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Abstract

As shown by Shapiro, the iterated totient function separates integers into classes

having three sections. After summarizing some previous results about the iterated

totient function, we prove five theorems about primes p in a class and the factorization

of p − 1. An application of one theorem is the calculation of the smallest number in

classes up to 1000.

1 Introduction

Let φ(x) denote Euler’s totient function. Defining φ0(x) = x, the iterated totient function is
defined recursively for n > 0 by φn(x) = φ(φn−1(x)). For x > 1, φ(x) < x. Hence, for some n
we will have φn(x) = 2. That x is said to be in class n, and we define the function C(x) = n.
We define C(1) = 0. Table 1, which is sequence A058812 in Sloane [5], shows the numbers in
classes 0 to 5. A thorough treatment of the iterated totient function is given by Shapiro [4].
The normal behavior of this function is treated by Erdos et al. [2]. We summarize key results
of Shapiro’s paper here.

2 Properties of the C function

Shapiro establishes the following properties of the C function:

1. For x or y odd, C(xy) = C(x) + C(y).

2. For x and y both even, C(xy) = C(x) + C(y) + 1.
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Class Numbers in this Class

0 1, 2,

1 3, 4, 6,

2 5, 7, 8, 9, 10, 12, 14, 18,

3 11, 13, 15, 16, 19, 20, 21, 22, 24, 26, 27, 28, 30, 36, 38, 42, 54,

4 17, 23, 25, 29, 31, 32, 33, 34, 35, 37, 39, 40, 43, 44, 45, 46, 48, 49, 50, 52, 56, 57, 58, 60,

62, 63, 66, 70, 72, 74, 76, 78, 81, 84, 86, 90, 98, 108, 114, 126, 162,

5 41, 47, 51, 53, 55, 59, 61, 64, 65, 67, 68, 69, 71, 73, 75, 77, 79, 80, 82, 87, 88, 91, 92, 93,

94, 95, 96, 99, 100, 102, 104, 105, 106, 109, 110, 111, 112, 116, 117, 118, 120, 122, 124,

127, 129, 130, 132, 133, 134, 135, 138, 140, 142, 144, 146, 147, 148, 150, 152, 154, 156,

158, 163, 168, 171, 172, 174, 180, 182, 186, 189, 190, 196, 198, 210, 216, 218, 222, 228,

234, 243, 252, 254, 258, 266, 270, 294, 324, 326, 342, 378, 486,

Table 1: Numbers in Classes 0 to 5

3. The largest odd number in class n is 3n; i.e., for odd x, x < 3C(x).

4. The largest even number in class n is 2 · 3n; i.e., for even x, x < 2 · 3C(x).

5. The smallest even number in class n is 2n+1; i.e., for even x, x ≥ 2C(x)+1.

6. The smallest odd number in class n is greater than 2n; i.e., for odd x, x > 2C(x).

7. For any integer x, 2C(x) < x ≤ 2 · 3C(x).

Thus, Shapiro proves that numbers x in class n > 1 fall into three sections:

2n < x < 2n+1, 2n+1 ≤ x ≤ 3n, 3n < x ≤ 2 · 3n.

Table 2 shows numbers separated into the three sections. Shapiro establishes the following
properties of these classes:

8. Numbers in section I are odd.

9. Numbers in section II are even or odd.

10. Numbers in section III are even.

11. If integer x is in section I, then every divisor of x is in section I of its class.

This last property [4, Theorem 15] is most interesting. For example, it tells us that the
factors 5 and 11 of 55 must both be in section I because 55 is in section I. Table 3 shows
Section I numbers (sequence A005239); each composite number, shown in bold, has all its
factors in section I.
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Class Section I Section II Section III

0 1, 2,

1 3, 4, 6,

2 5, 7, 8, 9, 10, 12, 14, 18,

3 11, 13, 15, 16, 19, 20, 21, 22, 24, 26, 27, 28, 30, 36, 38, 42,

54,

4 17, 23, 25, 29, 31, 32, 33, 34, 35, 37, 39, 40, 43, 44, 45, 46, 48, 84, 86, 90, 98, 108,

49, 50, 52, 56, 57, 58, 60, 62, 63, 66, 70, 72, 114, 126, 162,

74, 76, 78, 81,

5 41, 47, 51, 53, 55, 59, 61, 64, 65, 67, 68, 69, 71, 73, 75, 77, 79, 80, 82, 252, 254, 258, 266,

87, 88, 91, 92, 93, 94, 95, 96, 99, 100, 102, 270, 294, 324, 326,

104, 105, 106, 109, 110, 111, 112, 116, 117, 342, 378, 486,

118, 120, 122, 124, 127, 129, 130, 132, 133,

134, 135, 138, 140, 142, 144, 146, 147, 148,

150, 152, 154, 156, 158, 163, 168, 171, 172,

174, 180, 182, 186, 189, 190, 196, 198, 210,

216, 218, 222, 228, 234, 243,

Table 2: Numbers in Classes 0 to 5 Organized by Section

Class Numbers in Section I

0 1,

1 3,

2 5, 7,

3 11, 13, 15,

4 17, 23, 25, 29, 31,

5 41, 47, 51, 53, 55, 59, 61,

6 83, 85, 89, 97, 101, 103, 107, 113, 115, 119, 121, 123, 125,

7 137, 167, 179, 187, 193, 205, 221, 227, 233, 235, 239, 241, 249, 251, 253, 255,

8 257, 289, 353, 359, 389, 391, 401, 409, 411, 415, 425, 443, 445, 449, 451, 461, 467, 479,...

9 641, 685, 697, 719, 769, 771, 773, 799, 809, 821, 823, 835, 857, 867, 881, 887, 895, 901,...

10 1097, 1283, 1285, 1361, 1409, 1411, 1433, 1439, 1445, 1507, 1513, 1543, 1553, 1601,...

11 2329, 2657, 2741, 2789, 2819, 2827, 2839, 2879, 3043, 3089, 3151, 3179, 3203, 3205,...

12 4369, 4913, 5441, 5483, 5485, 5617, 5639, 5911, 6001, 6029, 6053, 6103, 6173, 6257,...

Table 3: Numbers in Section I of Classes 0 to 12

Shapiro, observing that the smallest number in each of the classes 1 through 8 is prime,
conjectured that the smallest number is prime for all classes. However, Mills [3] found
counterexamples. Later, Catlin [1, Theorem 1] proved that if the smallest number in a class
is odd, then it can be factored into the product of other such numbers. For example, the
smallest numbers in classes 11 and 12 factor as 2329 = 17 · 137 and 4369 = 17 · 257; note
that 17, 137, and 257 are the smallest numbers in classes 4, 7, and 8, respectively.
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3 Theorems about primes in classes

Although Shapiro and Catlin give a nice characterization of the composite section I numbers,
their papers say little about the prime numbers in sections I and II. We prove five theorems
about those primes.

Theorem 1. Suppose p is an odd prime and p = 1 + 2km, with k > 0 and m odd. Then p
is in section I of its class if and only if m is in section I of its class.

Proof. Observe that for prime p, φ(p) = p − 1, and hence, C(p − 1) = C(p) − 1. From
Shapiro’s properties of the C function, we have C(p − 1) = k − 1 + C(m). Therefore,
C(p) = C(m) + k. For a prime p in section I, we have the inequality

2C(p) < p < 2C(p)+1.

Substituting p = 1 + 2km, we obtain

2C(m)+k < 1 + 2km < 2C(m)+k+1.

Dividing by 2k produces the inequality

2C(m) < m < 2C(m)+1,

showing that m is a number in section I of its class, which is C(p) − k. The proof in the
other direction is just as easy. For a number m in section I, we have the inequality

2C(m) < m < 2C(m)+1.

Multiplying by 2k produces the inequality

2C(m)+k < 2km < 2C(m)+k+1.

Adding 1 to 2km does not change the inequality because there is always an odd number
between two evens. Hence, we obtain

2C(m)+k < 1 + 2km < 2C(m)+k+1.

But, for integers, this inequality is the same as

2C(p) < p < 2C(p)+1,

which means p is in section I of its class, which is C(m) + k.

Theorem 2. Suppose p is an odd prime and p = 1 + 2km, with k > 0 and m odd. Then p
is in section II of its class if and only if m is in section II of its class.

Proof. Negating Theorem 1, we have that p is not in Section I if and only if m is not in
section I. Because section III consists of only even numbers greater than 2, a prime (and an
odd number) not in section I must be in section II. Hence, the theorem follows.
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Theorem 3. If prime p is in section I of a class, then the factors of p− 1 are 2 and primes

in section I of their class.

Proof. Factor p − 1 into the product of an even number and an odd number: p − 1 = 2km,
where m is an odd number and k > 0. By Theorem 1, m is a number in section I of its class.
Using Shapiro’s Property 11, we conclude that the prime factors of m are all in section I of
their class. Clearly, 2 is also a factor of p − 1, proving the theorem.

Theorem 4. If the smallest number in a class is odd prime p, then the prime factors of

p − 1 are 2 and primes that are the smallest numbers in their class.

Proof. From properties of the C function, we know that the smallest number in class n is
either 2n+1 or a number in section I of the class. By assumption, the smallest number is
prime. Hence, the prime p must be in section I. By Theorem 1, if p is a prime in section I
and p = 1 + 2km, with k > 0 and m odd, then m is a number in section I of its class. Let q
be a prime factor of m. Then we can write m = q s and

p = 1 + 2k q s

C(p) = k + C(q) + C(s).

Because m is in section I, by Property 11, q is also. The prime q must be the least number
in its class, otherwise if there is a smaller number, p would be smaller (but in the same
class), which would contradict the assumption that p is the smallest number in its class. It
is obvious that 2 is a prime factor of p − 1.

Combining this result with Catlin’s theorem, the next theorem gives us a more complete
description of the smallest number in a class.

Theorem 5. Suppose that the smallest number x in a class is odd. If x is composite, then

its prime factors are the smallest numbers in their respective classes. If x is prime, then the

prime factors of x − 1 are 2 and primes that are the smallest numbers in their respective

classes.

Proof. The composite case is implied by Catlin’s theorem. The prime case is Theorem 4.

4 A multiplicative function

For more insight into the odd numbers in sections I and II, it is useful to introduce the
function

D(x) =
x

2C(x)

for odd integers x. (Here, D could mean “depth”; we want low values of D.) Using Property 1,
it is easy to show that D is completely multiplicative; that is, for odd integers x and y,

D(xy) = D(x)D(y).
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Observe that D(x) < 2 if and only if x is in section I of its class. If we write a prime number
p = 1 + 2km with m odd, then it is easy to show that

D(p) = 2−C(p) + D(m).

Hence, if D(m) is very small, then D(p) will be small. Clearly D(1) = 1 is the smallest
value of the D function. If F5 = 216 + 1 = 65537 is the largest Fermat prime, then D(F5)
is the second-lowest value of the D function. This value is so low that the first 45426 =
⌊(log 2)/(log D(F5))⌋ powers of F5 are also section I numbers!

5 Computing the least number in a class

Let cn be the least number in class n. For n = 1, 2, 3, . . . , 16, cn is

3, 5, 11, 17, 41, 83, 137, 257, 641, 1097, 2329, 4369, 10537, 17477, 35209, 65537,

which is sequence A007755. When computing cn, there are two cases to consider: whether
cn is composite or prime. As mentioned above, Catlin proves that when cn is composite, its
factors are among the ck for k < n. For instance,

2329 = c11 = c4 c7 and 4369 = c12 = c4 c8.

When cn is prime, we know from Theorem 4 that factors of cn − 1 are 2 and prime ck for
k < n. For instance,

1097 = c10 = 1 + 23 c7 and 17477 = c14 = 1 + 22 c4 c8.

For composite cn, it follows from Property 1 that the sum of the subscripts (with repetition)
in the product must be n. For prime cn, it follows from Property 1 applied to cn − 1 that
the sum of the exponent of 2 and subscripts (with repetition) in the product must be n. See
Tables 4 and 5 for more examples of these formulas.

Hence, Catlin’s theorem and Theorem 4 give us the tools for finding the least number in
a class. We start with c1 = 3. If the ck are known for k < n, we can compute cn using the
following procedure: First define the set of possible subscripts

Kn = {k < n : ck is prime}.

Second, define the sets of restricted products of ck

Pr =
{

∏

cki
: ki ∈ Kn, r =

∑

ki

}

, r = 1, 2, 3, . . . , n,

that is, all products of prime ck such that the sum of the subscripts is r. Of course, P0 = {1}.
Third, define the set

Qn =
n

⋃

k=1

(

1 + 2kPn−k

)

.
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Here, the notation 1 + 2kPn−k means that each element of the set Pn−k is multiplied by 2k

and then incremented by 1. Finally, cn is the smallest of the three quantities: 2n+1, the least
number in Pn, and the least prime number in Qn.

We have used the procedure described above, with some optimizations, to compute cn for
n ≤ 1000. For all these n, we found cn < 2n+1, which supports the conjecture that all cn are
odd. The 280 values of n ≤ 1000 for which cn is a provable prime are in sequence A136040.
Tables 4 and 5 show cn numerically and symbolically for n up to 100.

We found that the first 22 powers (and only those powers) of Fermat prime F5 are the
least numbers in their class, which extends the result of Mills, who found that the first 15
powers of F5 are the least numbers in their class. Moreover, as shown in the figure below, it
appears that this 22nd power may be an upper bound: we found D(cn) < D(F 22

5 ) ≈ 1.00034
for 352 < n ≤ 1000. The change at n = 352 can be explained by there finally being enough
primes p having low D(p) values so that for n ≥ 352 the set Kn is large enough to ensure
that the Pn and Qn sets have numbers very close to 2n; that is, very low D values.

0 200 400 600 800 1000
-5

-4

-3

-2

-1

0

Figure 1: n versus log(D(cn) − 1)
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n cn cn symbolically

1 3 1 + 2

2 5 1 + 22

3 11 1 + 2 c2

4 17 1 + 24

5 41 1 + 23
c2

6 83 1 + 2 c5

7 137 1 + 23
c4

8 257 1 + 28

9 641 1 + 27
c2

10 1097 1 + 23
c7

11 2329 c4 c7

12 4369 c4 c8

13 10537 c5 c8

14 17477 1 + 22
c4 c8

15 35209 c7 c8

16 65537 1 + 216

17 140417 1 + 27
c10

18 281929 c8 c10

19 557057 1 + 215
c4

20 1114129 c4 c16

21 2384897 1 + 210
c4 c7

22 4227137 1 + 26
c
2

8

23 8978569 c7 c16

24 16843009 c8 c16

25 35946497 1 + 215
c10

26 71304257 1 + 26
c4 c16

27 143163649 c8 c19

28 286331153 c4 c8 c16

29 541073537 1 + 27
c22

30 1086374209 c8 c22

31 2281701377 1 + 227
c4

32 4295098369 c
2

16

33 9198250129 c4 c29

34 18325194049 c8 c26

35 36507844609 c16 c19

36 73016672273 c4 c
2

16

37 139055899009 c8 c29

38 277033877569 c16 c22

39 586397253889 c8 c31

40 1103840280833 c8 c
2

16

41 2336533512737 1 + 25
c4 c

2

16

42 4673067091009 c16 c26

43 9382516064513 c8 c16 c19

44 17868687216769 c
2

22

45 35460336394369 c16 c29

46 71197706535233 c8 c16 c22

47 149535863144449 c16 c31

48 281487861809153 c
3

16

49 600470787982337 1 + 210
c8 c31

50 1200978242389313 c8 c16 c26

Table 4: Least Number in Classes 1 to 50
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n cn cn symbolically

51 2278291849363457 1 + 214
c8 c29

52 4538923050090497 1 + 214
c16 c22

53 9113306453352833 c8 c16 c29

54 18155969234239553 c
2

16
c22

55 38280596832649217 1 + 251
c4

56 72342380484952321 c8 c
3

16

57 153129396824244769 c16 c41

58 291621356718522497 1 + 27
c51

59 583242713437044737 1 + 222
c8 c29

60 1166485424718217217 1 + 230
c8 c22

61 2323964066277761153 c
2

16
c29

62 4666084093199565121 c8 c
2

16
c22

63 9800131862897754113 c
2

16
c31

64 18447869999386460161 c
4

16

65 39352453561210372097 1 + 226
c8 c31

66 74656206327888494657 1 + 26
c8 c52

67 148731430780247474177 1 + 222
c16 c29

68 297467399933780901889 c16 c52

69 592619738273148829697 1 + 229
c8 c

2

16

70 1189887755704357584961 c
3

16
c22

71 2426509543591652400137 1 + 23
c
3

8
c
2

22

72 4741102589842320261377 c8 c
4

16

73 9630651773242695532609 c22 c51

74 19111988855261800431617 1 + 221
c8 c16 c29

75 38223977710523600863489 c8 c67

76 76447955279757801750529 c16 c60

77 152300948808147367100417 1 + 245
c
2

8
c16

78 305801153216019899334977 c8 c
3

16
c22

79 618769376430842916376577 1 + 212
c
2

8
c22 c29

80 1209018056149790439571457 c
5

16

81 2446371901576743388450817 1 + 212
c8 c

2

16
c29

82 4892594491879703116251137 1 + 231
c51

83 9747411779045078715138049 c16 c67

84 19495120989460198967099393 c
2

16
c52

85 38838519787207354851852289 c16 c69

86 77981673845596483045589057 c
4

16
c22

87 157179431859730823152143377 1 + 24
c
2

16
c22 c29

88 310717640430496142969864449 c8 c
5

16

89 623843871662726366947180577 1 + 25
c
2

16
c52

90 1252542413607292614886883329 c16 c74

91 2505084822584743524518887489 c22 c69

92 5010169645169487053324419073 c
2

16
c60

93 9981347282039553997660028929 c16 c77

94 20041290178318296142716387649 c8 c
4

16
c22

95 40394497616832409545668591809 c29 c66

96 79235416345888816038194577409 c
6

16

97 160327875017320676305425408289 c8 c89

98 320645965214320103129750765569 c16 c82

99 638816125763277323754002317313 c
2

16
c67

100 1277651744286253059706792919041 c
3

16
c52

Table 5: Least Number in Classes 51 to 100
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