for elite primes of the form 8k + 1.

2.5 Algebraic structures of bases modulo several classes of primes

Let us now have a group theoretical view on the periodicity of the Fermat remainders. Here
again we consider primes of the form p = 2rh+1 where h denotes an odd number. All bases
and Fermat remainders (mod p) are elements of the set Np of prime residue classes (mod p)
which forms a group with the multiplication (mod p).

We already saw above that if a prime p is b-elite then every Fermat remainder Fb,ν in the
period has to be a quadratic non-residue. Consequently, every Qb,ν := Fb,ν − 1 = b2ν

has to
be a quadratic residue (mod p) for ν 6= 0.

By Theorem 2.6 the period begins at least with c := Qb,r for all bases b. This gives us
the relation

b2r ≡ c (mod p). (26)

It is well-known that this equation has 2r solutions in b for a fixed c being a 2r-residue
(compare, e.g., [12, Theorem 2.27, p. 49]). Depending on the choice of b all c’s in the period
can be interpreted in this way. Therefore all elements in a period are 2r-residues. The subset
R2r of all 2r-residues in Np is a subgroup of order h. Elements of R2r may belong to many
different periods of various lengths and only some of them may give rise to the eliteness
property. With c ∈ R2r and a primitive root ρ modulo p it is obvious that

indρ c = k · 2r (mod φ(p)) (27)

is solved by a k ∈ N. Because of φ(p) = h · 2r we can “divide” this latter equation by 2r and
we get

2−r · indρ c = k (mod h). (28)

It is clear that k admits all values in the range [0, h − 1] ∩ N0. Therefore, we get a one to
one correspondence between a given k and c by fixing the parameter ρ and for the given r.
Notice that once again we get the important consequence that the length of a period is not
depending on r. Moreover, a repeated squaring of c modulo p is equivalent to a repeated
multiplication of k by 2 modulo h. All this implies the following result.
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Theorem 2.18. Let p = 2rh + 1 with h odd. Let n be the number of all possible periods and
denote by Li the length of the period i. Then

n
∑

i=1

Li = h. (29)

The number Nb,i of all b’s in the period i is

Nb,i = 2r · Li. (30)

Remark: Applying this argument to our Diophantine equation (15), we see that this ex-
pression has at most h solutions, all of them being elements of the set R2r .

3 Computational methods

Now there are two ways to compute elite primes: one method consists in searching for primes
which are elite to a given base b ∈ N while the other approach searches for all bases to which
a given prime number is elite.

All the previous papers used algorithms of the first case for the base b = 2. Here one has
to determine all Fermat remainders in the period and to test each one of them as to whether
it is a quadratic residue or not. Based on Theorem 2.14 we can formulate an algorithm
which uses the multiplicative order to check b-eliteness of a given prime number p. A second

possibility was given by evaluating the Legendre symbols
(

Fr+n,2

p

)

for every prime candidate

p and n = 0, . . . , L − 1. To get a test for any given base b one could easily modify these
types of algorithms.

For the second case one could adapt the following procedure: Generate all possible values
for b and test it by using one of the above algorithms. But, as we saw in the theoretical
section dealing with the algebraic structures of bases, there can be many such b’s especially
for large r’s.

So a better approach would be to use only the 2r-residues described in the previous
section and check them one by one if they are quadratic non-residues modulo p or not. A
pseudocode for this procedure could read:
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01 p := h * 2^r + 1

02 g := primitive root MOD p

03 tested := boolean vector initialized false

04 period_start := 0

05 WHILE period_start < h DO

06 index := period_start

07 flag_elite := true

08 DO

09 tested[index] = true

10 IF g^(index*2^r) residue MOD p THEN flag_elite := false

11 index := 2*index MOD h

12 OD WHILE index <> period_start

13 IF flag_elite = true THEN

14 PRINT ’Tested prime is elite’

15 STOP

16 FI

17 WHILE tested[period_start] DO

18 period_start := period_start + 1

19 OD

20 OD

For a given prime number p line 02 generates a primitive root g modulo p. In line 03

a boolean vector is initialized by setting all components of the vector to false. During
the test every 2r-residue g^(index*2^r) that has been tested is marked by putting the
component tested[index] to true (line 09).

With line 05 a loop is started which searches for a new period when the previous one has
been finished; the loop of the lines 17 to 19 increments period_start until the beginning
of a new period is found.

The do-while loop in the lines 08 to 12 implements the test for every part of the actual
period. If a residue fails the test then flag_elite is set to false in order to allow the
continuation of the test. The if condition in line 13 causes the program to stop when
flag_elite is still true. In that case, the tested period is elite and so the prime p has been
found to be a generalized elite. If all periods are tested without an eliteness result, then p

has been identified as a non-elite prime.
The algorithm presented here stops when a first elite period is found. It is easy to modify

the algorithm in order to find all elite periods and hence all bases b to which a given prime
number p is b-elite.
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4 Observations and conjectures

4.1 Observations

Denote by Eb the set of all b-elite primes and define

E :=
⋃

b∈N

Eb. (31)

By Theorem 2.9 we know that E is infinite since all primes of the form p = 8k ± 3 are
(p − 1)-elite. Moreover, this implies that for all x > 0 the number N(x) of the elements of
E not exceeding x is N(x) ≍ x · ln−1(x).

It seemed that there were no elite primes p of the form p = 24k − 1 (k ∈ N). But one
counterexample is given for k = 78 yielding the prime p = 1871 which is elite to the bases
b = 33, 217, 293, 314, 323, 388, 447, 567, 782, 864 ≤ p−1

2
with L = 10. Elite primes of this

special form seem to be very rare. In fact there exists no other counterexample of this form
less than 104.

The period length L for a given elite prime p is often L = 4. We found the first elite
prime with L = 6 to be p = 199 (smallest base b = 19). The prime p = 409 is the smallest
elite with L = 8 (b = 6), while the first elite with L = 10 is p = 331 (b = 23). A period
length of L = 12 is first realized by the elite prime p = 3121 (b = 8). There are no elite
primes p < 104 with L > 12.

Theorem 2.18 implies that for a given prime number p there can be different periods
depending on the choice of the bases b. Now it is possible that more than one of these
different periods fulfill the generalized eliteness property. Moreover, it is possible that these
different elite periods have different lengths. The smallest elite prime with two different
non-trivial elite periods is p = 181 (since 181 ≡ 5 (mod 8) it is 180-elite with L = 1). Both
periods have the length L = 4, the first being produced by the smallest base b = 5 the second
by b = 6. The prime number p = 5101 has three non-trivial elite periods. Two of them
have L = 4 (with the smallest bases b = 123, resp. b = 146). The third period has length
L = 8 and turns up, e.g., for b = 366. Similar properties are shared by p = 6121. The prime
p = 8581 has exactly two non-trivial elite periods with different lengths. One elite period
has L = 4 (b = 314), the other L = 12 (b = 98).

4.2 Conjectures

Conjecture 4.1. For every natural number b > 1 there is a b-elite prime.

Most of the bases b actually have the primes 3 or 5 as b-elites. Only the bases b ≡ 0
(mod 15) do not belong to one of these two “trivial” families.

Conjecture 4.2. There are generalized elite primes with elite periods of arbitrarily large
lengths.

This conjecture seems to be supported by our computations. We found a generalized
elite prime p < 104 with L = 12. Moreover, there is a 2-elite prime known with L = 20
(compare [5]).
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Conjecture 4.3. There are infinitely many non-elite primes.

It is well-known that there are infinitely many primes of the form h = 8k − 1. Perhaps
there are also infinitely many such primes for which there is an r ≥ 3 such that p = 2r ·h+1
is prime. If this were true, Theorem 2.17 would imply that there are infinitely many non-elite
primes.
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